ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Λύσεις ασκήσεων Α εξεταστικής περιόδου χειμερινού εξαμήνου

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Λύσεις ασκήσεων Α εξεταστικής περιόδου χειμερινού εξαμήνου"

Transcript

1 ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Λύσεις ασκήσεων Α εξεταστικής περιόδου χειμερινού εξαμήνου 1 3 Θέμα 1 (, μον.) Δίνεται ο παρακάτω πίνακας δραστηριοτήτων έργου. 1. Να σχεδιαστεί το διασυνδεόμενο διάγραμμα Gantt του έργου (1, μον.). Να σχεδιαστεί το τοξωτό δίκτυο του έργου (1,5 μον.) 3. Να σχεδιαστεί το κομβικό δίκτυο του έργου και να προσδιοριστούν οι σχέσεις Τέλους - Έναρξης, FS(i,j), των εξαρτώμενων δραστηριοτήτων (1,5 μον.) Πίνακας Δραστηριοτήτων Έργου Δραστηριότητα Διάρκεια Σχέσεις Α Αρχή του έργου Β 3 Αρχή του έργου Γ Αρχή του έργου Δ Μετά το τέλος των Α και Β Ε 8 Μετά το τέλος των Β και Γ Ζ Μετά το τέλος της Γ Η 5 Μετά το τέλος των Δ, Ε και Ζ Θ 3 Μετά το τέλος της Η 1. Διάγραμμα Gantt: Α Β Γ Δ Διάρκεια Ε Ζ Η Θ

2 . Τοξωτό δίκτυο έργου: Α/ Β 1 / Δ/ 1 Β/3 3 5 Η/5 Θ/3 8 Γ/ Β / Ε/8 Z 1 / Ζ/ Επεξηγήσεις: Το Γεγονός 1 σηματοδοτεί την έναρξη του έργου και την ταυτόχρονη έναρξη των δραστηριοτήτων Α, Β και Γ. Το Γεγονός σηματοδοτεί το τέλος της δραστηριότητας Α και την έναρξη της δραστηριότητας Δ, μετά την ολοκλήρωση των δραστηριοτήτων Α και Β. Επειδή όμως η έναρξη της δραστηριότητας Δ προϋποθέτει το τέλος των δραστηριοτήτων Α και Β και επειδή δεν επιτρέπεται να έχουμε παράλληλες δραστηριότητες μεταξύ δύο Γεγονότων (στην περίπτωσή μας από το Γεγονός 1 στο Γεγονός ), εισάγουμε το Γεγονός 3, που σηματοδοτεί το τέλος της δραστηριότητας Β, καθώς και την πλασματική δραστηριότητα Β 1, που συνδέει τα Γεγονότα 3 και. Ομοίως, το Γεγονός σηματοδοτεί την έναρξη των δραστηριοτήτων Ε και Ζ, μετά την ολοκλήρωση των δραστηριοτήτων Β και Γ. Επειδή δεν επιτρέπεται να έχουμε παράλληλες δραστηριότητες μεταξύ δύο Γεγονότων (στην περίπτωσή μας από το Γεγονός 1 στο Γεγονός ), εισάγουμε την πλασματική δραστηριότητα Β, που συνδέει τα Γεγονότα 3 και. Το Γεγονός 5 σηματοδοτεί την ταυτόχρονη λήξη των δραστηριοτήτων Δ και Ε (1 χρονικές μονάδες μετά την έναρξη του έργου, όπως φαίνεται και από το διάγραμμα Gantt). Επίσης, το Γεγονός 5 σηματοδοτεί την έναρξη της δραστηριότητας Η, η οποία όμως προϋποθέτει την ολοκλήρωση των δραστηριοτήτων Ε και Ζ. Επειδή δεν επιτρέπεται να έχουμε παράλληλες δραστηριότητες μεταξύ δύο Γεγονότων (στην περίπτωσή μας από το Γεγονός στο Γεγονός 5), εισάγουμε το Γεγονός, που σηματοδοτεί τη λήξη της δραστηριότητας Ζ, καθώς και την πλασματική δραστηριότητα Ζ 1, που συνδέει τα Γεγονότα και 5. Το Γεγονός σηματοδοτεί το τέλος της δραστηριότητας Η και την έναρξη της δραστηριότητας Θ, μετά την ολοκλήρωση της δραστηριότητας Η. Ομοίως, το Γεγονός 8 σηματοδοτεί το τέλος της δραστηριότητας Θ και ταυτόχρονα το τέλος του έργου. Από το τοξωτό δίκτυο (αλλά και από το διάγραμμα Gantt) προκύπτει ότι η ελάχιστη διάρκεια του έργου είναι χρονικές μονάδες.

