Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο."

Transcript

1 Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται σε µια συνεχή τυχαία κίνηση αλλά η συσσώρευση τους είναι πολύ πυκνότερη από ότι σε ένα αέριο. Στερεά: Μείωση θερµικής κίνησης, προσέγγιση σωµατιδίων, απόκτηση µόνιµης θέσης (στερεό). Τα άτοµα, ιόντα ή µόρια βρίσκονται σε στενή επαφή και δονούνται γύρω από σταθερές θέσεις

2 Κρυσταλλική και άµορφη δοµή Η δοµή των στερεών εξαρτάται από το είδος των δεσµών και από τη γεωµετρική διευθέτηση των ατόµων ή µορίων ή ιόντων στη µάζα τους. Η δοµή των στερεών διακρίνεται σε κρυσταλλική και άµορφη. Κρυσταλλική δοµή είναι η κανονική, γεωµετρική διάταξη στην οποία διευθετούνται οι δοµικές µονάδες ενός στερεού. Αν ένα στερεό δεν παρουσιάζει µια ορισµένη γεωµετρική διάταξη, τότε είναι άµορφο. Η δοµή των στερεών υλικών µελετάται µε µεθόδους όπως ακτίνες Χ, περίθλαση ηλεκτρονίων και περίθλαση νετρονίων.

3 Κρύσταλλος Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, διαµορφώνεται από επίπεδες έδρες, οι σχέσεις των οποίων δείχνουν µια τυπική συµµετρία, δηλ. σχηµατίζουν µεταξύ τους επακριβώς προσδιορισµένες γωνίες. Ο κρύσταλλος µιας χηµικής ουσίας είναι το κανονικό πολυεδρικό σώµα που προκύπτει µε τη µετάβαση της, υπό κατάλληλες συνθήκες, από την υγρή ή την αέρια κατάσταση στη στερεή. Κρυσταλλικά σώµατα είναι π.χ. ο πάγος, ο ασβεστίτης, το αλάτι και τα περισσότερα ορυκτά. Τα πραγµατικά µη κρυσταλλικά ή άµορφα στερεά είναι πολύ λίγα.

4 Κρυσταλλικό πλέγµα Η τρισδιάστατη συµµετρική διευθέτηση των ατόµων αποτελεί το κρυσταλλικό πλέγµα του υλικού. Όταν εξετάζουµε τις κρυσταλλικές δοµές, τα άτοµα ή ιόντα θεωρούνται σαν σκληρές σφαίρες µε καθορισµένες διαµέτρους. Αυτό είναι γνωστό ως ατοµικό µοντέλο σκληρών σφαιρών πλέγµατος. Τα άτοµα (ή ιόντα) αποτελούν τα σηµεία του πλέγµατος. Το κρυσταλλικό πλέγµα διαφέρει από υλικό σε υλικό ως προς τη µορφή και το µέγεθος των ατόµων και το είδος των δεσµών µεταξύ των ατόµων. Η κρυσταλλική δοµή υλικού αναφέρεται στο µέγεθος, το σχήµα και τη διάταξη των ατόµων στο πλέγµα.

5 Κρυσταλλική κυψελίδα Η κρυσταλλική κυψελίδα είναι µια υποδιαίρεση του πλέγµατος, η οποία διατηρεί όλα τα στοιχεία συµµετρίας του. Η κρυσταλλική κυψελίδα είναι η βασική κρυσταλλική δοµική µονάδα της κρυσταλλικής δοµής. Με επανάληψη µεγάλου αριθµού ίδιων κρυσταλλικών κυψελίδων προκύπτει η κρυσταλλική δοµή (κρυσταλλικό πλέγµα του υλικού). Επτά βασικά κρυσταλλικά συστήµατα: το κυβικό, το τετραγωνικό, το ορθοροµβικό, το ροµβοεδρικό, το εξαγωνικό, το µονοκλινές και το τρικλινές. Τέσσερις τρόποι κεντρικής διευθέτησης ατόµων: Πρωτογενής (πλεγµατικά σηµεία µόνο στις γωνίες, Ρ), Ενδοκεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στα κέντρα των εδρών A, B, C.), Ολοεδρικώς κεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στα κέντρα όλων των εδρών, F), Χωροκεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στο κέντρο της µοναδιαίας κυψελίδας I).

6 Κρυσταλλικά συστήµατα

7 Μεταλλικές κρυσταλλικές δοµές Απλή κυβική δοµή Θεωρούµε τα άτοµα του µετάλλου σαν σκληρές οµοιόµορφες σφαίρες. Με επανάληψη της επίπεδης τετραγωνικής διάταξης προκύπτει ένα τρισδιάστατο κρυσταλλικό πλέγµα απλής κυβικής συµµετρίας. Κάθε άτοµο περιβάλλεται από 6 άλλα άτοµα δηλαδή έχουµε αριθµό συναρµογής 6. Σ τ η ν απλή κυβική δοµή δεν κρυσταλλώνονται µέταλλα.

