ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ"

Transcript

1 ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή ποσοτική μεταβλητή. Σ Λ 3. Ο αριθμός των απουσιών των μαθητών της Γ Λυκείου είναι συνεχής ποσοτική μεταβλητή. Σ Λ 4. Συχνότητα ν i της τιμής x i μιας μεταβλητής Χ είναι ο φυσικός αριθμός, που δείχνει πόσες φορές εμφανίζεται η τιμή x i της μεταβλητής αυτής. Σ Λ 5. Το άθροισμα όλων των συχνοτήτων μιας κατανομής είναι ίσο με 1. Σ Λ 6. Η συχνότητα της τιμής x i μιας μεταβλητής Χ είναι αρνητικός αριθμός. Σ Λ 7. Αν διαιρέσουμε τη συχνότητα ν i μιας μεταβλητής Χ με το μέγεθος ν του δείγματος, προκύπτει η σχετική συχνότητα f i της τιμής x i. Σ Λ 8. Το άθροισμα όλων των σχετικών συχνοτήτων μιας κατανομής είναι ίσο με το μέγεθος ν του δείγματος. Σ Λ 9. Το σύνολο των ζευγών (x i, f i ), όπου f i η σχετική συχνότητα της τιμής x i, αποτελεί την κατανομή των σχετικών συχνοτήτων. Σ Λ 10. Οι αθροιστικές συχνότητες Ν i και οι αθροιστικές σχετικές συχνότητες F i μιας κατανομής χρησιμοποιούνται μόνο στην περίπτωση των ποιοτικών μεταβλητών. Σ Λ

2 11. Οι αθροιστικές συχνότητες Ν i μιας κατανομής εκφράζουν το πλήθος των παρατηρήσεων που είναι μικρότερες ή ίσες της τιμής x i. Σ Λ 12. Οι αθροιστικές σχετικές συχνότητες F i μιας κατανομής εκφράζουν το ποσοστό των παρατηρήσεων που είναι μεγαλύτερες ή ίσες της τιμής x i. Σ Λ 13. Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποσοτικής μεταβλητής. Σ Λ 14. Όταν θέλουμε να κάνουμε τη γραφική παράσταση των τιμών της μεταβλητής Χ: αριθμός αδελφών μαθητών της Γ Λυκείου χρησιμοποιούμε το διάγραμμα Σ Λ συχνοτήτων. 15. Το κυκλικό διάγραμμα χρησιμοποιείται για τη γραφική παράσταση μόνο ποιοτικών δεδομένων. Σ Λ 16. Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κυκλικούς τομείς τα εμβαδά των ο- ποίων είναι αντιστρόφως ανάλογα προς τις αντίστοιχες Σ Λ συχνότητες ν i. 17. Το σημειόγραμμα χρησιμοποιείται για τη γραφική απεικόνιση της διαχρονικής εξέλιξης μιας εξεταζόμενης μεταβλητής. Σ Λ 18. Tο διπλανό σχήμα είναι ένα χρονόγραμμα. 19. Σ Λ 20. Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο είναι απαραίτητο να ταξινομηθούν τα δεδομένα σε κλάσεις. Σ Λ 21. Πλάτος κλάσης ενός δείγματος ονομάζεται το ά- θροισμα του κατώτερου και του ανώτερου ορίου της Σ Λ κλάσης. 22. Όταν ο αριθμός των κλάσεων για μια συνεχή μετα-

3 βλητή είναι αρκετά μικρός και το πλάτος των κλάσεων είναι αρκετά μεγάλο τότε η πολυγωνική γραμμή συχνοτήτων τείνει να πάρει τη μορφή μιας ομαλής καμπύλης, η οποία ονομάζεται καμπύλη συχνοτήτων. Σ Λ 23. Η κατανομή συχνοτήτων με κωδωνοειδή μορφή λέγεται κανονική κατανομή. Σ Λ 24. Η διπλανή κατανομή είναι ασύμμετρη με αρνητική ασυμμετρία. Σ Λ Σε όλες τις περιπτώσεις οι κλάσεις ενός δείγματος έχουν όλες το ίδιο πλάτος. Σ Λ 27. Το εύρος του δείγματος χρησιμοποιείται για να κατασκευάσουμε ισοπλατείς κλάσεις. Σ Λ 28. Οι παρατηρήσεις κάθε κλάσης ενός δείγματος μπορούν να αντιπροσωπευθούν από τις κεντρικές τιμές Σ Λ τους. 29. Το κέντρο κάθε κλάσης ενός δείγματος ισούται με την ημιδιαφορά των άκρων της κλάσης. Σ Λ 30. Το πλάτος των κεντρικών τιμών ισοπλατών κλάσεων ενός δείγματος ισούται με το πλάτος των κλάσεων Σ Λ αυτών. 31. Η γραφική παράσταση ενός πίνακα συχνοτήτων μιας κατανομής με ομαδοποιημένα δεδομένα γίνεται με το ιστόγραμμα συχνοτήτων. Σ Λ 32. Στο ιστόγραμμα συχνοτήτων κατασκευάζουμε διαδοχικά ορθογώνια καθένα από τα οποία έχει εμβαδόν ίσο με τη σχετική συχνότητα της κάθε κλάσης. Σ Λ 33. Ο σταθμικός μέσος χρησιμοποιείται σε όλες τις περι-