3 3. Κομβικό δίκτυο: Α FS(Α,Δ) = Δ Β 3 FS(Β,Δ) = 3 FS(Δ,Η) = FS(Β,Ε) = 1 Ε 8 Η 5 Θ 3 FS(Ε,Η) = FS(Η,Θ) = Γ FS(Γ,Ε) = FS(Γ,Ζ) = Ζ FS(Ζ,Η) = 1 Επεξηγήσεις: Το έργο αρχίζει με την ταυτόχρονη έναρξη των δραστηριοτήτων Α, Β και Γ. Η έναρξη της δραστηριότητας Δ προϋποθέτει την ολοκλήρωση των δραστηριοτήτων Α και Β. Η δραστηριότητα Α έχει διάρκεια χρονικές μονάδες και η δραστηριότητα Β έχει διάρκεια 3 χρονικές μονάδες. Επομένως, η δραστηριότητα Δ ξεκινά αμέσως μετά το τέλος της δραστηριότητας Α, οπότε έχουμε FS(Α,Δ)=, ενώ μεσολαβούν 3 χρονικές μονάδες από τη λήξη της δραστηριότητας Β μέχρι την έναρξη της δραστηριότητας Δ, οπότε έχουμε FS(Β,Δ)=3. Ομοίως, η έναρξη της δραστηριότητας Ε προϋποθέτει την ολοκλήρωση των δραστηριοτήτων Β και Γ. Η δραστηριότητα Β έχει διάρκεια 3 χρονικές μονάδες και η δραστηριότητα Γ έχει διάρκεια χρονικές μονάδες. Επομένως, η δραστηριότητα Ε ξεκινά αμέσως μετά το τέλος της δραστηριότητας Γ, οπότε έχουμε FS(Γ,Ε)=, ενώ μεσολαβεί 1 χρονική μονάδα από τη λήξη της δραστηριότητας Β μέχρι την έναρξη της δραστηριότητας Ε, οπότε έχουμε FS(Β,Ε)=1. Η δραστηριότητα Ζ ξεκινά αμέσως μετά το τέλος της Γ, οπότε έχουμε FS(Γ,Ζ)=. Η έναρξη της δραστηριότητας Η προϋποθέτει την ολοκλήρωση των δραστηριοτήτων Δ,Ε και Ζ. Όπως φαίνεται και από το διάγραμμα Gantt, το τέλος των δραστηριοτήτων Δ και Ε συμβαίνει 1 χρονικές μονάδες από την έναρξη του έργου, ενώ το τέλος της δραστηριότητας Ζ συμβαίνει 11 χρονικές μονάδες από την έναρξη του έργου. Επομένως η δραστηριότητα Η ξεκινά αμέσως μετά την ταυτόχρονη λήξη των δραστηριοτήτων Δ και Ε, οπότε έχουμε FS(Δ,Η)= και FS(Ε,Η)=, ενώ μεσολαβεί 1 χρονική μονάδα από τη λήξη της δραστηριότητας Ζ μέχρι την έναρξη της δραστηριότητας Η, οπότε έχουμε FS(Ζ,Η)=1. Τέλος, η δραστηριότητα Θ ξεκινά αμέσως μετά το τέλος της Η, οπότε έχουμε FS(Η,Θ)=.