8 Μεταλλικές κρυσταλλικές δοµές Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) Προκύπτει από την απλή κυψελίδα µε τοποθέτηση ενός ατόµου στο κέντρο κάθε πλευράς. Η δοµή FCC είναι µια από τις δυο πυκνότερες διατάξεις ατόµων στο χώρο. Σε αυτή την περίπτωση, κάθε άτοµο έχει αριθµό συναρµογής 12 Δοµή FCC έχουν τα περισσότερα όλκιµα µέταλλα (Cu, Al, Ag, Au ) Οι συµπαγείς σφαίρες αγγίζουν η µία την άλλη κατά µήκος της διαγωνίου µιας έδρας Το µήκος της ακµής του κύβου είναι a= 2R 2

9 Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) à Αριθµός συντεταγµένων/ συναρµολόγησης (Coordination Νumber), CN = ο αριθµός των πλησιέστερων γειτόνων µε τους οποίους ένα άτοµο συνδέεται = αριθµός των ατόµων που έρχονται σε επαφή CN = 12 à Αριθμός ατόμων ανά μοναδιαία κυψελίδα, n = 4. (Για ένα άτοµο που µοιράζεται µεταξύ m γειτονικών µοναδιαίων κυψελίδων, λαµβάνουµε υπόψη µόνο το κλάσµα 1/m του ατόµου). Στην µοναδιαία κυψελίδα FCC έχουµε: 6 άτοµα στις έδρες που µοιράζονται από δυο (2) µοναδιαίες κυψελίδες: 6 1/2 = 3 8 άτοµα στις γωνίες που µοιράζονται από οκτώ (8) µοναδιαίες κυψελίδες: 8 1/8 = 1 à Παράγοντας Ατοµικής κατάληψης (Atomic packing factor), APF = κλάσµα του όγκου που καταλαµβάνεται από συµπαγείς σφαίρες = (άθροισµα του όγκου των ατόµων)/(όγκος της κυψελίδας) = 0.74 (το µέγιστο δυνατό) > Υπολογισµός

10 Ολοεδρικά κεντρωµένη κυβική δοµή FCC APF = (άθροισµα του όγκου των ατόµων)/(όγκος της κυψελίδας) Όγκος 4 συµπαγών σφαιρών στην µοναδιαία κυψελίδα: Όγκος της µοναδιαίας κυψελίδας (a= 2R 2): Άρα, Δηλαδή, µέγιστη δυνατή τιµή: 0.74

11 Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) Τα γωνιακά άτοµα και τα άτοµα στις έδρες της µοναδιαίας κυψελίδας είναι ισοδύναµα Ο κρύσταλλος FCC έχει APF ίσο µε 0.74, που είναι η µέγιστη τιµή για ένα σύστηµα µε ίσες ως προς το µέγεθος σφαίρες Ο κρύσταλλος FCC µπορεί να παρασταθεί µε επίπεδα, των οποίων η πυκνότητα σε άτοµα είναι πολύ υψηλή

12 Μεταλλικές κρυσταλλικές δοµές Ενδοκεντρωµένη κυβική δοµή (Body Centered Cubic Lattice) Η κυψελίδα της δοµής αυτής διαφέρει από την απλή κυβική κυψελίδα ως προς το άτοµο που έχει στο κέντρο του κύβου. Ο αριθµός συναρµογής της δοµής αυτής είναι το CN=8 Δοµή BCC παρουσιάζουν πολλά µέταλλα όπως: Cr, Mo, Ta, W, Li, Nb, K κ.α.

13 Ενδοκεντρωµένη κυβική δοµή (Body Centered Cubic Lattice) Οι συµπαγείς σφαίρες αγγίζουν η µία την άλλη κατά µήκος της διαγωνίου του κύβου Μήκος της διαγωνίου του κύβου, a= 4R/ 3 à Αριθµός συντεταγµένων (coordination number), CN = 8 à Αριθµός ατόµων ανά µοναδιαία κυψελίδα, n = 2 Το κεντρικό άτοµο που δε µοιράζεται από άλλες µοναδιαίες κυψελίδες: 1 x 1 = 1 8 άτοµα στις γωνίες που µοιράζονται από οκτώ µοναδιαίες κυψελίδες: 8 x 1/8 = 1 à Παράγοντας Ατοµικής κατάληψης (Atomic packing factor), APF = 0.68 à Τα γωνιακά και το κεντρικό άτοµο είναι ισοδύναµα

14 Εξαγωνική δοµή HCP (Hexagonal Closed-Packed) à HCP είναι η πιο συνήθης δοµή των µεταλλικών κρυστάλλων à Έξι άτοµα, που σχηµατίζουν ένα κανονικό εξάγωνο, περιβάλουν ένα άτοµο που βρίσκεται στο κέντρο. Ακόµη, ένα άλλο επίπεδο βρίσκεται στα µισά της µοναδιαίας κυψελίδας (κατά µήκος του άξονα-c), µε τρία (3) επιπλέον άτοµα που βρίσκονται στα διάκενα των εξαγωνικών (close-packed) επιπέδων à Cd, Mg, Zn, Ti έχουν αυτήν την κρυσταλλική δοµή

15 Εξαγωνική δοµή HCP (Hexagonal Closed-Packed) à Η µοναδιαία κυψελίδα έχει 2 πλεγµατικές παραµέτρους, a και c. Ο ιδανικός λόγος των µηκών τους είναι c/a = à Αριθµός συντεταγµένων, CN = 12 (ίδιος, όπως στο FCC) à Αριθµός ατόµων ανά µοναδιαία κυψελίδα, n = 6. 3 άτοµα στη µεσαία έδρα που δε µοιράζονται από : 3 x 1 = 3 12 άτοµα στις γωνίες του εξαγώνου που µοιράζονται 6 µοναδιαίες κυψελίδες: 12 x 1/6 = 2 2 άτοµα στην πάνω και κάτω έδρα του εξαγώνου που µοιράζονται από 2 µοναδιαίες κυψελίδες: 2 x 1/2 = 1 à Παράγοντας Ατοµικής κατάληψης, APF = 0.74 (ίδιος, όπως στο FCC) à Όλα τα άτοµα είναι ισοδύναµα.

16 Υπολογισµοί Πυκνότητας κρυσταλλικού υλικού Αφού ολόκληρος ο κρύσταλλος µπορεί να προκύψει από την επανάληψη της µοναδιαίας κυψελίδας, η θεωρητική πυκνότητα του κρυσταλλικού υλικού θα είναι: ρ = = (άτοµα στην µοναδιαία κυψελίδα, n) (µάζα ενός ατόµου, M) / (όγκος της µοναδιαίας κυψελίδας, Vc) = nμ/vc à Άτοµα στην µοναδιαία κυψελίδα, n = 2 (BCC), 4 (FCC), 6 (HCP) à Μάζα ενός ατόµου, M = Ατοµικό βάρος, A, σε amu (ή g/mol) δίνεται στον περιοδικό πίνακα. Για να µετατρέψουµε τη µάζα από amu σε grams, πρέπει να διαιρέσουµε το ατοµικό βάρος σε amu µε τον αριθµό Avogadro, NA = atoms/ mol

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 3 η σειρά διαφανειών Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα διατάσσονται στο χώρο ώστε να σχηματίσουν στερεά? Τύποι Στερεών

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 6 η Ενότητα ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 5 Δομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Κρυσταλλικά υλικά Άμορφα υλικά Κρύσταλλος είναι ένα υλικό που παρουσιάζει τρισδιάστατη περιοδική τάξη ατόμων,

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής

Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Η Δομή των Μετάλλων Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Τρισδιάστατο Πλέγμα Οι κυψελίδες των 14 πλεγμάτων Bravais (1) απλό τρικλινές, (2) απλό μονοκλινές, (3) κεντροβασικό μονοκλινές, (4) απλό ορθορομβικό,

Διαβάστε περισσότερα

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση

Διαβάστε περισσότερα

7.14 Προβλήματα για εξάσκηση

7.14 Προβλήματα για εξάσκηση 7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν

Διαβάστε περισσότερα

Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους.

Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους. I. Κρυσταλλική Δομή Κρυσταλλογραφία Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους. Η συμμετρία του κρυστάλλου επηρεάζει τις

Διαβάστε περισσότερα

11. Υγρά και Στερεά ΣΚΟΠΟΣ

11. Υγρά και Στερεά ΣΚΟΠΟΣ 11. Υγρά και Στερεά ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τις άλλεςδύοκαταστάσειςτηςύλης, την υγρή και τη στερεά, να μελετήσουμε και να ερμηνεύσουμε τις ιδιότητες των υγρών, να δούμε τους

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Χτίζοντας τους κρυστάλλους από άτομα Είδη δεσμών Διδάσκων : Επίκουρη Καθηγήτρια

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως

Διαβάστε περισσότερα

Κεφάλαιο 2 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ

Κεφάλαιο 2 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Κεφάλαιο ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Προαπαιτούμενη γνώση Πλέγμα Brvis, θεμελιώδης και μοναδιαία κυψελίδα, πλεγματικά επίπεδα, δείκτες Miller, ανάστροφο πλέγμα, ζώνη Brillouin, σημειακές ομάδες χώρου. Πρόβλημα Το

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα Θεωρητικη αναλυση ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ στα στερεα Ομοιοπολικός δεσμός Ιοντικός δεσμός Μεταλλικός δεσμός Δεσμός του υδρογόνου Δεσμός van der Waals ΔΟΜΗ ΑΤΟΜΟΥ Στοιβάδες Χώρος κίνησης των

Διαβάστε περισσότερα

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (30 Μονάδες) Στην εικόνα δίνονται οι επίπεδες

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Δίνονται τα ιόντα Mg 2+, 2, F, Na + και Al + και οι τιμές ιοντικών ακτίνων 16 pm, 95 pm, 50 pm, 140 pm και 65 pm. Βρείτε ποια ακτίνα ταιριάζει σε καθένα από τα ιόντα

Διαβάστε περισσότερα

Κρυσταλλικές ατέλειες στερεών

Κρυσταλλικές ατέλειες στερεών Κρυσταλλικές ατέλειες στερεών Χαράλαμπος Στεργίου Dr.Eng. chstergiou@uowm.gr Ατέλειες Τεχνολογία Υλικών Ι Ατέλειες Ατέλειες στερεών Ο τέλειος κρύσταλλος δεν υπάρχει στην φύση. Η διάταξη των ατόμων σε δομές

Διαβάστε περισσότερα

Προαπαιτούμενη γνώση Προαπαιτούμενη γνώση είναι η ύλη των πρώτων κεφαλαίων αυτού του βιβλίου.

Προαπαιτούμενη γνώση Προαπαιτούμενη γνώση είναι η ύλη των πρώτων κεφαλαίων αυτού του βιβλίου. 10Α ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΚΑΙ ΔΕΣΜΟΣ ΜΕΤΑΛΛΩΝ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Σύνοψη Στο Α μέρος του κεφαλαίου απαριθμούνται οι χαρακτηριστικές ιδιότητες των μετάλλων και δίνονται τα συνηθέστερα κρυσταλλικά συστήματα στα

Διαβάστε περισσότερα

, όπου Α, Γ, l είναι σταθερές με l > 2.

, όπου Α, Γ, l είναι σταθερές με l > 2. Φυσική Στερεάς Κατάστασης: Εισαγωγή Θέμα 1 Η ηλεκτρική χωρητικότητα ισούται με C=Q/V όπου Q το φορτίο και V η τάση. (α) Εκφράστε τις διαστάσεις του C στις βασικές διαστάσεις L,M,T,I. (β) Σφαίρα είναι φορτισμένη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Για καθεμιά από τις ακόλουθες ομάδες, τοποθετήστε τα άτομα και / ή τα ιόντα κατά σειρά ελαττούμενου μεγέθους (από το μεγαλύτερο προς το μικρότερο) (α) Cu, Cu +, Cu

Διαβάστε περισσότερα

µοριακά στερεά στερεά van der Waals δεσµοί υδρογόνου

µοριακά στερεά στερεά van der Waals δεσµοί υδρογόνου Τα µοριακά στερεά ή στερεά van der Waals συντίθενται από διακεκριµένα µόρια ή άτοµα, τα οποία συγκρατούνται σε πλέγµατα µε ασθενείς δυνάµεις van der Waals. Οι ηλεκτρικές αυτές δυνάµεις είναι καθολικού

Διαβάστε περισσότερα

Σχήμα 1.1. Είσοδος και έξοδος ενέργειας σε ένα υλικό.

Σχήμα 1.1. Είσοδος και έξοδος ενέργειας σε ένα υλικό. ΚΕΦΑΛΑΙΟ 1: ΑΡΧΕΣ ΤΩΝ ΥΛΙΚΩΝ 1.1 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ Για την εκτίμηση της καταλληλότητας ενός υλικού για μία συγκεκριμένη χρήση, λαμβάνονται υπόψη πολλές ιδιότητες. Με βάση το είδος της ενέργειας που

Διαβάστε περισσότερα

Κεφάλαιο 3 Κρυσταλλογραφία

Κεφάλαιο 3 Κρυσταλλογραφία Κεφάλαιο 3 Κρυσταλλογραφία Σύνοψη Μελετάται ο σχηματισμός των κρυστάλλων με τα αντίστοιχα στάδια ανάπτυξης αυτών, τα κρυσταλλικά συστήματα, τα κρυσταλλικά πλέγματα, η μελέτη των κρυσταλλικών δομών μεγίστης

Διαβάστε περισσότερα

Κεφάλαιο 2 Χημικοί Δεσμοί

Κεφάλαιο 2 Χημικοί Δεσμοί Κεφάλαιο 2 Χημικοί Δεσμοί Σύνοψη Παρουσιάζονται οι χημικοί δεσμοί, ιοντικός, μοριακός, ατομικός, μεταλλικός. Οι ιδιότητες των υλικών τόσο οι φυσικές όσο και οι χημικές εξαρτώνται από το είδος ή τα είδη

Διαβάστε περισσότερα

2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ

2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ 2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ ΠΕΡΙΛΗΨΗ Τα μέταλλα είναι κρυσταλλικά στερεά, έχουν δηλαδή κρυσταλλική δομή, διότι η σύνταξη των ατόμων που τα αποτελούν παρουσιάζει περιοδικότητα και στις τρεις διευθύνσεις του

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 3: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και

Διαβάστε περισσότερα

Ca. Να μεταφέρετε στην κόλλα σας συμπληρωμένο τον παρακάτω πίνακα που αναφέρεται στο άτομο του ασβεστίου: ΣΤΙΒΑΔΕΣ νετρόνια K L M N Ca 2

Ca. Να μεταφέρετε στην κόλλα σας συμπληρωμένο τον παρακάτω πίνακα που αναφέρεται στο άτομο του ασβεστίου: ΣΤΙΒΑΔΕΣ νετρόνια K L M N Ca 2 Ερωτήσεις Ανάπτυξης 1. Δίνεται ότι: 40 20 Ca. Να μεταφέρετε στην κόλλα σας συμπληρωμένο τον παρακάτω πίνακα που αναφέρεται στο άτομο του ασβεστίου: ΣΤΙΒΑΔΕΣ νετρόνια K L M N Ca 2 2. Tι είδους δεσμός αναπτύσσεται

Διαβάστε περισσότερα

Στοιχειομετρικοί Υπολογισμοί στη Χημεία

Στοιχειομετρικοί Υπολογισμοί στη Χημεία Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει

Διαβάστε περισσότερα

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης

ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ Χ. Κορδούλης ΚΕΡΑΜΙΚΑ ΥΛΙΚΑ Τα κεραμικά υλικά είναι ανόργανα µη μεταλλικά υλικά (ενώσεις μεταλλικών και μη μεταλλικών στοιχείων), τα οποία έχουν υποστεί θερμική κατεργασία

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Ο άργυρος εμφανίζεται στη φύση υπό τη μορφή δύο ισοτόπων τα οποία έχουν ατομικές μάζες 106,905 amu και 108,905 amu. (α) Γράψτε το σύμβολο για καθένα ισότοπο του αργύρου

Διαβάστε περισσότερα

Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες)

Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες) Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες) Μοναδιαία κυψελίδα Καθορισµός Ο.Σ.Χ. Υπό τον όρο ότι δεν υπάρχει κανένα πρόβληµα στη δοµή, όπως διδυµίες αταξίες κ.λ.π., έχουµε την δυνατότητα να δηµιουργήσουµε

Διαβάστε περισσότερα

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

2. ΜΕΤΑΛΛΑ - ΚΡΑΜΑΤΑ. 2.2 Κύριοι χημικοί δεσμοί

2. ΜΕΤΑΛΛΑ - ΚΡΑΜΑΤΑ. 2.2 Κύριοι χημικοί δεσμοί 1 2. ΜΕΤΑΛΛΑ - ΚΡΑΜΑΤΑ 2.1 Γενικά Τα μικρότερα σωματίδια της ύλης, που μπορούν να βρεθούν ελεύθερα και να διατηρούν τις ιδιότητες του σώματος στο οποίο ανήκουν, λέγονται μόρια. Τα ελάχιστα σωματίδια της

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

Ατομική και ηλεκτρονιακή δομή των στερεών

Ατομική και ηλεκτρονιακή δομή των στερεών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική και ηλεκτρονιακή δομή των στερεών Εισαγωγή Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ

Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α4 να γράψετε στο τετράδιο σας το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και

Διαβάστε περισσότερα

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.1 Ηλεκτροδιαλυτική τάση. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.

Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.1 Ηλεκτροδιαλυτική τάση. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.1 Ηλεκτροδιαλυτική τάση Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ 1. ΚΕΦΑΛΑΙΟ 1 ΗΛΕΚΤΡΟΔΙΑΛΥΤΙΚΗ ΤΑΣΗ 1.1 των µετάλλων

Διαβάστε περισσότερα

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ηλεκτρόνια που αποβάλλονται από τα 2 άτομα του Na τα παίρνει το S και γίνεται S 2-.

ηλεκτρόνια που αποβάλλονται από τα 2 άτομα του Na τα παίρνει το S και γίνεται S 2-. 1. Το στοιχείο Β είναι ευγενές αέριο, άρα έχει 8 ηλεκτρόνια στην εξωτερική του στιβάδα. Κατά συνέπεια το Α έχει 7 και το Γ 1 (Ανήκει στην 1 Η ομάδα της επόμενης περιόδου του Β). Θα ενωθούν με ετεροπολικό

Διαβάστε περισσότερα

NTSE - Nano Technology Science Education Project No: LLP TR-KA3-KA3MP

NTSE - Nano Technology Science Education Project No: LLP TR-KA3-KA3MP NTSE - Nano Technology Science Education Project No: 511787-LLP-1-2010-1-TR-KA3-KA3MP ΟΔΗΓΙΕΣ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΝΑΝΟΚΡΥΣΤΑΛΛΟΙ Εικονικό εργαστήριο: http://vlab.ntse-nanotech.eu/nanovirtuallab/ 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Χημεία: Μεταθετικές αντιδράσεις - Σχετική ατομική μάζα - Σχετική μοριακή μάζα - mole

Χημεία: Μεταθετικές αντιδράσεις - Σχετική ατομική μάζα - Σχετική μοριακή μάζα - mole Χημικές αντιδράσεις - Σχετική ατομική μάζα - Σχετική μοριακή μάζα - mole 46 Να γραφούν οι αντιδράσεις διπλής αντικατάστασης με τις οποίες μπορούν να παρασκευαστούν: α ΗΒr β Pb(OH) γ KNO α Το HBr είναι

Διαβάστε περισσότερα

ΜΕΘΟ ΟΙ ΣΚΛΗΡΥΝΣΗΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ

ΜΕΘΟ ΟΙ ΣΚΛΗΡΥΝΣΗΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ ΜΕΘΟ ΟΙ ΣΚΛΗΡΥΝΣΗΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ ΓΕΝΙΚΑ ΟΡΙΣΜΟΣ Σκλήρυνση µεταλλικού υλικού είναι η ισχυροποίησή του έναντι πλαστικής παραµόρφωσης και χαρακτηρίζεται από αύξηση της σκληρότητας, του ορίου διαρροής

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Ερωτήσεις Σωστού Λάθους

Ερωτήσεις Σωστού Λάθους Ερωτήσεις Σωστού Λάθους Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ) και να αιτιολογήσετε την απάντησή σας. 1. Το ιόν του νατρίου, 11 Na +, προκύπτει όταν το άτομο του Na προσλαμβάνει

Διαβάστε περισσότερα

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ

ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ΤΕΣΤ 30 ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΧΗΜΕΙΑΣ ο αριθμός Avogadro, N A, L = 6,022 10 23 mol -1 η σταθερά Faraday, F = 96 487 C mol -1 σταθερά αερίων R = 8,314 510 (70) J K -1 mol -1 = 0,082 L atm mol -1 K -1 μοριακός

Διαβάστε περισσότερα

Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα

Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα Ε Ι Σ Α Γ Ω Γ Η Στο Κεφάλαιο αυτό δίνονται ορισμένες έννοιες που θεωρούνται χρήσιμες στην ενότητα 9 και 10 (Δομή των Υλικών-Ακτίνες Χ) του Μαθήματος Γενική Φυσική V. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ 11-11-2012

ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ 11-11-2012 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ 11-11-2012 Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης. Α.1 Τα χημικά στοιχεία μιας κύριας ομάδας

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

Ηλίας Χατζηθεοδωρίδης, Απρίλιος 2007 ΠΥΡΙΤΙΚΆ ΟΡΥΚΤΆ

Ηλίας Χατζηθεοδωρίδης, Απρίλιος 2007 ΠΥΡΙΤΙΚΆ ΟΡΥΚΤΆ Ηλίας Χατζηθεοδωρίδης, Απρίλιος 2007 ΠΥΡΙΤΙΚΆ ΟΡΥΚΤΆ 92% των ορυκτών του φλοιού της γης είναι πυριτικά 39% 12% 12% 11% 5% 5% 5% 3% 8% Πλαγιόκλαστα Αλκαλικοί άστριοι Χαλαζίας Πυρόξενοι Αμφίβολοι Μαρμαρυγίες

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Στερεά. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης

Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Στερεά. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής Ενότητα: Στερεά Διδάσκων: Καθηγητής Κ. Κώτσης Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης 7. Στερεά Η επιβεβαίωση ότι τα στερεά σώματα αποτελούνται από μια ιδιαίτερη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Να ονομαστούν οι ενώσεις: 1. NH 4 F 2. K 2 SΟ 4 3. Ca(CN) Mg 3 (PO 4 ) 2 6. K 2 O 7. Cu(NO 3 ) Mg(OH) 2 10.

ΚΕΦΑΛΑΙΟ Να ονομαστούν οι ενώσεις: 1. NH 4 F 2. K 2 SΟ 4 3. Ca(CN) Mg 3 (PO 4 ) 2 6. K 2 O 7. Cu(NO 3 ) Mg(OH) 2 10. ΚΕΦΑΛΑΙΟ 2 1. α) Να γράψεις τους τύπους των επόμενων χημικών ενώσεων: 1. θειϊκό οξύ. 2. αμμωνία. 3. νιτρικό οξύ. 4. οξείδιο του ασβεστίου. 5. υδροξείδιο του νατρίου. 6. ανθρακικό οξύ. 7. μονοξείδιο του

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VI. ΜΗΧΑΝΙΣΜΟΙ ΙΣΧΥΡΟΠΟΙΗΣΗΣ ΤΩΝ ΜΕΤΑΛΛΩΝ 1. Εισαγωγή Στην προηγούµενη ενότητα εξετάσαµε την σηµαντικότερη ατέλεια της κρυσταλλικής δοµής των µεταλλικών υλικών, που είναι οι

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

2.1 Ηλεκτρονική δοµή των ατόµων

2.1 Ηλεκτρονική δοµή των ατόµων ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΤΟΥ 2ου ΚΕΦΑΛΑΙΟΥ 2.1 Ηλεκτρονική δοµή των ατόµων ΕΡΩΤΗΣΗ 1 : Πως περιέγραψε ο Bohr την δοµή του ατόµου; ΑΠΑΝΤΗΣΗ : Ο Bohr φαντάστηκε το άτοµο σαν ένα µικροσκοπικό

Διαβάστε περισσότερα

Ατομική Ακτίνα ατομική ακτίνα δραστικού μείωση δραστικό πυρηνικό φορτίο και ο κύριος κβαντικός αριθμός των εξωτ. ηλεκτρονίων

Ατομική Ακτίνα ατομική ακτίνα δραστικού μείωση δραστικό πυρηνικό φορτίο και ο κύριος κβαντικός αριθμός των εξωτ. ηλεκτρονίων ATOMIKH AKTINA Ατομική Ακτίνα ορίζεται ως το μισό της απόστασης μεταξύ δύο γειτονικών ατόμων, όπως αυτά διατάσσονται στο κρυσταλλικό πλέγμα του στοιχείου. Η ατομική ακτίνα ενός στοιχείου: Κατά μήκος μιας

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Κεφάλαιο 1 (Άτομα, μόρια και ιόντα) Ασκήσεις Προβλήματα προς Επανάληψη

Κεφάλαιο 1 (Άτομα, μόρια και ιόντα) Ασκήσεις Προβλήματα προς Επανάληψη Κεφάλαιο 1 (Άτομα, μόρια και ιόντα) Ασκήσεις Προβλήματα προς Επανάληψη 1.1 Ποιος είναι ο μαζικός αριθμός ενός ατόμου κασσιτέρου που έχει 70 νετρόνια; (α) 119 (β) 118,7 (γ) 120 (δ) 70 1.2 Σε ποια από τις

Διαβάστε περισσότερα

Μετά το τέλος της μελέτης του 2ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα βασικά σημεία του ατομικού προτύπου του Bohr.

Μετά το τέλος της μελέτης του 2ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα βασικά σημεία του ατομικού προτύπου του Bohr. Μετά το τέλος της μελέτης του 2ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα βασικά σημεία του ατομικού προτύπου του Bohr. Να κατανέμει σε στιβάδες τα ηλεκτρόνια ατόμων και ιόντων.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,

Διαβάστε περισσότερα

ΕΤΕΡΟΜΕΤΑΛΛΙΚΑ 3d-4f ΛΑΝΘΑΝΙ ΙΚΑ ΥΒΡΙ ΙΚΑ MOF ΥΛΙΚΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΚΑΤΑΛΥΣΗ ΚΑΙ ΣΕ ΑΙΣΘΗΤΗΡΕΣ

ΕΤΕΡΟΜΕΤΑΛΛΙΚΑ 3d-4f ΛΑΝΘΑΝΙ ΙΚΑ ΥΒΡΙ ΙΚΑ MOF ΥΛΙΚΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΚΑΤΑΛΥΣΗ ΚΑΙ ΣΕ ΑΙΣΘΗΤΗΡΕΣ ΕΤΕΡΟΜΕΤΑΛΛΙΚΑ 3d-4f ΛΑΝΘΑΝΙ ΙΚΑ ΥΒΡΙ ΙΚΑ MOF ΥΛΙΚΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΚΑΤΑΛΥΣΗ ΚΑΙ ΣΕ ΑΙΣΘΗΤΗΡΕΣ Κ. Γαβριήλ, Ρ. Τεκίδου, Α. Σαλίφογλου Τµήµα Χηµικών Μηχανικών, Αριστοτέλειο Πανεπιστήµιο, 54124 Θεσσαλονίκη

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

Κεφάλαιο 3:Η οµή των Κεραµικών

Κεφάλαιο 3:Η οµή των Κεραµικών Κεφάλαιο 3:Η οµή των Κεραµικών Η κρυσταλλική δοµή των κεραµικών καθορίζει πολλές ιδιότητες τους: θερµικές, οπτικές, ηλεκτρικές, µαγνητικές, διηλεκτρικές κτλ. Μέταλλα: η κρυσταλλική δοµή είναι συνήθως FCC

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ 27 ος ΠΜΔΧ Γ ΛΥΚΕΙΟΥ 30 03 203. Στοιχείο Μ το οποίο ανήκει στην πρώτη σειρά στοιχείων μετάπτωσης, σχηματίζει ιόν Μ 3+, που έχει 3 ηλεκτρόνια στην υποστιβάδα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Για να παρασκευάσετε ένα διάλυμα ορισμένου p στο Εργαστήριο χρησιμοποιήσατε το ρυθμιστικό ζεύγος C 3 COOΗ / C 3 COONa 3 2 O. Έστω τώρα ότι θέλετε να παρασκευάσετε,

Διαβάστε περισσότερα

KEΦAΛAIO Eισαγωγή

KEΦAΛAIO Eισαγωγή ΟΜΗ ΤΩΝ ΥΛΙΚΩΝ 5 KEΦAΛAIO 2 OMH TΩN YΛIKΩN 2.1 Eισαγωγή Για να εξηγηθούν και να κατανοηθούν βασικές μακροσκοπικές ιδιότητες των υλικών είναι απαραίτητο να εξεταστεί η δομή τους, δηλαδή οι δεσμοί μεταξύ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. 3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ. 3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ) ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 Τι είναι η Χημεία Διεθνές σύστημα μονάδων Γνωρίσματα της ύλης Δομικά σωματίδια της ύλης Με τι ασχολείται η χημεία; Χημεία είναι η επιστήμη των ουσιών, της δομής τους, των ιδιοτήτων

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 2 Κατηγορίες Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Παραδείγματα Το πεντάγωνο των υλικών Κατηγορίες υλικών 1 Ορυκτά Μέταλλα Φυσικές πηγές Υλικάπουβγαίνουναπότηγημεεξόρυξηήσκάψιμοή

Διαβάστε περισσότερα

Φροντιστήρια ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου 2015. Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήρια ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου 2015. Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Α Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.5 να επιλέξετε τη σωστή απάντηση: 1.1 Τα ισότοπα άτομα: α. έχουν ίδιο αριθμό νετρονίων β. έχουν την ίδια μάζα

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%)

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%) ΤΕΧΝΙΚΑ ΥΛΙΚΑ (2013-2014) (Βαρύτητα θέματος 25%) Άσκηση 1 (α) Κατασκευάστε το διάγραμμα φάσεων Ag-Cu χρησιμοποιώντας τα παρακάτω δεδομένα (υποθέστε ότι όλες οι γραμμές είναι ευθείες): Σημείο τήξης Ag:

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. Όλα τα Θέματα της Τράπεζας στη Χημεία που σχετίζονται με το Χημικό Δεσμό

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. Όλα τα Θέματα της Τράπεζας στη Χημεία που σχετίζονται με το Χημικό Δεσμό Όλα τα Θέματα της Τράπεζας στη Χημεία που σχετίζονται με το Χημικό Δεσμό Θέμα 1. Να αναφέρετε δυο διαφορές μεταξύ ομοιοπολικών και ιοντικών ενώσεων. Στις ιοντικές ενώσεις οι δομικές μονάδες είναι τα ιόντα,

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Ταξινομήστε τις παρακάτω ενώσεις κατά σειρά αυξανόμενου όξινου χαρακτήρα: (α) HBr, H Se, H S (β) HBr, HCl, HBr.. Ποιες από τις ακόλουθες προτάσεις είναι σωστές και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ xhmeiastokyma. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ 2 ο Γυμνάσιο Καματερού 1 ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΥΛΗΣ 1. Πόσα γραμμάρια είναι: ι) 0,2 kg, ii) 5,1 kg, iii) 150 mg, iv) 45 mg, v) 0,1 t, vi) 1,2 t; 2. Πόσα λίτρα είναι: i) 0,02 m 3, ii) 15 m 3, iii) 12cm

Διαβάστε περισσότερα

Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος

Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος Πυρηνοποίηση και διεπιφάνειες Διεπιφάνειες στερεού/ατμού & στερεού/τήγματος Η ανάπτυξη πυρήνων προάγεται σε διεπιφάνειες στερεού/ατμού, στερεού/υγρού ή μεταξύ διαφορετικών φάσεων σε στερεά. Οι διεπιφάνειες

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΚΥΚΚΟΥ ΠΑΦΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ : Α ΛΥΚΕΙΟΥ ΒΑΘΜΟΣ:.

ΛΥΚΕΙΟ ΚΥΚΚΟΥ ΠΑΦΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ : Α ΛΥΚΕΙΟΥ ΒΑΘΜΟΣ:. ΛΥΚΕΙΟ ΚΥΚΚΟΥ ΠΑΦΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ : ΧΗΜΕΙΑ ΤΑΞΗ : Α ΛΥΚΕΙΟΥ ΒΑΘΜΟΣ:. ΗΜΕΡΟΜΗΝΙΑ : 24.05.2011 ΧΡΟΝΟΣ : 10.30 12.30 ( Χημεία - Φυσιογνωστικά)

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Υλικών

Εργαστήριο Τεχνολογίας Υλικών Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 02 Μεταλλογραφική Παρατήρηση Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ ΘεόδωροςΛούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών Πάτρα 2011

Διαβάστε περισσότερα

Στοιχειομετρία. Το mol (ή και mole)

Στοιχειομετρία. Το mol (ή και mole) Στοιχειομετρία. Το mol (ή και mole) Μια παρουσίαση για την Α Λυκείου ΕΠΑΛ από τον Π.ΑΡΦΑΝΗ, 2011 Μια χημική αντίδραση Κάντε κλικ στην εικόνα Μια χημική αντίδραση Ωραίες οι αντιδράσεις ιδίως αν γίνεται

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2013

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2013 ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΗΜΕΡΟΜΗΝΙΑ: 21/05/2013 ΤΑΞΗ: Α ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ ΧΗΜΕΙΑΣ-ΒΙΟΛΟΓΙΑΣ: 2 ώρες ΩΡΑ: 10:45 12:45

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης ΤΕΤΥ ΤΕΤΥ 344: Μηχανικές και Μηχανικές Ιδιότητες Υλικών. και Σκληροµετρία

Πανεπιστήµιο Κρήτης ΤΕΤΥ ΤΕΤΥ 344: Μηχανικές και Μηχανικές Ιδιότητες Υλικών. και Σκληροµετρία Πανεπιστήµιο Κρήτης ΤΕΤΥ ΤΕΤΥ 344: Μηχανικές και Θερµικές Ιδιότητες Υλικών Μηχανικές Ιδιότητες Υλικών και Σκληροµετρία 1 Εφελκυσµός (Tensile Test) Ο εφελκυσµός αποτελεί ένα σηµαντικό διαγνωστικό εργαλείο

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα.

6. To στοιχείο νάτριο, 11Na, βρίσκεται στην 1η (IA) ομάδα και την 2η περίοδο του Περιοδικού Πίνακα. Όλα τα Σωστό-Λάθος της τράπεζας θεμάτων για τη Χημεία Α Λυκείου 1. Το ιόν του νατρίου, 11 Νa +, προκύπτει όταν το άτομο του Na προσλαμβάνει ένα ηλεκτρόνιο. 2. Σε 2 mol NH 3 περιέχεται ίσος αριθμός μορίων

Διαβάστε περισσότερα