4 πτώσεις όπως και ο αριθμητικός μέσος. Σ Λ 34. Διάμεσος (δ) ενός δείγματος ν παρατηρήσεων είναι η τιμή για την οποία το πολύ 50% των παρατηρήσεων είναι μικρότερες και το πολύ 50% των παρατηρήσεων είναι μεγαλύτερες από την τιμή αυτή. Σ Λ 35. Διάμεσος (δ) ενός δείγματος ν παρατηρήσεων οι ο- ποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, όταν ο ν είναι περιττός. Σ Λ 36. Διάμεσος (δ) ενός δείγματος ν παρατηρήσεων οι ο- ποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται η ημιδιαφορά των δύο μεσαίων παρατηρήσεων, όταν ο ν είναι άρτιος αριθμός. Σ Λ 37. Η διάμεσος (δ) ενός δείγματος είναι ένα μέτρο διασποράς. Σ Λ 38. Η μέση τιμή ενός συνόλου ν παρατηρήσεων είναι ένα μέτρο θέσης. Σ Λ 39. Επικρατούσα τιμή ενός δείγματος ν παρατηρήσεων ορίζεται η τιμή με τη μεγαλύτερη σχετική συχνότητα. Σ Λ 40. Ο συντελεστής μεταβολής ή συντελεστής μεταβλητότητας (CV) είναι ανεξάρτητος από τις μονάδες μέτρησης. Σ Λ 41. Ο συντελεστής μεταβλητότητας εκφράζει τη μεταβλητότητα των δεδομένων απαλλαγμένη από την ε- πίδραση της μέσης τιμής. Σ Λ 42. Ο συντελεστής μεταβλητότητας (CV) παριστάνει ένα μέτρο απόλυτης διασποράς και όχι σχετικής διασποράς. 43. Ένα δείγμα τιμών μιας μεταβλητής είναι ομοιογενές Σ Λ

5 αν ο συντελεστής μεταβολής ξεπερνά το 10%. Σ Λ 44. Αν οι παρατηρήσεις εκφράζονται σε cm και η διακύμανση εκφράζεται σε cm. Σ Λ 45. Τα μέτρα διασποράς εκφράζουν τις αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής Σ Λ τάσης. 46. Το εύρος ή κύμανση (R) ενός δείγματος ν παρατηρήσεων ορίζεται ως το άθροισμα της μεγαλύτερης και της μικρότερης παρατήρησης. Σ Λ Ερωτήσεις πολλαπλής επιλογής 1. * Από τις παρακάτω μεταβλητές διακριτή ποσοτική είναι Α. το βάρος μαθητών. Β. η μηνιαία κατανάλωση ρεύματος. Γ. ο χαρακτηρισμός της διαγωγής των μαθητών. Δ. ο αριθμός απουσιών. Ε. η ποιότητα του περιεχομένου των βιβλίων. 2. * Το ζεύγος που αποτελεί την κατανομή συχνοτήτων είναι Α. (x i, ν i ). Β. (x i, f i ). Γ. (ν i, f i ). Δ. (x i f i, νx i ). Ε. (νf i, x i ). 3. * Σε ένα δείγμα μεγέθους ν με συχνότητα ν i της τιμής x i μιας μεταβλητής Χ η σχετική συχνότητα f i ισούται με Α. f i = ν. Β. fi = ν i ν i. Γ. fi = ν i - ν. Δ. f i = ν i ν. Ε. f i = ν 100. ν i

6 4. * Αν x 1, x 2,, x κ είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, τότε αν στην τιμή x i αντιστοιχίσουμε τη συχνότητα ν i ισχύει Α. ν 1 + ν ν κ = 100. Β. ν 1 + ν ν κ = ν. Γ. ν 1 + ν ν κ = κ. Δ. ν 1 + ν ν κ = νκ. Ε. ν 1 + ν ν κ = 100ν. 5. * Αν x 1, x 2,, x κ είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, κ ν, τότε για τις σχετικές συχνότητες f 1, f 2,, f κ ισχύει Α. f 1 + f f κ = 100. Β. f 1 + f f κ = κ 2. Γ. f 1 + f f κ = 1. Δ. f 1 + f f κ = 100κ. Ε. f 1 + f f κ = κ. 6. * Στο κυκλικό διάγραμμα συχνοτήτων αν συμβολίσουμε με α i το αντίστοιχο τόξο ενός κυκλικού τμήματος τότε το α i ισούται με Α. 360 ν i. Β. 360 f i. Γ. 90 f i. Δ. 180 ν i. Ε. 180 f i. 7. * Κατά την ομαδοποίηση παρατηρήσεων, αν R είναι το εύρος του δείγματος και κ ο αριθμός των κλάσεων, το πλάτος των κλάσεων c θα είναι Α. c κ R. Β. c R κ. Γ. c κ R. Δ. c κ - R. Ε. c R - κ. 8. * Από τις παρακάτω κατανομές συχνοτήτων (1) (2) (3) (4) αυτή που προσεγγίζει καλύτερα την κανονική είναι η Α. (1). Β. (2). Γ. (3). Δ. (4). Ε. καμία από τις παραπάνω.

7 9. * Από τις παρακάτω κατανομές συχνοτήτων (1) (2) (3) (4) ομοιόμορφη είναι η Α. (1). Β. (2). Γ. (3). Δ. (4). Ε. καμία από τις παραπάνω. 10. * Αν α, β είναι τα άκρα των κλάσεων σε μια ομαδοποίηση παρατηρήσεων, οι κλάσεις είναι της μορφής Α. (α, β). Β. [α, β). Γ. (α, β]. Δ. [α, β]. Ε. όλα τα παραπάνω. 11. * Σε ένα δείγμα μεγέθους ν αν οι παρατηρήσεις μιας μεταβλητής Χ είναι t 1, t 2,, t ν. Τότε η μέση τιμή x ισούται με 1 ν 1 ν 1 ν 2 Α. t 2 i. Β. t i. Γ. t 2 i. ν i = 1 ν i = 1 ν i = 1 1 ν 2 1 ν Δ. t i. Ε. t i. ν i = 1 ν -1 i = * Αν σε κάθε τιμή x 1, x 2,, x ν ενός συνόλου δεδομένων δώσουμε διαφορετική βαρύτητα που εκφράζεται με τους συντελεστές στάθμισης (βαρύτητας) w 1, w 2,, w ν, τότε ο σταθμικός μέσος βρίσκεται από τον τύπο Α. x = Γ. x = ν i = 1 ν i = 1 ν i = 1 x ν x i i w w w i i i. Β. x =. Δ. x = ν x i w i i = 1 ν ν i i = 1 ν x i w i i = 1 ν x i i = 1..

8 Ε. x = ν i = 1 ν i = 1 x i ν w 2 i i. 13. * Στις παρατηρήσεις 0, 1, 2, 2, 3, 4, 5, 6 η επικρατούσα τιμή είναι Α. 1. Β. 2. Γ. 3. Δ. 4. Ε * Στις παρατηρήσεις 0, 1, 2, 3, 4, 5 η επικρατούσα τιμή είναι Α. 0. Β. 1. Γ. 2. Δ. 3. Ε. καμία από τις παραπάνω. 15. * Μέτρο θέσης είναι Α. το εύρος. Β. το ενδοτεταρτημοριακό εύρος. Γ. η διάμεσος. Δ. η διακύμανση. Ε. η τυπική απόκλιση. 16. * Αν η καμπύλη συχνοτήτων για το χαρακτηριστικό που εξετάζουμε είναι κανονική, τότε το εύρος ισούται περίπου με Α. 2 τυπικές αποκλίσεις. Β. 3 τυπικές αποκλίσεις. Γ. 4 τυπικές αποκλίσεις. Δ. 5 τυπικές αποκλίσεις. Ε. 6 τυπικές αποκλίσεις. 17. * Αν η καμπύλη συχνοτήτων για το χαρακτηριστικό που εξετάζουμε είναι κανονική, τότε το 68% περίπου των παρατηρήσεων βρίσκεται στο διάστημα Α. ( x + s, x + 2s). B. ( x - s, x + 2s). Γ. ( x - s, x + s). Δ. ( x - 2s, x + 2s). E. ( x - 3s, x + 3s). 18. * Αν η καμπύλη συχνοτήτων για το χαρακτηριστικό που εξετάζουμε είναι κανονική, τότε το 95% περίπου των παρατηρήσεων βρίσκεται στο διάστημα Α. ( x - s, x + s). B. ( x - 2s, x + s). Γ. ( x - 2s, x + 2s). Δ. ( x - s, x + 3s). E. ( x - 3s, x + 3s). 19. * Η μέση τιμής μιας κανονικής κατανομής είναι 25 και η τυπική απόκλιση είναι 5. Το ποσοστό των παρατηρήσεων που είναι μεταξύ 20 και 30 είναι περίπου

9 Α. 34%. B. 65%. Γ. 68%. Δ. 95%. E. 99,7%. 20. * Η μέση τιμή μιας κανονικής κατανομής είναι 20 και η τυπική απόκλιση είναι 3. Το ποσοστό των παρατηρήσεων που είναι μεταξύ 14 και 26 είναι περίπου Α. 34%. B. 47,5%. Γ. 68%. Δ. 95%. E. 99,7%. 21. * Η μέση τιμής μιας κανονικής κατανομής είναι 30 και η τυπική απόκλιση είναι 3. Το ποσοστό των παρατηρήσεων που είναι μεταξύ 30 και 33 είναι περίπου Α. 34%. B. 47,5%. Γ. 68%. Δ. 95%. E. 99,7%. 22. * Ένα εργοστάσιο κατασκευάζει μεταλλικούς δίσκους για τη λειτουργία μιας μηχανής. Η κατανομή συχνοτήτων ως προς τη διάμετρό τους είναι κανονική με μέση τιμή (διάμετρο) 32 cm και τυπική απόκλιση 0,2 cm. i) Αν αγοράσουμε ένα τέτοιο δίσκο η διάμετρός του είναι σχεδόν βέβαιο ότι θα βρίσκεται στο διάστημα μεταξύ Α. 33,5 cm και 35,2 cm. B. 31,4 cm και 32,6 cm. Γ. 29,2 cm και 31,4 cm. Δ. 32,6 cm και 35,5 cm. E. 20,7 cm και 22,3 cm. ii) Αν διαλέξουμε ένα τέτοιο δίσκο στην τύχη, πρέπει να ελέγξουμε τη λειτουργία της μηχανής για πιθανή βλάβη, όταν η διάμετρός του είναι Α. 31,5 cm. B. 31,7 cm. Γ. 31,2 cm. Δ. 31,9 cm. E. 32,5 cm. 23. * Σε ένα δείγμα μεγέθους ν, αν x 1, x 2,, x κ είναι οι τιμές της μεταβλητής Χ με συχνότητες αντίστοιχα ν 1, ν 2,, ν κ και αν f i είναι οι σχετικές συχνότητες, ποια (ή ποιες) από τις παρακάτω σχέσεις δεν ορίζει τη μέση τιμή x του δείγματος κ 1 Α. x = ν i = 1 1 x i ν i. Β. x = ν i = κ 1 2 x i f i.

10 κ 1 Γ. x = ν i = 1 x i f i. Δ. οι σχέσεις Α και Γ. Ε. δεν μπορούμε να ξέρουμε. 25. * Ο συντελεστής μεταβολής εκφράζεται από το λόγο s 2 s x Α. 100%. B. 100%. Γ. 100%. x x s Δ. x 2 100%. E. sx 2 100%. s 26. * Στις περιπτώσεις που δίνεται έμφαση (διαφορετική βαρύτητα) στις τιμές x 1, x 2,, x ν ενός συνόλου δεδομένων σαν μέτρο θέσης χρησιμοποιούμε Α. τη διάμεσο. B. τον αριθμητικό μέσο. Γ. τον σταθμικό μέσο..

11 Ερωτήσεις αντιστοίχισης 1. * Αντιστοιχίστε καθένα μέτρο της στήλης Α με το σύμβολό του στη στήλη Β. Στήλη Α Στήλη Β Μέτρο Σύμβολο Α. εύρος Γ. διακύμανση Δ. τυπική απόκλιση Ε. συντελεστής μεταβολής 1. s 2 2. Q 3. R 4. s 5. f 6. CV 7. x

12 2. * Αντιστοιχίστε κάθε ποσοστό των παρατηρήσεων μιας κανονικής ή περίπου κανονικής καμπύλης της στήλης Α με το διάστημά του που βρίσκεται στη στήλη Β. Στήλη Α Στήλη Β Ποσοστό Διάστημα 1. ( x - s, x + s) Α. 68% 2. (2 x - s, 2 x + s) Β. 95% 3. ( x - 2s, x + 2s) Γ. 99,7% 4. ( x - 3s, x + 3s) 5. (3 x - s, 3 x + s)

13 Ερωτήσεις συμπλήρωσης - σύντομης απάντησης 1. * Ένα σύνολο στο οποίο εξετάζουμε τα στοιχεία του ως προς ένα ή περισσότερα χαρακτηριστικά του λέγεται 2. * Τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό λέγονται 3. * Οι δυνατές τιμές που μπορεί να πάρει μια μεταβλητή λέγονται 4. * Διακρίνουμε τις μεταβλητές σε: α)..., των οποίων οι τιμές δεν είναι αριθμοί και β)..., των οποίων οι τιμές είναι αριθμοί και διακρίνονται σε: i)..., που παίρνουν μόνο μεμονωμένες τιμές και ii)..., που μπορούν να πάρουν οποιαδήποτε τιμή ε- νός διαστήματος πραγματικών αριθμών. 5. * Ένας τρόπος για να πάρουμε τις απαραίτητες πληροφορίες που χρειαζόμαστε για κάποιο πληθυσμό είναι να εξετάσουμε όλα τα άτομα του πληθυσμού ως προς το χαρακτηριστικό που μας ενδιαφέρει. Η μέθοδος αυτή συλλογής των δεδομένων ονομάζεται 6. * Οι αρχές και οι μέθοδοι για τη συλλογή και ανάλυση δεδομένων από πεπερασμένους πληθυσμούς είναι το αντικείμενο της που αποτελεί τη βάση της Στατιστικής. 7. * Μετά τη συλλογή των στατιστικών δεδομένων είναι αναγκαία η κατασκευή συνοπτικών, ώστε να είναι εύκολη η κατανόησή τους και η εξαγωγή σωστών συμπερασμάτων.

14 8. * Ας υποθέσουμε ότι x 1, x 2,, x κ είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, κ ν. Στην τιμή x i αντιστοιχίζεται η, δηλαδή ο φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. 9. * Οι ποσότητες x i, ν i, f i για ένα δείγμα συγκεντρώνονται σε ένα συνοπτικό πίνακα, που ονομάζεται ή απλά. 10. * Για μια μεταβλητή, το σύνολο των ζευγών (x i, ν i ) λέμε ότι αποτελεί την και το σύνολο των ζευγών (x i, f i ), ή των ζευγών (x i, f i %), την. 11. * Στην περίπτωση των ποσοτικών μεταβλητών εκτός από τις συχνότητες ν i και f i χρησιμοποιούνται συνήθως και οι λεγόμενες και οι οι οποίες εκφράζουν το πλήθος και το ποσοστό αντίστοιχα των παρατηρήσεων που είναι μικρότερες ή ίσες της τιμής x i. 12. * Αν διαιρέσουμε τη συχνότητα ν i με το μέγεθος ν του δείγματος, προκύπτει η της τιμής x i. 13. * Το χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής. Στην περίπτωση που έχουμε μια ποσοτική μεταβλητή χρησιμοποιείται το διάγραμμα. 14. * Το διάγραμμα χρησιμοποιείται για τη γραφική παράσταση τόσο των ποιοτικών όσο και των ποσοτικών δεδομένων, όταν οι διαφορετικές τιμές της μεταβλητής είναι σχετικά λίγες.

15 15. * Η γραφική παράσταση ενός πίνακα συχνοτήτων με ομαδοποιημένα δεδομένα γίνεται με το. Στον οριζόντιο άξονα ενός συστήματος ορθογωνίων αξόνων σημειώνουμε, με κατάλληλη κλίμακα, τα όρια των κλάσεων. Στη συνέχεια κατασκευάζουμε διαδοχικά ορθογώνια καθένα από τα οποία έχει βάση ίση με το πλάτος της κλάσης και ύψος τέτοιο, ώστε το * Να συμπληρωθεί ο πίνακας, ο οποίος παρουσιάζει τους ανεξεταστέους μαθητές της Α Λυκείου: Μαθήματα x i ν i f i % Αρχαία Ελληνικά 6 Νέα Ελληνικά 5 Αγγλικά 8 Μαθηματικά 8 Φυσική Χημεία 17. * Μερικά από τα αποτελέσματα των εκλογών σ ένα εκλογικό τμήμα δίνονται στον παρακάτω πίνακα: Κόμματα Συχνότητα ν i Σχετική συχνότητα (ψήφοι) f i % Α Β 50 Γ Δ Πόσους ψήφους πήρε καθένα από τα κόμματα Α, Β, Γ και Δ;

16 18. * Στο διπλανό σχήμα έχουμε το ιστόγραμμα των εβδομαδιαίων αποδοχών ενός δείγματος από τους υπαλλήλους ενός οργανισμού. Να συμπληρώσετε τον αντίστοιχο πίνακα: υ i ,5 1 0 α) Συχνοτήτων ν i. β) Σχετικών συχνοτήτων f i % x αποδοχές σε χιλιάδες δρχ. Αποδοχές σε χιλιάδες δρχ. [25, 35) [35, 40) [40, 45) [45, 50) [50, 55) [55, 65) [65, 90) ν i f i % * Τα μας δίνουν τη θέση του κέντρου των παρατηρήσεων στον οριζόντιο άξονα και τα ή μας δείχνουν πόσο οι παρατηρήσεις εκτείνονται γύρω από το κέντρο τους. 20. * Ειδική περίπτωση εκατοστημορίων είναι τα Ρ 25, Ρ 50, Ρ 75 τα οποία καλούνται και συμβολίζονται με, αντίστοιχα.

17 21. * Τα μέτρα που χρησιμοποιούνται για την περιγραφή της θέσης ενός συνόλου δεδομένων πάνω στον οριζόντιο άξονα Οx είναι: α) β) γ) δ) ε) 22. * Τα σπουδαιότερα μέτρα διασποράς ή μεταβλητότητας είναι: α) β) γ) δ) 23. * Το μέτρο το οποίο μας βοηθά στη σύγκριση ομάδων τιμών, που είτε εκφράζονται σε διαφορετικές μονάδες μέτρησης είτε εκφράζονται στην ίδια μονάδα μέτρησης, αλλά έχουν σημαντικά διαφορετικές μέσες τιμές, είναι ο. 24. * Σε μια έρευνα μεταξύ 500 ανέργων για το χρόνο σε μήνες που είναι άνεργοι προέκυψε ο παρακάτω πίνακας: Χρόνος ανεργίας ν i f i % F i % [0, 3) 19 [3, 6) 38,6 [6, 12) 24,4 [12, 24) 13,6 [24, 36) 4,4 α) Να συμπληρώσετε τον πίνακα. β) Να κατασκευάσετε πολύγωνο σχετικών αθροιστικών συχνοτήτων. γ) Να εκτιμήσετε τη διάμεσο από το πολύγωνο σχετικών αθροιστικών συχνοτήτων. 100

18 25. * Να συμπληρώσετε τον παρακάτω πίνακα: x i ν i f i N i F i f i % F i % 1 8 0, , , Σύνολο Ερωτήσεις ανάπτυξης 1. ** Έγινε μια δειγματοληπτική έρευνα για το βάρος των εμπορευμάτων μιας αποθήκης λαχανικών. Βρήκαμε ότι τα βάρη 10 κιβωτίων είναι σε κιλά 17, 12, 12, 15, 18, 22, 24, 25, 19, 20. Να βρείτε: α) Ποιος είναι ο πληθυσμός. β) Ποιες είναι οι μονάδες. γ) Ποιο είναι το δείγμα. δ) Ποια είναι η μεταβλητή και ποιες οι τιμές της. 2. ** Σ ένα Λύκειο θέλουμε να εξετάσουμε την επίδοση 10 μαθητών στη Στατιστική στο τέλος του β τριμήνου. Πήραμε τις επόμενες βαθμολογίες 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι ο πληθυσμός. β) Ποια είναι τα άτομα. γ) Ποια είναι η μεταβλητή. δ) Το είδος της μεταβλητής είναι i) ποιοτική ή ποσοτική, ii) συνεχής ή διακριτή. ε) Ποιες είναι οι παρατηρήσεις.

19 3. ** Σε μια δειγματοληπτική έρευνα του βάρους των μαθητών της τρίτης τάξης ενός Δημοτικού Σχολείου 15 μαθητές είχαν τα επόμενα βάρη σε κιλά: 23, 25, 25, 26, 27, 30, 28, 28, 29, 24, 26, 26, 23, 27, 30. Να βρείτε: α) Το σύνολο των τιμών της μεταβλητής Χ (όπου Χ είναι το βάρος των μαθητών). β) Τη συχνότητα των τιμών της μεταβλητής Χ. 4. ** Μελετάμε τους μαθητές της Γ τάξης ενός Λυκείου ως προς το βαθμό α- πολυτηρίου τους, τη διαγωγή τους, τον αριθμό απουσιών, την κατεύθυνση που παρακολουθούν, το βάρος τους. Να βρείτε: α) Ποιες από τις μεταβλητές αυτές είναι i) ποιοτικές, ii) ποσοτικές. β) Από τις ποσοτικές μεταβλητές, ποιες είναι i) διακριτές, ii) συνεχείς. 5. ** Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 30 φορές Να κατασκευάσετε πίνακα: α) Συχνοτήτων. β) Αθροιστικών συχνοτήτων.

20 6. ** Σε μια πόλη μετρήσαμε τη μεγαλύτερη ημερήσια θερμοκρασία επί 30 συνεχείς ημέρες και βρήκαμε (σε βαθμούς Κελσίου): α) Να κατασκευάσετε πίνακα: i) Συχνοτήτων. ii) Αθροιστικών συχνοτήτων. β) Πόσες ημέρες η θερμοκρασία ήταν: i) Μικρότερη από 23 C; ii) Μεγαλύτερη από 24 C; iii) Τουλάχιστον 24 C; 7. ** Ο αριθμός των μαθητών των 16 τμημάτων ενός Λυκείου είναι: α) Να κατασκευάσετε πίνακα: i) Σχετικών συχνοτήτων. ii) Αθροιστικών σχετικών συχνοτήτων. β) Να κάνετε το διάγραμμα: i) Συχνοτήτων. ii) Αθροιστικών σχετικών συχνοτήτων. γ) Να κάνετε το πολύγωνο των συχνοτήτων. 8. ** Οι αποστάσεις (σε km) των 26 κοινοτήτων ενός νομού από το πλησιέστερο νοσοκομείο είναι: α) Να κατασκευάσετε πίνακα: i) Συχνοτήτων. ii) Αθροιστικών συχνοτήτων των αποστάσεων. β) Πόσες κοινότητες απέχουν από το νοσοκομείο περισσότερο από 10 km;

21 9. ** Ο παρακάτω πίνακας παρουσιάζει την κατανομή (%) του πληθυσμού της Ελλάδας κατά τις απογραφές των ετών 1951, 1961, Να κατασκευάσετε το ραβδόγραμμα σχετικών συχνοτήτων. Έτος απογραφής Αστικός πληθυσμός % Ημιαστικός πληθυσμός % Αγροτικός πληθυσμός % ,7 14,8 47, ,3 12,9 43, ,2 11,6 35,2 10. ** Σε ένα κυκλικό διάγραμμα παριστάνονται οι εξαγωγές της χώρας μας αξίας δρχ. κατά το έτος 1980 ανάλογα με το μέσο μεταφοράς. Η γωνία του κυκλικού τομέα για μέσο μεταφοράς θαλασσίως είναι 180. Το 13,917% της αξίας των εξαγωγών έγινε σιδηροδρομικώς. Οι μεταφορές που έγιναν οδικώς ήταν τετραπλάσιες σε αξία από αυτές που έγιναν αεροπορικώς. Να μετατρέψετε το κυκλικό διάγραμμα σε ραβδόγραμμα σχετικών συχνοτήτων. 11. ** α) Να συμπληρωθεί ο παρακάτω πίνακας: Ήπειρος Έκταση f i % Αμερική 20,8 Ασία 44 Αφρική 30,5 Ευρώπη 10,5 Ωκεανία 9 114,8 β) Να σχεδιάσετε το κυκλικό διάγραμμα.

22 12. ** Ο παρακάτω πίνακας παρουσιάζει τις εξαγωγές της χώρας μας κατά το 1977, ανάλογα με το μέσο μεταφοράς. Μέσο μεταφοράς Αξία σε ε- κατ. δρχ. Θαλασσίως Σιδηροδρομικώς Οδικώς Αεροπορικώς Να κάνετε το αντίστοιχο κυκλικό διάγραμμα. 13. ** Το διπλανό πολύγωνο συχνοτήτων παρουσιάζει τους βαθμούς των φοιτητών μιας σχολής στο μάθημα της Στατιστικής. Να κατασκευάσετε πίνακα: α) Συχνοτήτων που αντιστοιχούν στο πολύγωνο αυτό. φοιτητές βαθμός β) Σχετικών συχνοτήτων για το ίδιο πολύγωνο. 14. ** Χρησιμοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανομή συχνοτήτων 50 οικογενειών ως προς τον αριθμό των παιδιών τους, να βρεθεί ο αριθμός και το ποσοστό των οικογενειών που έχουν α) τουλάχιστον 1 παιδί, β) πάνω από 3 παιδιά, γ) από 3 έως και 5 παιδιά, δ) το πολύ 6 παιδιά, ε) ακριβώς 6 παιδιά. Αριθμός Αριθμός οικογενειών (ν i ) παιδιών (x i )

23 15. ** Το βάρος ενός ζώου κατά τους πρώτους 10 μήνες της ζωής του φαίνεται στον πίνακα: Μήνες Βάρος σε κιλά 2 3 4,5 5, , Να γράψετε το χρονόγραμμα της εξέλιξης του βάρους του. 16. ** Στα διόδια Σχηματαρίου η τροχαία σημείωνε στο χρονικό διάστημα μιας ώρας το συνολικό αριθμό αυτοκινήτων που είχαν περάσει. Έτσι, από το μεσημέρι ως τις 8 μ.μ., προέκυψε ο παρακάτω πίνακας: Χρόνος (ώρες) 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 Συν. αριθμ. αυτοκ Να γράψετε το αντίστοιχο χρονόγραμμα. 17. ** Εξετάστηκε ένα δείγμα 400 οικογενειών ως προς τον αριθμό των παιδιών τους και προέκυψε ο παρακάτω πίνακας: Αριθμός παιδιών (x i) οικογενειών Αριθμός (ν i) f i f i % ν i x i Ν i α) Να συμπληρώσετε τον πίνακα. β) Να κάνετε το διάγραμμα συχνοτήτων. γ) Να υπολογίσετε: i) Τη μέση τιμή. ii) Τη διάμεσο της κατανομής.

24 18. ** Στο διπλανό ιστόγραμμα σχετικών συχνοτήτων σβήστηκε κατά λάθος το ορθογώνιο της κλάσης [1, 3). Να κατασκευάσετε το ορθογώνιο αυτό. 19. ** Οι παρακάτω αριθμοί δίνουν (σε cm) τα αναστήματα ενός δείγματος 41 μαθητών ενός σχολείου α) Να υπολογίσετε τη διάμεσο. β) Να ομαδοποιήσετε τα αναστήματα σε κλάσεις πλάτους 5 cm και να προσδιορίσετε γραφικά τη διάμεσο από το διάγραμμα σχετικών αθροιστικών συχνοτήτων. γ) Να συγκρίνετε τα δύο αποτελέσματα. 20. ** Οι υπάλληλοι μιας εταιρείας έχουν τις παρακάτω ηλικίες: α) Να ομαδοποιήσετε τις ηλικίες αυτές σε 8 κλάσεις ίσου πλάτους. β) Να βρείτε πόσοι υπάλληλοι είναι: i) Μεγαλύτεροι των 44 χρόνων. ii) Μικρότεροι των 35 χρόνων. γ) Να κατασκευάσετε το αντίστοιχο ιστόγραμμα συχνοτήτων των ηλικιών.

25 21. ** Ο παρακάτω πίνακας παρουσιάζει τη διάρκεια ζωής 400 οθονών τηλεόρασης από την παραγωγή ενός εργοστασίου. α) Να συμπληρώσετε τον πίνακα: Διάρκεια ζωής σε ώρες λειτουργίας [400, 500) 15 [500, 600) 45 [600, 700) 60 [700, 800) 75 [800, 900) 70 [900, 1000) 60 [1000, 1100) 50 [1100, 1200) 25 ν i f i % Ν i F i % 400 β) Να κατασκευάσετε: i) Το ιστόγραμμα συχνοτήτων. ii) Το ιστόγραμμα σχετικών συχνοτήτων. iii) Το ιστόγραμμα σχετικών αθροιστικών συχνοτήτων. 22. ** Ο αριθμός των μαθητών των 16 τμημάτων ενός Λυκείου είναι: 31, 27, 28, 30, 29, 31, 21, 27, 29, 29, 28, 28, 30, 29, 27, 29. Να υπολογίσετε τη μέση τιμή της μεταβλητής αριθμός μαθητών ανά τμήμα. 23. ** Να υπολογίσετε τη μέση τιμή της μεταβλητής του παρακάτω πίνακα: Ηλικία σε χρόνια ν i [0, 4) 3 [4, 8) 5 [8, 12) 6 [12, 16) 6 [16, 20) 2 22

26 24. ** Η μέση τιμή επτά αριθμών είναι 5. Οι πέντε από αυτούς τους αριθμούς είναι οι 3, 4, 5, 6, 11. Να βρείτε τους άλλους δύο αριθμούς αν γνωρίζουμε ότι ο ένας είναι διπλάσιος του άλλου. 25. ** Τα ύψη 8 αθλητών μιας ομάδας καλαθοσφαίρισης (μπάσκετ μπωλ) είναι (σε cm): 172, 175, 183, 177, 190, 193, 189, 195. α) Να βρείτε: i) Το μέσο ύψος των αθλητών. ii) Τη διάμεσο των υψών. iii) Το εύρος (R) των υψών. β) Επίσης, σε καθεμιά από τις παρακάτω τρεις περιπτώσεις, να βρείτε: i) Το μέσο ύψος των αθλητών. ii) Τη διάμεσο των υψών. iii) Το εύρος (R) των υψών. Περίπτωση 1: Φεύγει ο αθλητής με το ύψος 172 cm. Περίπτωση 2: Έρχεται ακόμα ένας αθλητής με ύψος 197 cm. Περίπτωση 3: Φεύγει ο αθλητής με το ύψος 195 cm και έρχεται ένας αθλητής με ύψος 198 cm. 26. ** Η βαθμολογία ενός μαθητή στα τέσσερα τεστ ενός μαθήματος ήταν (σε εκατονταβάθμια κλίμακα): 38, 67, 43, 72. Η βαρύτητα σε καθένα ήταν αντίστοιχα 1, 2, 2 και 3. Να βρείτε τη μέση επίδοση του μαθητή στα τεστ. 27. ** Σ ένα τεστ πήραν μέρος 100 μαθητές προκειμένου ο καθένας να απαντήσει σε 200 ερωτήσεις. Η βαθμολογία είναι 1 ή 0, ανάλογα αν ο μαθητής α- παντάει ή όχι στην ερώτηση. Ο επόμενος πίνακας δείχνει τα αποτελέσματα της βαθμολογίας. Βαθμοί Συχνότητα [60, 80) 5 [80, 100) 20 [100, 120) 26 [120, 140) 30 [140, 160) 15 [160, 180) 4 100

27 α) Να κατασκευάσετε: i) Το ιστόγραμμα. β) Να βρείτε την επικρατούσα τιμή. ii) Το πολύγωνο των συχνοτήτων. 28. ** Η βαθμολογία στα 10 μαθήματα ενός μαθητή είναι: 13, 9, 6, 10, 15, 12, 11, 0, 20, 14. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διακύμανση. γ) Την τυπική απόκλιση. δ) Τη διάμεσο. ε) Τα τεταρτημόρια Q 1, Q 2, Q 3. στ) Το ενδοτεταρτημοριακό εύρος των βαθμών. ζ) Το εύρος (R). η) Το συντελεστή μεταβολής (CV). 29. ** Δίνεται ο πίνακας: Κλάσεις Κέντρο κλάσης (x i ) [4, 6) 7 [6, 8) 13 [8, 10) 17 [10, 12) 18 [12, 14) 29 [14, 16) 11 [16, 18) 5 ΣΥΝΟΛΑ 100 ν i x i ν i x i - x (x i - x ) 2 ν i (x i - x ) 2 α) Να συμπληρώσετε τον πίνακα. β) Να υπολογίσετε: i) Τη μέση τιμή. ii) Τη διακύμανση. iii) Την τυπική απόκλιση της κατανομής. iv) Το συντελεστή μεταβολής. γ) Να κάνετε το ιστόγραμμα.

28 30. ** Οι μηνιαίες αποδοχές ενός δείγματος 70 υπαλλήλων ενός οργανισμού δίνονται στον επόμενο πίνακα: Αποδοχές σε χιλιάδες δρχ. Κεντρικές τιμές x i ν i 2 x i [30, 35) 8 [35, 40) 10 [40, 45) 16 [45, 50) 15 [50, 55) 10 [55, 60) 8 [60, 65) 3 ΣΥΝΟΛΑ 70 x i ν i x i 2 ν i α) Να συμπληρώσετε τον πίνακα. β) Να υπολογίσετε: i) Τη μέση τιμή. ii) Τη διακύμανση. iii) Την τυπική απόκλιση της κατανομής. iv) Το συντελεστή μεταβολής. 31. ** Η αντοχή 100 ηλεκτρικών συσκευών δίνεται από τον επόμενο πίνακα: Χρόνος αντοχής σε ώρες Αριθμός συσκευών f i % F i % [1000, 1200) 8 [1200, 1400) 16 [1400, 1600) 28 [1600, 1800) 32 [1800, 2000) 12 [2000, 2200) 4 [2200, 2400) 0 ΣΥΝΟΛΑ 100

29 α) Να συμπληρώσετε τον πίνακα. β) i) Να κατασκευάσετε το ιστόγραμμα και το πολύγωνο συχνοτήτων. γ) i) Να κατασκευάσετε το πολύγωνο σχετικών αθροιστικών συχνοτήτων. ii) Να βρείτε τη διάμεσο δ) Πόσες συσκευές έχουν διάρκεια αντοχής μικρότερη από τη μέγιστη συχνότητα; 32. ** α) Να συμπληρώσετε τον παρακάτω πίνακα στον οποίο παρουσιάζονται οι απουσίες 75 μαθητών μιας τάξης ενός Λυκείου, αν γνωρίζουμε ότι ο μέσος όρος των απουσιών είναι 12. Απουσίες Μαθητές x i ν i 10 x 20 y β) Να υπολογίσετε: i) Τη διακύμανση s 2. s ii) Το συντελεστή μεταβλητότητας (CV = ). x 33. ** H τυπική απόκλιση μιας μεταβλητής Χ είναι ίση με το μηδέν. Αν t 1, t 2,, t ν είναι οι τιμές της Χ και x η μέση τιμή, δείξτε ότι t 1 = t 2 = = t ν = x. 34. ** Αν είναι 5 α) i = 1 5 i = 1 5 x i = 3 και i = 1 (x i + 10) β) x i 2 = 23, να υπολογίσετε τα αθροίσματα: 5 i = 1 (2x i + 3) ** Εξετάζουμε ένα δείγμα μαθητών ενός σχολείου ως προς τη βαθμολογία τους σ ένα διαγώνισμα. Έστω x η μέση τιμή και s η τυπική απόκλιση.

30 α) Ποια θα είναι η νέα μέση τιμή και ποια η νέα τυπική απόκλιση όταν η βαθμολογία κάθε μαθητή αυξηθεί κατά: i) 2 μονάδες ii) C μονάδες; β) Τι συμπεραίνετε από τα παραπάνω για τη μέση τιμή και τη διακύμανση; 36. ** Η μέση τιμή των παρατηρήσεων t 1, t 2,, t ν μιας μεταβλητής Χ ενός δείγματος μεγέθους ν είναι x. Να βρείτε τον αριθμητικό μέσο των παρατηρήσεων: α) t 1 + λ, t 2 + λ,, t ν + λ β) t 1 - λ, t 2 - λ,, t ν - λ t γ) λt 1, λt 2,, λt ν δ) 1 t, 2 t,, ν για λ 0 λ λ λ ε) λt 1 + κ, λt 2 + κ,, λt ν + κ

31

32

33

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται .1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών, στη Στατιστική στο τέλος του β τριµήνου. Πήραµε τις επόµενες βαθµολογίες: 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ

ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ 1) ΣΤΑΤΙΣΤΙΚΗ 1. Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 20 φορές. 5 5 5 1 2 5 4 3 2 3 1 3 6 4 1 4 6 6 5 4 i) Να κατασκευάσετε πίνακα α)

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α Ερώτηση θεωρίας Τι λέγεται ιστόγραμμα αθροιστικών απολύτων σχετικών συχνοτήτων; Ιστόγραμμα αθροιστικών απολύτων ή σχετικών συχνοτήτων είναι μια σειρά από

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΜΕΡΟΣ Α. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ 177. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΟΡΙΣΜΟΙ Αν οι παρατηρήσεις είναι πολλές τότε κάνουμε ομαδοποίηση των παρατηρήσεων χωρίζοντας το διάστημα που ανήκουν οι παρατηρήσεις σε υποδιαστήματα.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Παναγιώτης Π. Σταυρόπουλος ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΕΠΙΛΟΓΗΣ) 2ο: ΣΤΑΤΙΣΤΙΚΗ (Θεωρία, ασκήσεις, θέματα Πανελλαδικών) ΣΤΑΤΙΣΤΙΚΗ Α. Σύγκριση : Μέσης τιμής Διαμέσου Εύρους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40 ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι: ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ»

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ» 1. Να αντιστοιχίσετε κάθε μεταβλητή της αριστερής στήλης του παρακάτω πίνακα με την κατηγορία που βρίσκεται στη δεξιά στήλη: ΜΕΤΑΒΛΗΤΗ ΚΑΤΗΓΟΡΙΑ 1. ΦΥΣΙΚΗ ΚΑΤΑΣΤΑΣΗ 2. ΜΙΣΘΟΣ 3.ΑΡΙΘΜΟΣ ΤΗΛΕΦΩΝΟΥ Α. ΠΟΙΟΤΙΚΗ

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ 1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

Î. Να υπολογίσετε τις τιμές f(1), f( 1 2 ), f(α+1), f( α) και f(x+α), για τις κατάλληλες τιμές των μεταβλητών. β. f(x) = ε. f(x) = x - 4. κ.

Î. Να υπολογίσετε τις τιμές f(1), f( 1 2 ), f(α+1), f( α) και f(x+α), για τις κατάλληλες τιμές των μεταβλητών. β. f(x) = ε. f(x) = x - 4. κ. συναρτήσεις ο κεφάλαιο: διαφορικός λογισμός. Δίνεται η συνάρτηση f() = +, * Î. Να υπολογίσετε τις τιμές f(), f( ), f(α+), f( α) και f(+α), για τις κατάλληλες τιμές των μεταβλητών.. Να βρείτε το πεδίο ορισμού

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ Γ. Ε. ΛΥΚΕΙΟ 008 43 Γ. Ε. ΛΥΚΕΙΟ 008 44 Α. Έστω f συνάρτηση με πεδίο ορισμού Α παραγωγίσιμη σε κάθε Α και c πραγματική σταθερά. Να αποδείξετε ότι: (cf ()) = cf () Μονάδες 5 Β. Να χαρακτηρίσετε με Σ (σωστό)

Διαβάστε περισσότερα

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘ. ΣΤΑΤΙΣΤΙΚΗ Γ 369 Α. Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) = x είναι f (x) = Β. Να γράψετε τις παραγώγους των παρακάτω συναρτήσεων: Μονάδες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου ΑΣΚΗΣΗ 1 Κεφάλαιο 4

Διαβάστε περισσότερα

Στατιστική Ι Ασκήσεις 3

Στατιστική Ι Ασκήσεις 3 Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους n = 5 με παρατηρήσεις 10, 0, 1, 17 και 16. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 1 Ο ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Σελίδα 1 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Σ

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Μάθημα Γενικής Παιδείας

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Μάθημα Γενικής Παιδείας ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Μάθημα Γενικής Παιδείας ΑΘΗΝΑ 001 Ομάδα Σύνταξης Εποπτεία: Παπασταυρίδης Σταύρος,

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1 Στατιστική Επιχειρήσεων Ι Περιγραφική Στατιστική 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

Δρ. Ευστρατία Μούρτου

Δρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2009-2010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΑΣΚΗΣΕΙΣ Δρ. Ευστρατία Μούρτου Δρ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του

Διαβάστε περισσότερα

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D

Αξιολόγηση. Θεωρία. Έστω η ορισµένη στο διάστηµα D συνάρτηση f. Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Βασίλης Γατσινάρης ωρεάν υποστηρικτικό υλικό 1 Περί συναρτήσεων Έστω η ορισµένη στο διάστηµα D συνάρτηση f Α1 Να αναφέρετε πότε λέµε ότι η f είναι γνησίως αύξουσα στο D Α Να αναφέρετε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β) ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Tι ονομάζουμε πραγματική συνάρτηση πραγματικής μεταβλητής; 3. Πως ορίζονται οι πράξεις της πρόσθεσης,

Διαβάστε περισσότερα