4 Θέμα (, μον.) Στα παρακάτω σχήματα δίνονται το τοξωτό και το κομβικό δίκτυο ενός έργου. Με επίλυση του ενός από τα δύο δίκτυα να προσδιοριστεί η κρίσιμη διαδρομή. 3 Β Δ Β/ Δ/ 1 Α/ 5 Ζ/ Α Ζ Γ/5 Ε/ Γ 5 Ε Επίλυση ΤοξωτούΔικτύου: Ενωρίτεροι χρόνοι γεγονότων: Σημείωση: Ο υπολογισμός των ενωρίτερων χρόνων των γεγονότων γίνεται με σάρωση του δικτύου από αριστερά προς τα δεξιά, δηλ. από την έναρξη προς τη λήξη του έργου, θέτοντας ως ενωρίτερο χρόνο του πρώτου γεγονότος του δικτύου την τιμή μηδέν (έναρξη του έργου). ΕΧ 1 = ΕΧ = ΕΧ 1 +ΧΔ Α = + = ΕΧ 3 = ΕΧ + ΧΔ Β = + = ΕΧ = ΕΧ + ΧΔ Γ = + 5 = Στο γεγονός 5 καταλήγουν δύο διαδρομές, επομένως: ΕΧ 5 (1) = ΕΧ 3 + ΧΔ Δ = + = 1 ΕΧ 5 () = ΕΧ + ΧΔ Ε = + = 1 ΕΧ 5 = max{εχ 5 (1), ΕΧ 5 ()} = max{1, 1} = 1 ΕΧ = ΕΧ 5 + ΧΔ Ζ = 1 + = Επομένως, ο ελάχιστος χρόνος υλοποίησης του έργου είναι χρονικές μονάδες. Βραδύτεροι χρόνοι γεγονότων: Σημείωση: Ο υπολογισμός των βραδύτερων χρόνων των γεγονότων γίνεται με σάρωση του δικτύου από δεξιά προς τα αριστερά, δηλ. από το τέλος προς την αρχή του έργου. Ο βραδύτερος χρόνος για το τελικό γεγονός είναι ίσος είτε με τον τακτό χρόνο, εάν δίνεται, είτε με τον ενωρίτερο χρόνο του τελικού γεγονότος. Δεν δίνεται τακτός χρόνος. Άρα: ΒΧ = ΕΧ = ΒΧ 5 = ΒΧ ΧΔ Ζ = = 1 ΒΧ = ΒΧ 5 ΧΔ Ε = 1 = ΒΧ 3 = ΒΧ 5 ΧΔ Δ = 1 = 1 Στο γεγονός καταλήγουν δύο διαδρομές, επομένως:

5 ΒΧ (1) = ΒΧ 3 ΧΔ Β = 1 = ΒΧ () = ΒΧ ΧΔ Γ = 5 = ΒΧ = min{βχ (1), ΒΧ ()} = min{, } = ΒΧ 1 = ΒΧ ΧΔ Α = = Συνολικό περιθώριο χρόνου δραστηριοτήτων: ΣΠΧ Α = ΒΧ ΕΧ 1 ΧΔ Α = = ΣΠΧ Β = ΒΧ 3 ΕΧ ΧΔ Β = 1 = ΣΠΧ Γ = ΒΧ ΕΧ ΧΔ Γ = 5 = ΣΠΧ Δ = ΒΧ 5 ΕΧ ΧΔ Δ = 1 = ΣΠΧ Ε = ΒΧ 5 ΕΧ ΧΔ Ε = 1 = ΣΠΧ Ζ = ΒΧ ΕΧ 5 ΧΔ Ζ = 1 = Επομένως, οι δραστηριότητες Α, Γ, Ε και Ζ είναι κρίσιμες, επειδή έχουν μηδενικό συνολικό περιθώριο χρόνου, και καθορίζουν την κρίσιμη διαδρομή του έργου Α Γ Ε Ζ ή 1 5 : 3 1 Α/ 1 Δ/ Β/ Γ/5 Ε/ Ζ/ Επίλυση Κομβικού Δικτύου: Ενωρίτεροι χρόνοι δραστηριοτήτων: Σημείωση: Ο υπολογισμός των ενωρίτερων χρόνων των δραστηριοτήτων γίνεται με σάρωση του δικτύου από αριστερά προς τα δεξιά, δηλ. από την έναρξη προς τη λήξη του έργου, θέτοντας ως ενωρίτερο χρόνο της πρώτης δραστηριότητας του δικτύου την τιμή μηδέν (έναρξη του έργου). ΕΧΕ Α = ΕΧΤ Α = ΕΧΕ Α + ΧΔ Α = + = ΕΧΕ Β = ΕΧΤ Α + FS(A, B) = + = ΕΧΤ Β = ΕΧΕ Β + ΧΔ Β = + = ΕΧΕ Γ = ΕΧΤ Α + FS(Α, Γ) = + = ΕΧΤ Γ = ΕΧΕ Γ + ΧΔ Γ = + 5 =

6 ΕΧΕ Δ = ΕΧΤ Β + FS(Β, Δ) = + = ΕΧΤ Δ = ΕΧΕ Δ + ΧΔ Δ = + = 1 ΕΧΕ Ε = ΕΧΤ Γ + FS(Γ, Ε) = + = ΕΧΤ Ε = ΕΧΕ Ε + ΧΔ Ε = + = 1 Στη δραστηριότητα Ζ καταλήγουν δύο διαδρομές, επομένως: ΕΧΕ Ζ (1) = ΕΧΤ Δ + FS(Δ, Ζ) = 1 + = 1 ΕΧΕ Ζ () = ΕΧΤ Ε + FS(Ε, Ζ) = 1 + = 1 ΕΧΕ Ζ = max{εχε Ζ (1), ΕΧΕ Ζ ()} = max{1, 1} = 1 ΕΧΤ Ζ = ΕΧΕ Ζ + ΧΔ Ζ = 1 + = Επομένως, ο ελάχιστος χρόνος υλοποίησης του έργου είναι χρονικές μονάδες. Βραδύτεροι χρόνοι δραστηριοτήτων: Σημείωση: Ο υπολογισμός των βραδύτερων χρόνων των δραστηριοτήτων γίνεται με σάρωση του δικτύου από δεξιά προς τα αριστερά, δηλ. από το τέλος προς την αρχή του έργου. Ο βραδύτερος χρόνος τέλους για την τελική δραστηριότητα είναι ίσος είτε με τον τακτό χρόνο, εάν δίνεται, είτε με το μεγαλύτερο από τους ενωρίτερους χρόνους τέλους όλων των δραστηριοτήτων. Δεν δίνεται τακτός χρόνος. Άρα: ΒΧΤ Ζ = ΕΧΤ Ζ = ΒΧΕ Ζ = ΒΧΤ Ζ ΧΔ Ζ = = 1 ΒΧΤ Ε = ΒΧΕ Ζ FS(Ε, Ζ) = 1 = 1 ΒΧΕ Ε = ΒΧΤ Ε ΧΔ Ε = 1 = ΒΧΤ Δ = ΒΧΕ Ζ FS(Δ, Ζ) = 1 = 1 ΒΧΕ Δ = ΒΧΤ Δ ΧΔ Δ = 1 = 1 ΒΧΤ Γ = ΒΧΕ Ε FS(Γ, Ε) = = ΒΧΕ Γ = ΒΧΤ Γ ΧΔ Γ = 5 = ΒΧΤ Β = ΒΧΕ Δ FS(Β, Δ) = 1 = 1 ΒΧΕ Β = ΒΧΤ Β ΧΔ Β = 1 = Στη δραστηριότητα Α καταλήγουν δύο διαδρομές, επομένως: ΒΧΤ Α (1) = ΒΧΕ Β FS(Α, Β) = = ΒΧΤ Α () = ΒΧΕ Γ FS(Α, Γ) = = ΒΧΤ Α = min{βχτ Α (1), ΒΧΤ Α ()} = min{, } = BXE A = BXT A ΧΔ Α = = Περιθώρια χρόνου δραστηριοτήτων: Συνολικό περιθώριο χρόνου δραστηριοτήτων: ΣΠΧ Α = ΒΧΤ Α ΕΧΕ Α ΧΔ Α = = ΣΠΧ Β = ΒΧΤ Β ΕΧΕ Β ΧΔ Β = 1 = ΣΠΧ Γ = ΒΧΤ Γ ΕΧΕ Γ ΧΔ Γ = 5 = ΣΠΧ Δ = ΒΧΤ Δ ΕΧΕ Δ ΧΔ Δ = 1 = ΣΠΧ Ε = ΒΧΤ Ε ΕΧΕ Ε ΧΔ Ε = 1 = ΣΠΧ Ζ = ΒΧΤ Ζ ΕΧΕ Ζ ΧΔ Ζ = 1 =

7 Επομένως, οι δραστηριότητες Α, Γ, Ε και Ζ είναι κρίσιμες, επειδή έχουν μηδενικό συνολικό περιθώριο χρόνου, και καθορίζουν την κρίσιμη διαδρομή του έργου: Α Γ Ε Ζ. Σημείωση: Για τον καθορισμό της κρίσιμης διαδρομής αρκεί ο υπολογισμός του συνολικού περιθωρίου χρόνου των δραστηριοτήτων, όμως για την πληρότητα επίλυσης του δικτύου παρατίθεται και ο υπολογισμός του ελεύθερου περιθωρίου χρόνου των δραστηριοτήτων. Ελεύθερο περιθώριο χρόνου δραστηριοτήτων: ΕΠΧ Ζ = (τέλος του έργου) ΕΠΧ Ε = ΕΧΕ Ζ ΕΧΤ Ε FS(Ε, Ζ) = 1 1 = ΕΠΧ Δ =ΕΧΕ Ζ ΕΧΤ Δ FS(Δ, Ζ) = 1 1 = ΕΠΧ Γ = ΕΧΕ Ε ΕΧΤ Γ FS(Γ, Ε) = = ΕΠΧ Β = ΕΧΕ Δ ΕΧΤ Β FS(Β, Δ) = = Στη δραστηριότητα Α καταλήγουν δύο διαδρομές, επομένως: ΕΠΧ Α (1) = ΕΧΕ Β ΕΧΤ Α FS(Α, Β) = = ΕΠΧ Α () = ΕΧΕ Γ ΕΧΤ Α FS(Α, Γ) = = ΕΠΧ Α = min{επχ Α (1), ΕΠΧ Α ()} = min{, } = Β 1 Δ Α Ζ 1 1 Γ 5 Ε 1 1

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2

ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2 ΠΑΡΑΔΕΙΓΜΑΤΑ 1. Εξετάζεται η κατασκευή μιας τυπικής κατοικίας. Δημιουργήστε το διάγραμμα δομής έργου (Work Breakdown Structure WBS). Συμπληρώστε τους περιορισμούς διαδοχής των εργασιών. Σχεδιάστε το δικτυωτό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Κομβικά Δίκτυα Δρ. Βασίλης Π. Αγγελίδης Διαφάνεια 2 Εισαγωγή Στα κομβικά δίκτυα οι κόμβοι

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος

ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος ΜΕΘΟΔΟΣ CPM Κατανόηση Διαδικασίας με τη Χρήση Παραδείγματος Το παράδειγμα στο οποίο θα βασιστούμε είναι το εξής: Στον παρακάτω πίνακα δίνονται οι δραστηριότητες ενός έργου, η διάρκεια τους καθώς και οι

Διαβάστε περισσότερα

2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Ορισμοί Κόστος κατασκευής: το σύνολο των δαπανών

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ «Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΛΕΙΑ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 25210 60435

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ

ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΘΟΔΟΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΠΕΛΩΝΗ ΑΘΑΝΑΣΙΑ Α.Μ. 4000 ΙΑΝΟΥΑΡΙΟΣ 2014 Μέθοδοι Διοίκησης Έργων Σελίδα 1 Copyright Aθανασία Καπελώνη, 2013 Με επιφύλαξη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -

Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Βασικές αρχές τεχνικού έργου Σειρά

Διαβάστε περισσότερα

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή.

(Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο τρόπο δεν θα μετρήσουν βαθμολογικά) Εκσκαφή. 7 o ΕΞΑΜΗΝΟ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΑΣΚΗΣEIΣ ΓΙΑ ΣΠΙΤΙ (ΘΕΜΑ ΕΞΑΜΗΝΟΥ) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ 19- εκ- 2008 (με προφορική εξέταση) (Θέματα που θα παραδοθούν σε οποιαδήποτε άλλη ημερομηνία ή με οποιοδήποτε άλλο

Διαβάστε περισσότερα

ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων

ΠΜΣ Παραγωγή και ιαχείριση Ενέργειας ιαχείριση Ενέργειας και ιοίκηση Έργων ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ

9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ 9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ Στο κεφάλαιο αυτό, αναλύεται πλήρως ένα τεχνικό έργο, συγκεκριµένα αυτό της κατασκευής ενός µικρού αντλιοστασίου. Για την ανάλυση του έργου χρησιµοποιείται το πακέτο λογισµικού

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1 Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην

Διαβάστε περισσότερα

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου

Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονικός Προγραμματισμός Έργων Project Scheduling Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονοδιαγράμματα Έργων Διαδικασία Κτίζοντας το Πρόγραμμα Έργου 1. Κατανόηση έργου/προδιαγραφών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ

ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ - ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΩΝ 1 ΠΡΟΒΛΗΜΑ 1 Οι δραστηριότητες Χ και Ψ ενός σύνθετου έργου μηχανοργάνωσης (βλ. επόμενη σελίδα) παριστάνουν τις δύο κύριες εργασίες εγκατάστασης ενός μεγάλου

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΟΡΜΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΟΡΜΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΟΡΜΗ ΕΝΕΡΓΕΙΑ ΕΡΓΟ ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Ένα ελατήριο είναι συμπιεσμένο μεταξύ δυο σωμάτων που έχουν μάζες m και Μ όπου m < Μ. Τα δυο σώματα συγκρατούνται με μια κλωστή και μαζί με το συμπιεσμένο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ

Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ Ποσοτικές Μέθοδοι στη Λήψη Διοικητικών Αποφάσεων ΙΙ 5 ΑΣΚΗΣΕΙΣ ΜΕ ΠΕΡΙΓΡΑΜΜΑΤΑ ΑΠΑΝΤΗΣΕΩΝ Συντάκτης: Βασίλειος Α. Δημητρίου MSc Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο ΤΕΙ Σερρών, μέτρο 1.2, Κοινωνία της

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα

Διαβάστε περισσότερα

Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες και σαφείς απαντήσεις με ευανάγνωστα γράμματα:

Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες και σαφείς απαντήσεις με ευανάγνωστα γράμματα: ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Τ.Ε.Ι. ΑΘΗΝΑΣ Μάθημα: ΚΕΡΑΙΕΣ ΚΑΙ ΑΣΥΡΜΑΤΕΣ ΖΕΥΞΕΙΣ Εισηγητής: Δρ. Κ. ΒΟΥΔΟΥΡΗΣ Α Οδηγίες: {ΑΜ} = Αριθμός Μητρώου σας, Πλήρη βαθμολογία απονέμεται μόνο σε αιτιολογημένες

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

800 m. 800 m. 800 m. Περιοχή A

800 m. 800 m. 800 m. Περιοχή A Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E5: Τροφοδοσία µονάδας επεξεργασίας αγροτικών προϊόντων (Εξέταση

Διαβάστε περισσότερα

Στατιστικοί πίνακες. Δημιουργία κλάσεων

Στατιστικοί πίνακες. Δημιουργία κλάσεων Στατιστικοί πίνακες Δημιουργία κλάσεων Τι είναι οι κλάσεις; Κλάσεις είναι ημιανοικτά διαστήματα της μορφής [α i, b i ), τα οποία είναι ταυτόχρονα και διαδοχικά, έτσι ώστε να μην υπάρχει κάποια τιμή του

Διαβάστε περισσότερα

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων.

Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Μέθοδος CPM 1. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Αμέσως προηγούμενη (σε μήνες) Α - 4,0 Β - 2,0 Γ - 3,0 Δ Α 5,0 Ε Γ 4,5 Ζ Β, Δ 1,5 Η Β, Δ 2,5 Θ Ε, Ζ 4.0 Ι

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΣΑΝΤΑΣ 25/11/2007. Προγραμματισμός Διαχείριση Έργων. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος

ΝΙΚΟΣ ΤΣΑΝΤΑΣ 25/11/2007. Προγραμματισμός Διαχείριση Έργων. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Επιχειρησιακή Έρευνα Προγραμματισμός ιαχείριση Έργων Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος 007-08 Προγραμματισμός Διαχείριση Έργων ΕΡΓΟ (πέρα από κάθε μεγάλη τεχνική κατασκευή)

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ

ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα. Προγραμματισμός έργων Η μέθοδος CPM

Πληροφοριακά Συστήματα. Προγραμματισμός έργων Η μέθοδος CPM Πληροφοριακά Συστήματα Διοίκησης Προγραμματισμός έργων Η μέθοδος CPM Προγραμματισμός έργων Ασχολείται με τον βέλτιστο προγραμματισμό περίπλοκων έργων, ώστε να επιτευχθούν στόχοι σε σχέση με: τον χρόνο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ

Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Πλάνο έργου Εργαλείο ελέγχου για την πορεία του έργου. Περιγραφή έργου Απαιτήσεις Τµηµατοποίηση έργου Χρονο-προγραµµατισµός έργου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15 ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15 I. ΟΙ ΠΑΓΙΔΕΣ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΑΠΟΦΕΥΓΟΥΝ ΟΙ PROJECT MANAGER... 17 Συχνά προβλήματα των project... 17 Παγίδες στα project... 18 Οι συνέπειες της κακής διοίκησης

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ScanHRMS: Εργασιακοί Ρόλοι

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ScanHRMS: Εργασιακοί Ρόλοι ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ScanHRMS: Εργασιακοί Ρόλοι ΑΘΗΝΑ ΛΕΩΦ. ΣΥΓΓΡΟΥ 120, Τ.Κ. 117 41, Τ: 211 5007000, F: 211 5007070 ΛΑΓΟΥΜΙΤΖΗ 24 ΚΑΛΛΙΘΕΑ, Τ.Κ. 176 71, Τ: 210 9230460, 216 8093098 ΘΕΣΣΑΛΟΝΙΚΗ ΠΑΡΟΔΟΣ 17ης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος...13 Πρόλογος του Συγγραφέα...15 Κεφάλαιο 1: Βασικές Έννοιες της Διοίκησης - Διαχείρισης Έργου...19 1.1 Λειτουργία, Έργο, Πρόγραμμα...19 1.2 Οι Εμπλεκόμενοι στο Έργο...21

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β Ακαδημαϊκό έτος 4-5 ΘΕΜΑ Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = [] α [B] β Χρησιμοποιώντας τη μέθοδο των αρχικών ταχυτήτων βρήκαμε ότι η αντίδραση είναι δεύτερης τάξης ως προς Α και πρώτης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. Διπλωματική Εργασία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. Διπλωματική Εργασία ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Διπλωματική Εργασία ΣΧΕΔΙΑΣΜΟΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΟΣΤΟΛΟΓΗΣΗΣ ΚΑΙ ΧΡΟΝΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΙΔΙΩΤΙΚΩΝ

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαχείριση Τεχνικών Έργων 3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Μέθοδοι κατανομής πόρων Ορισμοί-Παραδοχές: Πόροι: προσωπικό,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ

ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ (Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού

Διαβάστε περισσότερα

Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ

Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ Ενότητα 4: Επίλυση μαθηματικών προβλημάτων -1- Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ α. Υπολογισμός δύναμης ακεραίων Σε προηγούμενη ενότητα, είδαμε ότι το ΒΥΟΒ δεν γνωρίζει την πράξη της

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1

ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3Ο 3.1 Άσκηση Άκαμπτο πέδιλο πλάτους Β=2m και μεγάλου μήκους φέρει κατακόρυφο φορτίο 1000kN ανά μέτρο μήκους του θεμελίου και θεμελιώνεται σε βάθος

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 17833 α) Πρέπει : 8 x 0 x 8 & 8 x 8 8 x 0 x 8,άρα 8,8. f β) x 8,8 : x 8,8 & f x 8 x 8 x 8 x 8 x 8 x 8 x f x γ) Γνησίως φθίνουσα είναι η III γραφική παράσταση. Έχει μέγιστο στο -8 το f 8 16 0 4. Έχει ελάχιστο

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

Α) Αν το τριώνυμο έχει δύο ρίζες x 1

Α) Αν το τριώνυμο έχει δύο ρίζες x 1 αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

2ο video (επίλυση ανίσωσης 1 ου βαθμού)

2ο video (επίλυση ανίσωσης 1 ου βαθμού) 2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα

Διαβάστε περισσότερα

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ 5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό

Διαβάστε περισσότερα

Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση.

Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση. Τρέχοντα κύματα. Ερωτήσεις με δικαιολόγηση. Η φάση ενός σημείου κατά τη διάδοση κύματος Κατά μήκος ενός ελαστικού μέσου διαδίδεται ένα κύμα προς τα δεξιά του θετικού ημιάξονα, με μήκος κύματος λ=2m. Ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα