PAU Setembro 2010 FÍSICA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU Setembro 2010 FÍSICA"

Transcript

1 PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución ás cuestións; terán que ser respostas razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións. OPCIÓN A C.1.- Cando un raio de luz monocromática pasa dende o aire á auga (n auga = 4/3), prodúcese un cambio: A) Na frecuencia. B) Na lonxitude de onda. C) Na enerxía. C..- Nunha fusión nuclear: A) Non se precisa enerxía de activación. B) Interveñen átomos pesados. C) Libérase enerxía debida ao defecto de masa. C.3.- Para construír un xerador elemental de corrente alterna cunha bobina e un imán (fai un esquema): A) A bobina rota con respecto ó campo magnético B. B) A sección da bobina desprázase paralelamente a B. C) A bobina está fixa e é atravesada por un campo B constante. C.4.- Comenta brevemente a influencia que teñen na medida de g cun péndulo: a amplitude de oscilación, o número de medidas, a masa do péndulo. P.1.- Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun raio de 10 4 km. Calcula: a) A velocidade orbital e o período. b) A enerxía mecánica e a potencial. c) Se por fricción se perde algo de enerxía, que lle ocorre ao raio e á velocidade? (Datos g 0 = 9,8 m s - ; R T = 6370 km) P..- Un obxecto de 100 g, unido a un resorte de k = 500 N m -1, realiza un movemento harmónico simple. A enerxía total é de 5 J. Calcula: a) A amplitude. b) A velocidade máxima e a frecuencia da oscilación. c) Indica cualitativamente nunha gráfica como varían a enerxía total, cinética e potencial coa elongación x. OPCIÓN B C.1.- Se a Terra se contrae reducindo o seu raio á metade e mantendo a masa: A) A órbita arredor do Sol será a metade. B) O período dun péndulo será a metade. C) O peso dos corpos será o dobre. C..- No fondo dunha piscina hai un foco de luz. Observando a superficie da auga veríase luz: A) En toda a piscina. B) Só no punto enriba do foco. C) Nun círculo de raio R arredor do punto enriba do foco. C.3.- Cando se compara a forza eléctrica entre dúas cargas, coa gravitatoria entre dúas masas (cargas e masas unitarias e a distancia unidade): A) Ambas son sempre atractivas. B) Son dunha orde de magnitude semellante. C) As dúas son conservativas. C.4.- Cun banco óptico de lonxitude l, obsérvase que a imaxe producida por unha lente converxente é sempre virtual. Explica que ocorre. P.1.- O carbono 14 ten un período de semidesintegración T = anos. Unha mostra ten unha actividade de desintegracións/minuto. Calcula: a) A masa inicial da mostra. b) A súa actividade dentro de anos. c) Xustifica por que se usa este isótopo para estimar a idade de xacementos arqueolóxicos. (Dato N A = 6, mol -1 ; masa atómica do 14 C = 14 g) P..- Unha onda harmónica propágase en dirección x con velocidade v = 10 m/s, amplitude A = 3 cm e frecuencia f = 50 s -1. Calcula: a) A ecuación da onda. b) A velocidade e aceleración máxima dun punto da traxectoria. c) Para un tempo fixo t, que puntos da onda están en fase co punto x = 10 m?

2 Soluciones OPCIÓN A C.1.- Cando un raio de luz monocromática pasa dende o aire á auga (n auga = 4/3), prodúcese un cambio: A) Na frecuencia. B) Na lonxitude de onda. C) Na enerxía. B? O índice de refracción «n» dun medio é o cociente entre a velocidade «v» da luz nese medio e a velocidade da luz «c» no baleiro. n auga = v auga c Do valor n auga = 4/3, dedúcese que a velocidade da luz na auga é v auga = 3/4 c < c A frecuencia dunha onda harmónica é característica e independente do medio polo que se propaga. É o número de oscilacións (no caso da luz como onda electromagnética) do campo eléctrico ou magnético na unidade de tempo e corresponde ao número do ondas que pasan por un punto na unidade de tempo. Ao pasar dun medio (aire) a outro (auga) no que a velocidade de propagación é menor, a frecuencia «f» mantense pero, da relación entre a velocidade de propagación «v» e a lonxitude de onda «λ», v = λ f a lonxitude de onda, «λ» diminúe proporcionalmente. A enerxía dunha luz monocromática é, segundo a ecuación de Planck, E f = h f proporcional á frecuencia (h é a constante de Planck) e non variaría ao cambiar de medio se este non absorbese a luz. A auga vai absorbendo a enerxía da luz, polo que produciríase unha perda da enerxía, que ao longo dunha certa distancia faría que a luz deixase de propagarse pola auga. C..- Nunha fusión nuclear: A) Non se precisa enerxía de activación. B) Interveñen átomos pesados. C) Libérase enerxía debida ao defecto de masa. C O proceso de fusión nuclear consiste na reacción entre núcleos lixeiros para producir outros máis pesados. É o proceso que proporciona a enerxía as estrelas e que se produce na bomba de hidróxeno. Unha reacción de fusión sería: 3 H 1 H He n 1 a que ocorre entre os isótopos tritio e deuterio para producir helio e un neutrón. As reaccións nucleares producen unha gran cantidade de enerxía que procede da transformación do defecto de masa «Δm» en enerxía «E», segundo a ecuación de Einstein. 4 E = Δm c na que «c» é a velocidade da luz. A suma das masas do helio-4 e do neutrón é inferior á suma das masas do tritio 3 H e do deuterio H. A enerxía de activación é un concepto da cinética química que mide a enerxía necesaria para iniciar un proceso, como a que achega a chama dun misto para iniciar a combustión do papel. As reaccións nucleares de fusión necesitan unha grande enerxía para achegar os núcleos a distancias moi curtas vencendo a repulsión 0 1

3 eléctrica entre eles. A temperatura que necesitaría un gas de átomos de isótopos de hidróxeno para que os choques entre eles fosen eficaces e os núcleos producisen helio é da orde do millón de graos. O proceso ocorre no interior das estrelas onde a enerxía gravitatoria produce enormes temperaturas. Nas probas nucleares da bomba H de hidróxeno, empregábase unha bomba atómica de fisión como detonante. Na actualidade os experimentos para producir enerxía nuclear de fusión empregan láseres de alta enerxía que comuniquen a átomos individuais a enerxía suficiente para superar a barreira de repulsión eléctrica, e aínda que se teñen obtido resultados positivos, non se ten deseñado un sistema rendible de producir enerxía a grande escala. C.3.- Para construír un xerador elemental de corrente alterna cunha bobina e un imán (fai un esquema): A) A bobina rota con respecto ó campo magnético B. B) A sección da bobina desprázase paralelamente a B. C) A bobina está fixa e é atravesada por un campo B constante. A Prodúcese unha corrente inducida, segundo a Lei de Faraday-Lenz, cando hai una variación de fluxo magnético co tempo. ε= dφ dt O fluxo magnético é o produto escalar do vector B campo magnético polo vector S perpendicular á sección da bobina. Se a bobina rota cunha velocidade angular constante Φ = B S = B S cos φ ω= dϕ dt respecto dun campo magnético B, de xeito que o ángulo φ varíe co tempo, a derivada do fluxo respecto do tempo é: ε= dφ = d(b S cosϕ ) e prodúcese unha f.e.m. variable co tempo (sinusoidal) = B S d cosϕ =B S ω senϕ =B S ω sen(ϕ 0 +ω t ) B C.4.- Comenta brevemente a influencia que teñen na medida de g cun péndulo: a amplitude de oscilación, o número de medidas, a masa do péndulo. O péndulo describe un movemento oscilatorio circular arredor da posición de equilibrio. Cando o ángulo é moi pequeno e sexa aplicable a aproximación sen φ = φ, o movemento será harmónico simple cun período T = l g no que l é a lonxitude do péndulo. No laboratorio mídese a lonxitude dun péndulo e faise oscilar cunha amplitude pequena. Mídese o tempo de dez oscilacións, calcúlase o período e del, o valor da aceleración da gravidade despexada da ecuación anterior: g= 4 π l T Nesa ecuación pode verse que o valor de g non depende nin da amplitude da oscilación nin da masa do péndulo. Pero se a amplitude das oscilacións non é pequena, o movemento xa non é harmónico simple e a ecuación anterior deixa de ser válida. En canto ao número de medidas, canto maior sexa, menor será o erro do valor medio e máis exacto o resulta-

4 do. P.1.- Un satélite artificial de 500 kg describe unha órbita circular arredor da Terra cun radio de 10 4 km. Calcula a) A velocidade orbital e o período. b) A enerxía mecánica e a potencial. c) Se por fricción se perde algo de enerxía, que lle ocorre ao radio e á velocidade? Datos: g 0 = 9,8 m s - ; R T = km Rta.: a) v = 4,5 km/s; T = 7,8 h; b) E = -5, J; E P = -9, J Datos Cifras significativas: 3 Masa do satélite m = 500 kg Radio da órbita =, km =, m Aceleración da gravidade na superficie da Terra g 0 = 9,80 m/s Radio da Terra R T = km = 6, m Incógnitas Valor da velocidade do satélite na súa órbita arredor da Terra v Período orbital do satélite T Enerxía mecánica do satélite en órbita E Enerxía potencial do satélite en órbita E p Outros símbolos Masa da Terra M T Constante da gravitación universal G Ecuacións Lei de Newton da gravitación universal F (aplicada á forza que exerce a Terra esférica sobre o satélite puntual) G =G M m T Aceleración normal (nun movemento circular de radio r) a N = v r ª lei de Newton da Dinámica F = m a Velocidade nun movemento circular uniforme de radio r (M.C.U.) v= π r T Enerxía cinética E c = ½ m v Enerxía potencial gravitatoria (referida ao infinito) Enerxía mecánica E p = G M T m E = E c + E p a) Como a única forza sobre do satélite a ter en conta é a forza gravitatoria que exerce a Terra, F = F G m a = F G O satélite describe unha traxectoria aproximadamente circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a N, m v =G M m T Como non se teñen os datos da constante da gravitación universal nin da masa da Terra, haberá que ter en conta que na superficie da Terra, o peso dun corpo mg 0 é igual á forza gravitatoria v= G M T = g 0 R T m g 0 =G M T m R T G M T = g 0 R T = 9,80 [m/s ] (6, [ m]) =4, m/s=4,46 km /s, [m]

5 Análise: Espérase que un obxecto que se mova arredor da Terra teña unha velocidade de algúns km/s. O resultado de 4,46 km/s está dentro da orde de magnitude. O período orbital do satélite é o do movemento circular uniforme de velocidade 4, m/s. Despexando o período, T, da expresión da velocidade do M.C.U. T = π = π, [m] v 4, [ m/s] =,8 104 s=7 h 50 min b) A enerxía mecánica é a suma das enerxías cinética e potencial. A enerxía potencial vén dada por: e a enerxía cinética E p = G M T m = g 0 R T polo que a enerxía mecánica valerá m = 9,80 [m/s ] (6, [m]) 500 [ kg] = 9, J, [m] E c = ½ m v = [500 [kg] (4, [m/s]) ] / = 4, J E = E c + E p = 4, [J] + (-9, [J]) = -4, J Análise: Pode comprobarse que a enerxía potencial vale o dobre que a enerxía cinética, pero é negativa por ser un sistema ligado. A enerxía mecánica vale o mesmo que a enerxía cinética, pero é negativa. c) A enerxía mecánica pódese expresar en función do radio da órbita. Xa vimos antes que m v =G M m T Despexando e substituíndo m v órb na expresión da enerxía mecánica, quedaría E=E c +E p = 1 m v órb G M m T = 1 G M T m G M m T = 1 G M m T Se diminúe a enerxía mecánica, (é máis negativa), o radio da órbita tamén se fai máis pequeno polo que o satélite achégase á superficie da Terra. A velocidade, pola contra, aumentará, pois a súa relación co radio pode obterse da ecuación anterior: m v =G M m T v= G M T e canto máis pequeno é o radio da órbita máis grande é a súa velocidade. Análise: É o mesmo que lle ocorre a calquera corpo que se move cerca da superficie da Terra. Ao perder enerxía perde altura, e cae cara ao chan, gañando velocidade. P..- Un obxecto de 100 g, unido a un resorte de k = 500 N m -1, realiza un movemento harmónico simple. A enerxía total é de 5 J. Calcula: a) A amplitude. b) A velocidade máxima e a frecuencia da oscilación. c) Indica cualitativamente nunha gráfica como varían a enerxía total, cinética e potencial coa elongación x. Rta.: a) A = 0,14 m; b) v max = 9,9 m/s; f = 11 Hz Datos Cifras significativas: 3 Masa que realiza o M.H.S. m = 0,100 kg Constante elástica do resorte k = 500 N m -1

6 Datos Cifras significativas: 3 Enerxía mecánica E = 5,00 J Incógnitas Amplitude (elongación máxima) A Velocidade máxima v máx Frecuencia de oscilación f Outros símbolos Valor da velocidade v Pulsación (frecuencia angular) ω = π f Fase inicial φ 0 Elongación x Forza recuperadora elástica F Ecuacións De movemento no M.H.S. x = A sen(ω t + φ 0 ) Relación entre a aceleración a e a elongación x a = -ω x Lei de Hooke: forza recuperadora elástica F = -k x ª lei de Newton F = m a Enerxía potencial elástica E p = ½ k x Enerxía cinética E c = ½ m v Enerxía mecánica E = (E c + E p ) = ½ k A a) A enerxía dun movemento harmónico simple é a suma das enerxías cinética e potencial, e consérvase. b) A ecuación de movemento é: E = E c + E p = ½ m v + ½ k x = ½ m v máx = ½ k A ½ k A = 5,00 J 500 [N m -1 ] / A = 5,00 [J] 5,00 [J ] A= 500 [N m 1 ] =0,141 m x = A sen(ω t + φ 0 ) na que ω é a frecuencia angular, relacionada coa frecuencia f de oscilación por: Como só actúa a forza elástica: ω = π f -k x = m a = m (-ω x) k = m ω ω = k m = 500 [N m 1 ] =70,7 rad / s 0,100 [kg] f = ω π 70,7 [rad / s] = =11,3 s 1 π [ rad] A velocidade do oscilador nun instante t é a derivada da posición con respecto ao tempo: que ten o valor máximo cando cos(ωt + φ 0 ) = 1 v= d x = d{asen (ω t +ϕ )} 0 =Aω cos(ω t +ϕ 0 ) v máx = A ω = 0,141 [m] 70,7 [rad/s] = 10,0 m/s (Tomando só unha cifra significativa como nos datos «7 J», os resultado serían: A = 0,1 m; f = Hz e v = m/s) c) A enerxía potencial en cada punto de elongación x é:

7 E p = ½ k x Ao ser unha forza conservativa, a enerxía mecánica valerá o mesmo para calquera elongación: é constante. E = E c + E p = ½ m v + ½ k x Para a elongación máxima ou amplitude: E = E c + E p = ½ m 0 + ½ k A = ½ k A E = ½ k A A enerxía cinética é a diferencia entre a enerxía mecánica e a potencial E c = E E p = ½ k A ½ k x = ½ k (A x ) Como se ve, as representacións gráficas das enerxías cinética e potencial son parábolas (a potencial co vértice na orixe) e a da enerxía mecánica é una recta paralela ao eixe das X. E Enerxía dun oscilador harmónico x OPCIÓN B C.1.- Se a Terra se contrae reducindo o seu radio á metade e mantendo a masa: A) A órbita arredor do Sol será a metade. B) O período dun péndulo será a metade. C) O peso dos corpos será o dobre. B O período T dun péndulo de lonxitude L nun lugar onde a gravidade sexa g vén dado pola ecuación: T = L g A aceleración da gravidade é a forza sobre a unidade de masa: g= F G M m T G m = R T m =G M T R T Se o radio da Terra fose a metade, mantendo a masa, a aceleración g da gravidade na súa superficie sería catro veces maior. e o período T' dun péndulo nese caso sería a metade. g '=G M T R T / =4G M T R T =4 g T ' = L g ' = L 4 g = L g =T As outras opcións: C: Como a gravidade sería catro veces maior, o peso dos corpos sería catro (e non dous) veces maior. A: O período de revolución da Terra que segue unha traxectoria aproximadamente circular ao redor do Sol non depende do radio da Terra, xa que se pode considerar que se trata dunha masa puntual.

8 C..- No fondo dunha piscina hai un foco de luz. Observando a superficie da auga veríase luz: A) En toda a piscina. B) Só no punto enriba do foco. C) Nun círculo de raio R arredor do punto enriba do foco. C A superficie circular iluminada débese a que os raios que veñen desde a auga e inciden na superficie de separación con ángulo superior ao ángulo límite non saen ao exterior, porque sofren reflexión total. O ángulo límite é o ángulo de incidencia para o que o raio refractado sae cun ángulo de refracción de 90º. Pola ª lei de Snell h R λ 90º n auga sen i = n aire sen r n auga sen λ = 1 sen 90º λ = arc sen (1/n auga ) Do triángulo rectángulo do debuxo dedúcese que: R = h tg λ C.3.- Cando se compara a forza eléctrica entre dúas cargas, coa gravitatoria entre dúas masas (cargas e masas unitarias e a distancia unidade): A) Ambas son sempre atractivas. B) Son dunha orde de magnitude semellante. C) As dúas son conservativas. C Unha forza é conservativa cando o traballo que realiza cando se despraza una magnitude sensible (masa para as forzas gravitatorias, carga para as forzas eléctricas) entre dous puntos é independente do camiño percorrido, e só depende das posicións inicial e final. Neses casos pódese definir unha magnitude chamada enerxía potencial que depende, ademais da magnitude sensible, só das posicións inicial e final. Daquela, o traballo da forza é a variación (cambiada de signo) da enerxía potencial. Este é o caso das forzas gravitatoria e eléctrica. Forza Enerxía potencial W A B = E p A E p B gravitatoria eléctrica F G = G M m u r r F E =K Q q r u r E p G = G M m r E p E =K Q q r As outras opcións: A: A forza gravitatoria é sempre atractiva, pero a forza eléctrica é atractiva para cargas de distinto signo pero repulsiva para cargas do mesmo signo. B: Dado o valor tan diferente das constantes (K = N m C - e G = 6, N m kg - ), a forza entre cargas ou masas unitarias separadas por distancia unidade, será 10 0 maior no caso da forza eléctrica, aínda que esta comparación non teña moito sentido. C.4.- Cun banco óptico de lonxitude l, obsérvase que a imaxe producida por unha lente converxente é sempre virtual. Explica que ocorre. A distancia focal da lente é maior que a metade da lonxitude do banco óptico.

9 f > l / As imaxes virtuais non se poden recoller nunha pantalla. Na práctica de laboratorio con lentes converxentes se sitúa un obxecto (unha placa cun símbolo «1» na traxectoria dos raios paralelos) a unha certa distancia dunha lente converxente, e cunha pantalla búscase a posición de imaxe nítida. Non se pode, polo tanto, obter unha imaxe virtual. Teoricamente a posición do obxecto para que unha lente converxente dea unha imaxe virtual e dereita, pode calcularse das ecuacións das lentes A L = y' y = s' s xa que si a imaxe é dereita, y' > 0, e si é virtual, s' < 0. 1 s' 1 s = 1 f ' I F O F' 1 s = 1 s' 1 f ' = f ' s' s f ' s= s' f ' f ' s ' Como f ' > 0 e s' < 0 f ' s' > s' s = f ' s' f ' s' f ' o obxecto debe atoparse dentro da distancia focal. P.1. O carbono 14 ten un período de semidesintegración T = anos. Unha mostra ten unha actividade de desintegracións/minuto. Calcula: a) A masa inicial da mostra. b) A súa actividade dentro de anos. c) Xustifica por que se usa este isótopo para estimar a idade de xacementos arqueolóxicos. Dato: N A = 6, mol- 1 ; masa atómica do 14 C = 14 g Rta.: a) m = 6, g; b) A' = 3, min -1 Datos Cifras significativas: 3 Período de semidesintegración T 1/ = anos = 1, s Actividade da mostra A = 6, des/min = 1, Bq Tempo para calcular a actividade t = anos = 1, s Masa atómica do 14 C m = 14,0 g/mol Número de Avogadro N A = 6, mol -1 Incógnitas Masa inicial da mostra m 0 Actividade radioactiva aos 5000 anos A Outros símbolos Constante de desintegración radioactiva λ Ecuacións Lei da desintegración radioactiva N = N 0 e λ t λ = ln (N 0 / N) / t Cando t = T 1/, N = N 0 / T 1/ = ln / λ Actividade radioactiva A = dn / dt = λ N a) Da expresión da actividade radioactiva: A = λ N, se pode calcular o número de átomos cando calculemos a

10 constante λ de desintegración radioactiva. λ = ln 0,693 = T 1 / 1, [s] =3, s 1 =0, ano -1 N 0 = A 0 λ = 1, [Bq ] 3, [s 1 ] =, átomos m 0 = N 0 M =, [átomos] N A 6, [átomos/ mol] 14 [g/ mol]=6, g=60,6 μg b) A actividade aos 5000 anos será: A = A 0 e λ t = 1, [Bq] e 0, [1/ano] 5000 [ano] = 5, Bq = 3, des/min c) Polo valor do período de semidesintegración, o carbono-14 emprégase para datar restos (que necesariamente deben conter carbono, normalmente restos orgánicos como madeira, osos, etc.) relativamente recentes, de menos de anos, (tempo no que a actividade radioactiva orixinal haberá diminuído ata a milésima parte). O método do carbono -14 baséase no feito de que a proporción de carbono-14 nas plantas vivas mantense constante ao longo da súa vida, xa que o carbono desintegrado compénsase polo asimilado na fotosíntese, e que o carbono-14 atmosférico restitúese pola radiación cósmica que converte o nitróxeno atmosférico en carbono-14. Cando a planta morre, o carbono que se desintegra deixa de se repor e, coa ecuación anterior, podemos determinar o tempo transcorrido medindo a súa actividade radioactiva e comparándoa coa que ten una planta viva. P.. Unha onda harmónica propágase en dirección x con velocidade v = 10 m/s, amplitude A = 3 cm e frecuencia f = 50 s -1. Calcula: a) A ecuación da onda. b) A velocidade e aceleración máxima dun punto da traxectoria. c) Para un tempo fixo t, que puntos da onda están en fase co punto x = 10 m? Rta.: a) y = 0,030 sen(100 π t 10 π x) [m]; b) v máx = 9,4 m/s; a máx =, m/s ; c) x = ,0 n Datos Cifras significativas: Velocidade de propagación v p = 10 m/s Amplitude A = 3,0 cm = 0,030 m Frecuencia f = 50 s -1 Posición do punto x = 10 m Incógnitas Ecuación da onda ω, k Velocidade máxima v máx Aceleración máxima a máx Puntos que están en fase co punto x = 10 m x' Outros símbolos Pulsación (frecuencia angular) ω Número de onda k Ecuacións Dunha onda harmónica unidimensional y = A sen(ω t k x) Relación entre a frecuencia f e a frecuencia angular ω ω = π f Relación entre a lonxitude de onda λ e o número de onda k k = π / λ Relación entre a lonxitude de onda λ, a frecuencia f e a velocidade de propagación v p v p = λ f a) Pulsación (frecuencia angular): ω = π f = π [rad] 50 [s -1 ] = 100 π rad/s = 314 rad/s Número de onda: k = π / λ = π f / v p = ω / v p = 100 π [rad/s] /10 [m/s] = 10 π rad/m Ecuación de onda: y = 0,030 sen(100 π t 10 π x) m

11 b) A velocidade dun punto é a derivada da posición con respecto ao tempo. v= d y {0,030 sen(100 π t 10 π x)} =d =3,0 π cos(100 πt 10 π x) m/ s A velocidade acadará o valor máximo cando o coseno da fase valga 1 v máx = 3,0 π = 9,4 m/s A aceleración dun punto é a derivada da velocidade con respecto ao tempo. a= d v d{3,0 π cos(100 π t 10 π x)} = = 300 π sen (100 π t 10 π x) m/ s O valor máximo da aceleración será cando o seno da fase valga 1: a máx = 300 π = 3, m/s c) Dous puntos atópanse en fase cando a diferenza de fase é múltiplo de π. Para un tempo t determinado: (100 π t 10 π x') (100 π t 10 π x) = π n 10 π (x' x) = π n x' x = 1/5 n [m] x' = ,0 n [m] Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo Marán, alfbar@bigfoot.com Algunhas ecuacións construíronse coas macros da extensión CLC09 de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López. Algúns cálculos fixéronse cunha folla de cálculo OpenOffice (ou LibreOffice) feita por Alfonso J. Barbadillo Marán.

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα

FISICA 2º BACH. CURSO 99-00

FISICA 2º BACH. CURSO 99-00 26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3 1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un recipiente de 2 dm 3 contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

CALCULO DA CONSTANTE ELASTICA DUN RESORTE

CALCULO DA CONSTANTE ELASTICA DUN RESORTE 11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,

Διαβάστε περισσότερα

Química 2º Bacharelato Equilibrio químico 11/02/08

Química 2º Bacharelato Equilibrio químico 11/02/08 Química º Bacharelato Equilibrio químico 11/0/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: PROBLEMAS 1. Nun matraz de,00 litros introdúcense 0,0 10-3 mol de pentacloruro de fósforo sólido. Péchase, faise

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Διαβάστε περισσότερα

Interferencia por división da fronte

Interferencia por división da fronte Tema 9 Interferencia por división da fronte No tema anterior vimos que para lograr interferencia debemos superpoñer luz procedente dunha única fonte de luz pero que recorreu camiños diferentes. Unha forma

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα