ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR"

Transcript

1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική. 2.1 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Πύλες OR και NOR Η απλή πύλη OR που εξετάζουµε λαµβάνει δύο εισόδους Α, Β και παράγει µία έξοδο Υ. Η πύλη OR παράγει στην έξοδο τη λογική διάζευξη των εισόδων, ώστε παράγει λογικό 1 µόνον αν τουλάχιστον η µία είσοδος λάβει την τιµή λογικό 1. Στην περίπτωση που και οι δύο είσοδοι είναι 0 εξάγει το λογικό 0: Y = A+ (2.1) Ο πίνακας αληθείας της πύλης OR και το κυκλωµατικό σύµβολο δίνονται στο παρακάτω Σχήµα 2.1: Σχήµα 2.1: Πίνακας αληθείας και κυκλωµατικό σύµβολο πύλης OR Το ολοκληρωµένο κύκλωµα 7432 περιέχει πύλες OR. Η πύλη NOR µπορεί να θεωρηθεί ότι είναι µια πύλη OR που ακολουθείται από µια πύλη NOT. Ως αποτέλεσµα, η λογική πράξη που επιτελεί παρέχει το συµπλήρωµα του λογικού OR: Y = A+ (2.2) Ο πίνακας αληθείας της πύλης ΝOR και το κυκλωµατικό σύµβολο δίνονται στο παρακάτω Σχήµα 2.2: Σχήµα 2.2: Πίνακας αληθείας και κυκλωµατικό σύµβολο πύλης ΝOR 13

2 Η πύλη NOR µπορεί να υλοποιηθεί κυκλωµατικά ευκολότερα από την πύλη OR, καθώς απαιτούνται λιγότερα κυκλωµατικά εξαρτήµατα (τρανζίστορ). Έτσι, µια πύλη NOR µπορεί να υλοποιηθεί µε τη βοήθεια δύο διπολικών τρανζίστορ σε λειτουργία διακόπτη, που οδηγούν το συλλέκτη στο δυναµικό της γης, θέτοντας λογικό 1 στη βάση (προσπαθήστε να σχεδιάσετε τη συνδεσµολογία). Μια πύλη NOR µπορεί να γίνει πύλη OR αν συνδέσουµε στην έξοδο έναν λογικό αντιστροφέα: Σχήµα 2.3: Η αντιστροφή της εξόδου της NOR αποδίδει µια πύλη OR Όπως η πύλη NAND, έτσι και η πύλη NOR είναι οικουµενική πύλη, καθώς µπορεί να υλοποιήσει τις απλές πύλες AND, OR, NOT. Για παράδειγµα, αν βραχυκυκλώσουµε µεταξύ τους τούς ακροδέκτες εισόδου µιας NOR, τότε η έξοδος είναι το συµπλήρωµα της εισόδου, οπότε αντιστοιχεί σε πύλη NOT. Πράγµατι, λαµβάνοντας υπόψη το θεώρηµα του De Morgan έχουµε: A + A= A= A (2.3) Σχήµα 2.4: Λογικός αντιστροφέας µε πύλη NOR Προφανώς, η πύλη NOR σε σειρά µε έναν αντιστροφέα αποδίδει την πύλη OR Σχήµα 2.5: Πύλη OR κατασκευασµένη µε πύλες NOR Σχήµα 2.6: Πύλη AND κατασκευασµένη µε πύλες NOR. Προσέξτε την εφαρ- µογή του θεωρήµατος De Morgan 14

3 Παροµοίως, δύο αντιστροφείς και µια πύλη NOR δηµιουργούν την πύλη AND, σύµφωνα και πάλι µε το θεώρηµα De Morgan, όπως φαίνεται στο παραπάνω σχήµα 2.6. Το ολοκληρωµένο κύκλωµα 7402 περιέχει πύλες NOR Πύλες XOR και XNOR Η πύλη XOR έχει δύο εισόδους Α, Β και µία έξοδο Υ, που γίνεται λογικό 1 όταν µόνο µία από τις δύο εισόδους είναι 1. Ονοµάζεται αλλιώς πύλη αποκλειστικού Ή (Exclusive OR) Σχήµα 2.7: Πίνακας αληθείας και κυκλωµατικό σύµβολο πύλης ΧOR Η πύλη XOR ονοµάζεται επίσης «πύλη σύγκρισης», επειδή παράγει λογικό 1 µόνον όταν οι είσοδοι διαφέρουν µεταξύ τους. Η συνάρτηση της πύλης XOR είναι: Y = A = + (2.4) Η πύλη XNOR (exclusive NOR) υλοποιεί το συµπλήρωµα της πύλης XOR. Η λογική συνάρτηση και πίνακας αληθείας δίνονται παρακάτω: Y = A = + (2.5) Σχήµα 2.8: Πίνακας αληθείας της πύλης ΧΝOR 15

4 2.2 ΕΡΓΑΣΤΗΡΙΑΚΟ ΜΕΡΟΣ Πύλες OR, NOR α) Να υλοποιήσετε το παρακάτω κύκλωµα στο ράστερ. Χρησιµοποιείστε τη σειρά που επισηµαίνεται µε κόκκινη γραµµή στο ράστερ για να συνδέσετε τα 5V και τη σειρά που επισηµαίνεται µε µπλέ γραµµή για τη γη (0V). Κατά τη διάρκεια της ενσυρµάτωσης βεβαιωθείτε ότι έχετε αποσυνδέσει το κύκλωµα από την τροφοδοσία. Πριν ανάψετε το τροφοδοτικό ζητείστε από τον διδάσκοντα να ελέγξει τη διασύνδεση. Σχήµα 2.9 Κύκλωµα µέτρησης της πύλης OR στο ράστερ β) Να δώσετε τιµές στις εισόδους Α και Β (ακροδέκτες 1, 2 του ολοκληρωµένου κυκλώµατος), χρησιµοποιώντας τους δύο διακόπτες, που ενώνονται µε τα +5V για το 1 και µε τη γη για το 0. Να συµπληρώσετε τον παρακάτω πίνακα αληθείας, παρακολουθώντας την ένδειξη του LED εξόδου και µετρώντας την τάση της εξόδου µε το βολτόµετρο: =Α+Β Τάση V γ) Να επαληθεύσετε πειραµατικά τα παρακάτω θεωρήµατα της Άλγεβρας oole: 1. Α+Α=Α. Για το σκοπό αυτό να δώσετε κοινή είσοδο Α=Β και να συµπληρώσετε τον παρακάτω πίνακα Α Β=Α Υ=Α+Α 16

5 2. Α+1=1. Για το σκοπό αυτό να δώσετε κοινή είσοδο Β=1 και να συµπληρώσετε τον παρακάτω πίνακα Α Β=1 Υ=Α+Β 1 1 δ) Λαµβάνοντας υπόψη ότι A = A+, να υλοποιήσετε µια πύλη AND χρησιµοποιώντας τις πύλες NOR που βρίσκονται στο ολοκληρωµένο κύκλωµα δ1. Να σχεδιάσετε το κύκλωµα παρακάτω, σηµειώνοντας στις εισόδους και στις εξόδους των πυλών τους αριθµούς που αντιστοιχούν στους ακροδέκτες του Το ολοκληρωµένο κύκλωµα φαίνεται στο διπλανό σχήµα Ολοκληρωµένο κύλωµα 7402 Σχήµα που πρέπει να γίνει από τον φοιτητή: πύλη AND µε πύλες NOR (7402). δ2) Αφού υλοποιήσετε και τροφοδοτήσετε το κύκλωµα, να συµπληρώσετε τον πίνακα αληθείας: Πίνακας αληθείας του κυκλώµατος µε πύλες NOR 17

6 2.2.2 Πύλη XOR ε) Να χρησιµοποιήσετε µια πύλη XOR του ολοκληρωµένου κυκλώµατος 7486, για να συµπληρώσετε τον πίνακα αληθείας της πύλης. Το διάγραµµα διασυνδέσεων δίνεται παρακάτω: Σχήµα 2.10 Κύκλωµα µέτρησης της πύλης ΧOR στο ράστερ Να συµπληρωθεί ο πίνακας αληθείας = A ζ) Να συζητήσετε στην τάξη µε ποιό τρόπο µπορείτε να µετατρέψετε µια XOR 1. σε πύλη NOT: σε πύλη διέλευσης:... = A Πύλη ΝΟΤ = A Πύλη διέλευσης 18

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17 Ψηφιακά Ηλεκτρονικά Κεφάλαιο 1ο Άλγεβρα Boole και Λογικές Πύλες Αναλογικά μεγέθη Αναλογικό μέγεθος ονομάζεται εκείνο που μπορεί να πάρει οποιαδήποτε τιμή σε μια περιοχή τιμών, όπως η ταχύτητα, το βάρος,

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων MOS Ψηφιακά Κυκλώματα Κεφάλαιο 1 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Άλγεβρα oole Χάρτης Karnaugh 2. MOS τρανζίστορ 3.

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών OOLEN LGER ιδάσκων: ναπλ. Καθ. Κ. Λαµπρινουδάκης clam@unp.gr Αρχιτεκτονικές Υπολογιστών ναπλ. Καθ. Κ. Λαµπρινουδάκης Άλγεβρα OOLE Οι µεταβλητές

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Οι λογικές πύλες (ή απλά πύλες) είναι οι θεμελιώδεις δομικές μονάδες των ψηφιακών κυκλωμάτων. Όπως φαίνεται και από την ονομασία

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς

Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες

Διαβάστε περισσότερα

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Χάρτης Karnaugh (K-map) Prime Implicants (πρωταρχικοί όροι) Διαδικασία Απλοποίησης με K-map ΑδιάφοροιΣυνδυασμοίΕισόδων Διεπίπεδες Υλοποιήσεις

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ. Το MOSFET

4 η ΕΝΟΤΗΤΑ. Το MOSFET 4 η ΕΝΟΤΗΤΑ Το MOSFET Άσκηση 12η. Ενισχυτής κοινής πηγής με MOSFET, DC λειτουργία. 1. Υλοποιείστε το κύκλωμα του ενισχυτή κοινής πηγής με MOSFET (2Ν7000) του Σχ. 1. V DD = 12 V C by R g = 50 C i R A 1

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση

Διαβάστε περισσότερα

Ιωάννης Καλόµοιρος ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Τεύχος 1 ο. Σύντοµη εισαγωγή στα ψηφιακά κυκλώµατα και στις οικογένειες κυκλωµάτων της τυπικής λογικής

Ιωάννης Καλόµοιρος ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Τεύχος 1 ο. Σύντοµη εισαγωγή στα ψηφιακά κυκλώµατα και στις οικογένειες κυκλωµάτων της τυπικής λογικής Ιωάννης Καλόµοιρος (Document version 1.0) Αναπλ. Καθηγητής ΤΕΙ Κεντρικής Μακεδονίας ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τεύχος 1 ο Σύντοµη εισαγωγή στα ψηφιακά κυκλώµατα και στις οικογένειες κυκλωµάτων της τυπικής

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

GF list AND

GF list AND NOT GF list GF list AND GF list NAND GF list OR NOR XOR GF list ΠΑΡΑΔΕΙΓΜΑ Ε1 = (S1 + S2 ) S3 ΠΑΡΑΔΕΙΓΜΑ Ε1 = (S1 + S2 ) S3 ΠΑΡΑΔΕΙΓΜΑ Ε1 = (S1 + S2 ) S3 ΠΑΡΑΔΕΙΓΜΑ Σε μία εγκατάσταση θέλουμε να ελέγξουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται και αναλύονται οι βασικές αρχές λειτουργίας των ψηφιακών κυκλωμάτων, παρουσιάζεται η άλγεβρα Boole και πώς χρησιμοποιείται

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Μάθημα 0: Εισαγωγή. Λευτέρης Καπετανάκης. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011

Μάθημα 0: Εισαγωγή. Λευτέρης Καπετανάκης. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ22 Ψηφιακά Κυκλώματα Ι Μάθημα : Εισαγωγή Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2 Περιεχόμενα Μαθήματος Εισαγωγή στη σχεδίαση των ψηφιακών κυκλώματων Εισαγωγή

Διαβάστε περισσότερα

Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ

Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ ΣΚΟΠΟΣ ΤΗΣ ΕΝΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΗΦΙΑΚΗ ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΑ ΕΞΑΡΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΛΟΓΙΚEΣ ΠΥΛΕΣ NOT, AND, OR, NAND, NOR, XOR, XNOR ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ FLIP - FLOP RS, D, JK,

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χάρτες Karnaugh, Οικουµενικές Πύλες (NAND & NOR) και Αποκλειστικό Η (ΧΟR) Εβδοµάδα: 3 Εργαστήριο Ψηφιακών Συστηµάτων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Γιάννης Λιαπέρδος 2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΛΕΞΗΣ Άλγεβρα Διακοπτών Κυκλωματική Υλοποίηση Λογικών Πυλών με Ηλεκτρονικά

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Μάθηµα 1ο Μέρος 1ο. Ανάλυση Κυκλωµάτων DC ΑΝΑΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Μάθηµα 1ο Μέρος 1ο. Ανάλυση Κυκλωµάτων DC ΑΝΑΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθηµα 1ο Μέρος 1ο Ανάλυση Κυκλωµάτων DC ΑΝΑΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ 1 Σκοπός του µαθήµατος Εισαγωγή στις ηλεκτρονικές διατάξεις µε στόχο την απόκτηση αναλυτικής ικανότητας στα θέµατα αυτά. Απόκτηση απαραίτητων

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND ΚΑΙ OR Οι βασικές πράξεις της Άλγεβρας Boole είναι οι πράξεις NOT, ANDκαι OR. Στα ψηφιακά

Διαβάστε περισσότερα

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι ΑΣ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ ΤΜΗΜΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΙΚΤΥΩΝ ΠΑΡΑΡΤΗΜΑ ΝΑΥΠΑΚΤΟΥ ΝΑΥΠΑΚΤΟΣ 2005 ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι Α Σ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης

Διαβάστε περισσότερα

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

- Transistor Transistor -

- Transistor Transistor - ΚΕΦΑΛΑΙΟ 4 ΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΚΥΚΛΩΜΑΟΣ Βασικές αρχές ηλεκτροτεχνίας Αντίσταση πυκνωτή - πηνίου Συντονισµένο κύκλωµα Ηλεκτρονική δοµή της ύλης Ηλεκτρονικές ιδιότητες της ύλης Ηλεκτρονικές λυχνίες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΑΣΚΗΣΗ 9. Tα Flip-Flop ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

V Vin $N PULSE 1.8V p 0.1p 1n 2n M M1 $N 0002 $N 0001 Vout $N 0002 MpTSMC180 + L=180n + W=720n + AD=0.324p + AS=0.

V Vin $N PULSE 1.8V p 0.1p 1n 2n M M1 $N 0002 $N 0001 Vout $N 0002 MpTSMC180 + L=180n + W=720n + AD=0.324p + AS=0. Εργασία Μικροηλεκτρονικής 2013-2014 Θέμα: Σχεδίαση και Ανάλυση CMOS Αντιστροφέα και CMOS Λογικών Κυκλωμάτων στο SPICE Ονοματεπώνυμο: Αλέξανδρος Γεώργιος Μουντογιαννάκης Σχολή: Τμήμα Επιστήμης Υπολογιστών

Διαβάστε περισσότερα

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2 Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ

Διαβάστε περισσότερα

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Ενότητα 2 ΛΓΕΡ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Άλγεβρα Boole Γενικές Γραμμές ξιώματα Huntington και Θεωρήματα ρχή του Δυϊσμού Λογικές πύλες NAND και NOR Υλοποιήσεις με πύλες NAND ή πύλεςnor πομονωτές τριών καταστάσεων

Διαβάστε περισσότερα

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Παράσταση αριθμών «κινητής υποδιαστολής» floating point Παράσταση αριθμών «κινητής υποδιαστολής» floating point Με n bits μπορούμε να παραστήσουμε 2 n διαφορετικούς αριθμούς π.χ. με n=32 μπορούμε να παραστήσουμε τους αριθμούς από έως 2 32 -= 4,294,967,295 4

Διαβάστε περισσότερα

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) CMOS Κάθε λογική πύλη αποτελείται από δύο τμήματα p-mos δικτύωμα, τοποθετείται μεταξύ τροφοδοσίας και εξόδου. Όταν είναι ενεργό φορτίζει την έξοδο στην

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 5: Το CMOS transistor και κυκλώµατα CMOS ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Κυκλώµατα

Διαβάστε περισσότερα

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ.

ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. 478 ΣΧΕΔΙΑΣΗ ΥΛΟΠΟΙΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ «ΗΛΕΚΤΡΟΝΙΚΟΣ» ΓΙΑ ΤΙΣ ΑΝΑΓΚΕΣ ΤΗΣ ΤΕΧΝΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. Γλάρος Ιωάννης ΤΕ 01 Ηλεκτρονικός Εκπαιδευτικός Δ.Ε http://3tee-rodou.dod.sch.gr

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

7 η διάλεξη Ακολουθιακά Κυκλώματα

7 η διάλεξη Ακολουθιακά Κυκλώματα 7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Breadboard-Raster-Πλέγμα ηλεκτρονικού κυκλώματος πλέγμα

Breadboard-Raster-Πλέγμα ηλεκτρονικού κυκλώματος πλέγμα Breadboard-Raster-Πλέγμα Πάντα στην κατασκευή ενός ηλεκτρονικού κυκλώματος το πρώτο στάδιο είναι το χαρτί και το δεύτερο η υλοποίηση του σε ένα ράστερ, για τον έλεγχο του ώστε όταν περαστεί σε πλακέτα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΣΠΑΡΤΗ 2016 Γιάννης Λιαπέρδος ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ Copyright ΣΕΑΒ, 2016 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

Α2. Α2.1 Α2.2 Α2.1 Α2.2 Μονάδες 10 Α3.

Α2. Α2.1 Α2.2 Α2.1 Α2.2 Μονάδες 10 Α3. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ʹ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΠΕΜΠΤΗ 20 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ιδάσκων: Καθηγητής Ν. Φακωτάκης Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (1ος Κύκλος) ΗΛΕΚΤΡΟΛΟΓΙΑ Ηµεροµηνία: Κυριακή 19 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (1ος Κύκλος) ΗΛΕΚΤΡΟΛΟΓΙΑ Ηµεροµηνία: Κυριακή 19 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Α.1. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (1ος Κύκλος) ΗΛΕΚΤΡΟΛΟΓΙΑ Ηµεροµηνία: Κυριακή 19 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX)

ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX) ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX) Αντικείμενο της άσκησης: Η κατανόηση των εννοιών πολύπλεξης - απόπλεξης, η σχεδίαση σε επίπεδο πυλών ενός πολυπλέκτη και εφαρμογές με τα ολοκληρωμένα κυκλώματα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

13 ΗΛΕΚΤΡΙΚΑ ΟΡΓΑΝΑ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ

13 ΗΛΕΚΤΡΙΚΑ ΟΡΓΑΝΑ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ 13 ΗΛΕΚΤΡΙΚΑ ΟΡΓΑΝΑ ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΟΙΚΟΣ: Ν. ΑΤΜΑΤΖΙ ΗΣ ΑΤΕΒΕ ΠΡΟΕΛΕΥΣΗ: ΕΛΛΗΝΙΚΗ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΠΡΟ ΙΑΓΡΑΦΩΝ '0λα τα προσφερόµενα όργανα, συσκευές και πειραµατικές διατάξεις: 1. Εξυπηρετούν τους διδακτικούς

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΠΟΥΔΑΣΤΗΣ : Λιασένκο Ρομάν ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ : Τόλιου Κατερίνα NEA

Διαβάστε περισσότερα

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ Τίτλος: «Σχεδίαση και προσοµοίωση παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit, µε το πρόγραµµα Multisim» ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα