# with N 4. We are concerned

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 Houston Journal of Mathematics c 6 University of Houston Volume 3, No. 4, 6 THE EFFECT OF THE OMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS PIGONG HAN Communicated by Giles Auchmuty Abstract. In this paper, we consider the irichlet problem for an elliptic system of two equations involving the critical Sobolev exponents. By means of the variational method, we study the effect of the domain topology on the number of positive solutions, prove the existence of at least cat () positive solutions. 1. Introduction Let be a smooth bounded domain in R N with the problem with N 4. We are concerned (1.1) u = v = α α + β uα 1 v β + λu in, β α + β uα v β 1 + µv in, u, v in, u = v = on, where λ >, µ > are parameters, α > 1, β > 1 satisfying α + β =, denotes the critical Sobolev exponent, that is, = N N. efinition 1. A pair of nonnegative functions (u, v) H 1 () H 1 () is said to be a weak solution of problem (1.1) if Mathematics Subject Classification. 35J6, 35J5, 35B33. Key words phrases. Elliptic system, Energy functional, (P.S.) c condition, Critical point, Critical Sobolev exponent. 141

2 14 P. HAN (1.) ( u ϕ 1 + v ϕ λuϕ 1 µvϕ )dx α α + β u α 1 v β ϕ 1 dx β u α v β 1 ϕ dx α + β = ϕ = (ϕ 1, ϕ ) H 1 () H 1 (). (1.3) The corresponding energy functional of problem (1.1) is defined by J λ,µ (u, v) = 1 α + β ( u + v λu µv )dx u α +v β +dx (u, v) H 1 () H 1 (), where u + = max{u, }. It is well known that the nontrivial solutions of problem (1.1) are equivalent to the nonzero critical points of J λ,µ in H 1 () H 1 (). Moreover, every weak solution of problem (1.1) is classical (see Remark 4 in [1]). In a recent paper, C. O. Alves et al [1] considered problem (1.1) generalized the results in [4] to the case of (1.1). There seems no progress on problem (1.1) since then. In this paper, we are interested in the effect of the domain topology on the number of positive solutions of problem (1.1). N N Let α = β =, λ = µ u = v, then problem (1.1) reduces to the scalar semilinear elliptic problem: u = u N+ N + λu in, (1.4) u in, u = on. O. Rey [9] studied the effect of the topology of the domain on the existence of solutions of problem (1.4) for N 5, proved that problem (1.4) has at least cat () distinct positive solutions for λ > small, where cat () denotes the Ljusternik-Schnirelman category of in itself ( see [11] for the definition). For N 4, M. Lazzo [8] obtained the same result. Relevant papers on this matter are [, 5, 6, 7, 11] the references therein. Set (1.5) S = inf u,v H 1 ()\{} ( u + v )dx ( u α v β dx ),

3 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 143 then (see [1]) (1.6) S = (( ) β ( ) α ) α β + S, β α where S is the best Sobolev constant defined by S = u dx ( u dx ), inf u H 1 ()\{} which is achieved if only if = R N by U(x) = N (N(N )) 4 (1 + x ) N In the present paper, we first establish the concentration-compactness principle for elliptic systems; then by the variational method the category theory, we prove that problem (1.1) has at least cat () positive solutions for λ, µ > small. Let λ 1 be the first eigenvalue of the operator with zero irichlet boundary conditions. We state our main result as the following: 4mm Theorem 1.1. If N 4, then there exists < λ < λ 1 such that for any λ, µ (, λ ), problem (1.1) has at least cat () positive solutions. Throughout this paper, we denote the norm of the Banach space X by X, the positive constants (possibly different) by C... Proof of the main result Before giving the proof of Theorem 1.1, we introduce some notations preliminary lemmas. Lemma.1. Let R N (possibly unbounded) u n u, v n v weakly in H 1 (); u n u, v n v a.e in. Then lim u n u α v n v β dx n (.1) = lim u n α v n β dx u α v β dx. n

4 144 P. HAN Proof. It is not difficult to see that u n α v n β dx (.) where = α +β = α u n u α v n v β dx u n tu α (u n tu)u v n β dxdt u n u α v n tv β (v n tv)vdxdt f n udxdt + β 1 g n vdxdt, f n = u n tu α (u n tu) v n β, g n = u n u α v n tv β (v n tv), t [, 1], since moreover, f n (1 t) α 1 u α u v β g n a. e on (, 1), ( C, ( C, 1 1 f n 1 1 g n we conclude that 1 dxdt ) α 1 ( u n tu 1 dxdt 1 dxdt f n (1 t) α 1 u α u v β Hence ) α ( u n u 1 dxdt 1 1 ) β v n 1 dxdt ) β 1 v n tv 1 dxdt g n weakly in L 1 ( (, 1)). (.3) α α 1 1 f n udxdt (1 t) α 1 u α v β dxdt = u α v β dx,

5 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 145 (.4) β 1 g n vdxdt. Inserting (.3) (.4) into (.), we obtain (.1). To proceed, we need to generalize the concentration-compactness principle (see [3, 11]) to the case of systems. Lemma.. Let {(u n, v n )} 1, (R N ) 1, (R N ) be a sequence such that u n u, v n v weakly in 1, (R N ); u n u, v n v a.e on R N, (u n u) + (v n v) µ weakly in the sense of measures, define (.5) (.6) Then u n u α v n v β ν weakly in the sense of measures, µ = lim lim sup ( u n + v n )dx, R x R ν = lim R lim sup u n α v n β dx. x R (.7) (.8) = lim sup ( u n + v n )dx R N R N ( u + v )dx + µ + µ, lim sup u n α v n β dx = R N u α v β dx + ν + ν, R N (.9) ν S 1 µ, (.1) ν Moreover, if u v ν single point. S 1 µ. = S 1 µ, then µ ν concentrate at a

6 146 P. HAN Proof. Set w 1n = u n u, w n = v n v, then w 1n, w n weakly in 1, (R N ); w 1n, w n a.e on R N, w 1n + w n µ weakly in the sense of measures, w 1n α w n β ν weakly in the sense of measures. For any nonnegative function h C (R N ), by Lemma.1, we have lim h w 1n α w n β dx = lim h u n α v n β dx h u α v β dx. R N R N R N Hence we obtain (.11) u n + v n u + v + µ weakly in the sense of measures (.1) u n α v n β u α v β + ν weakly in the sense of measures. (a) (.13) For any h C (R N ), we infer that ( S 1 hw 1n α hw n β dx R N ) R N ( (hw 1n ) + (hw n ) )dx. Since w 1n w n strongly in L loc, we easily obtain from (.13) that (.14) x >R ( R N h d ν ) S 1 h d µ R N which implies (.9). (b) Since lim sup w 1n dx = lim sup u n dx u dx x >R x >R lim sup x >R w n dx = lim sup v n dx v dx, x >R x >R

7 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 147 we deduce that (.15) x >R lim R lim sup ( w 1n + w n )dx = µ. x >R By Lemma.1, we have lim sup w 1n α w n β dx = lim sup So (.16) lim R x >R lim sup w 1n α w n β dx = ν. x >R u n α v n β dx u α v β dx. x >R Let R >, ψ R C (R N ) be such that ψ R (x) = for x < R; ψ R (x) = 1 for x > R + 1 ψ R (x) 1 on R N. Then we have ( R N ψ R w 1n α ψ R w n β dx ) S 1 ( (ψ R w 1n ) + (ψ R w n ) )dx. R N Since w 1n w n strongly in L loc, we infer that (.17) Observe that ( lim sup S 1 lim sup ψ R w 1n α ψ R w n β dx R N ) R N ( w 1n + w n )ψ Rdx. (.18) x >R+1 w in dx w in ψrdx R N w in dx, i = 1, x >R (.19) w 1n α w n β dx x >R+1 Thus, from (.15)-(.19), we get (.1). ψ R w 1n α ψ R w n β dx R N w 1n α w n β dx. x >R

8 148 P. HAN (c) From (.11) (.1), we deduce that lim sup ( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + lim sup (1 ψ R )( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + (1 ψ R )( u + v )dx + (1 ψ R )d µ. R N R N By the dominated convergence theorem, we obtain that lim sup ( u n + v n )dx = R N ( u + v )dx + µ + µ, R N lim R which is (.7). Similarly we get (.8). (d) Let u v ν we derive that for any h C (R N ) h d ν S R N = S 1 µ µ. By Hölder inequality (.14), N We deduce that ν = S µ N µ. Hence, from (.14) we obtain for any h C (R N ) µ N ( so for each open set Q R N, R N h d µ ) ( µ(r N )) N ( µ(q)) R N h d µ. R N h d µ, µ(q), which is equivalent to µ(r N ) µ(q). This proves that µ is concentrated at a single point. Suppose that (A) X is a Banach space, I C 1 (X, R), I d = {z X I(z) d}, ψ C (X, R), V = {z X ψ(z) = 1}, for every z V, ψ (z).

9 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 149 We denote the tangent space of V at z by T z V = {y X ψ (z), y = } the norm of the derivative of I V at z V by (I V ) (z) := sup I (z), y. y T z V, y =1 The functional I V is said to satisfy the (P.S.) c condition if any sequence {z n } V such that I V (z n ) c, (I V ) (z n ) contains a convergent subsequence. In the sequel, we take X = H 1 () H 1 (), I V (u, v) = I(u, v) = (u + ) α (v + ) β dx, ψ(u, v) = ( u + v λu µv )dx λ, µ (, λ 1 ), V = { (u, v) H 1 () H 1 () ψ(u, v) = 1 }. Obviously, the assumption (A) is satisfied for our choices. Lemma.3. I satisfies (P.S.) c condition for any c (S N, ) on V. Proof. Let {(u n, v n )} V satisfy I(u n, v n ) c, I (u n, v n ). Then, there exists a sequence {t n } R such that as n N α(u n ) α 1 + (v n ) β + + β(u n ) α +(v n ) β 1 + t n ( un v n λu n µv n ) strongly in H 1 () H 1 (). So (α + β)i(u n, v n ) t n, then t n ()c >.

10 15 P. HAN efine w 1n = ( ) N 4 4t n u n, w n = ( ) N 4 4t n v n, we obtain 1 ( w 1n + w n λw1n µw n)dx (w 1n ) α α + β +(w n ) β +dx = 1 ( ) N α + β ( u n + v n λu n µv 4t n)dx n ( ) N α + β (u n ) α α + β 4t +(v n ) β +dx n 1 N ( 1 c ) N w 1n w n λw 1n µw n α α + β (w 1n) α 1 + (w n ) β + β α + β (w 1n) α +(w n ) β 1 + strongly in H 1 () H 1 (). So {(w 1n, w n )} X is a (P.S.) c sequence of J λ,µ, which is defined in (1.3). It follows easily that (w 1n, w n ) X C. Thus, up to a subsequence, we may assume that (w 1n, w n ) (w 1, w ) weakly in H 1 () H 1 (); (w 1n, w n ) (w 1, w ) a.e on. Then (w 1, w ) is a weak solution of problem (1.1) (.) = J λ,µ (w 1, w ) ( 1 1 ) α + β ( w1 + w λw1 µw ) dx. Setting w 1n = w 1n w 1, w n = w n w, we have w in dx = w in dx w i dx + o(1), i = 1,.

11 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 151 By Lemma.1, we also have ( w 1n ) α +( w n ) β +dx = (w 1n ) α +(w n ) β +dx (w 1 ) α +(w ) β +dx + o(1). Hence ( w 1n + w n )dx ( w 1n ) α +( w n ) β +dx as n. We may assume that as n ( w 1n + w n )dx a, ( w 1n ) α +( w n ) β +dx a, where a is a nonnegative number. If a =, the proof is complete. Assume a >, since ( ) S ( w 1n ) α +( w n ) β +dx ( w 1n + w n )dx, we get S ( a (.1) ) a, then a ( S On the other h, by (.) we have ) N. a a α + β = 1 α + β ( w 1n + w n )dx = J λ,µ ( w 1n, w n ) + o(1) ( w 1n ) α +( w n ) β +dx + o(1) = J λ,µ (w 1n, w n ) J λ,µ (w 1, w ) + o(1) J λ,µ (w 1n, w n ) + o(1) which contradicts (.1). = 1 ( 1 N c < N ( S ) N ) N, The following lemma follows from [1].

12 15 P. HAN Lemma.4. Let N 4, λ, µ (, λ 1 ). Then m(λ, µ, ) := sup (u,v) V Moreover, m(λ, µ, ) is achieved on V. efine H(u, v) = then we have the following I(u, v) > S N N. x ( u + v λu µv ) dx (u, v) V, Lemma.5. If {(u n, v n )} V satisfies lim (u n) α +(v n ) β +dx = S N N, then (.) lim dist(h(u n, v n ), ) =. Proof. Since {(u n, v n )} V, it is easy to verify that (u n, v n ) is bounded in H 1 () H 1 (). Thus, up to a subsequence, we may assume that (u n ) + u (v n ) + v weakly in H 1 (), ((u n ) + u) + ((v n ) + v) µ weakly in the sense of measures, (u n ) + u α (v n ) + v β ν weakly in the sense of measures. Since is bounded, Lemma. implies (.3) (.4) (.5) 1 = ( u + v )dx + µ, S N N = S ν u α v β dx + ν, µ.

13 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 153 If ( u + v )dx µ =, we deduce that ( ) 1 = ( u + v )dx + µ > ( S = S = 1, ( u + v )dx N S N ) u α v β dx + S ν + µ which is a contradiction. Thus, ( u + v )dx = or µ =. If µ =, from (.3)- (.5), we get ( u + v )dx = 1 u α v β dx = S N N. Then R ( u + v )dx ( R u α v dx) β = S, which means that S is achieved by (u, v). It is impossible since S cannot be attained on any bounded domain. Hence, (.6) ( u + v )dx = µ = 1. Then, u v on, so lim n we easily have ν single point x. Thus H(u n, v n ) = ( λu n + µv n) dx =. From (.3), (.4), = 1 = S 1 µ. By Lemma., µ is concentrated at a x( u n + v n λu n µvn)dx xd µ = x. Without loss of generality, we may assume choose r > small enough such that B r (), such that + r = {x R N dist(x, ) r} r = {x dist(x, ) r}

14 154 P. HAN are homotopically equivalent to. efine m(λ, µ, r) := m(λ, µ, B r ()) > S N N, recall I d = {z H 1 () H 1 () I(z) d}. Then we have Lemma.6. If N 4. Then there exists < λ < λ 1 such that for any λ, µ (, λ ), (.7) cat Im(λ,µ,r) (I m(λ,µ,r) ) cat (). Proof. We first show that there exists < λ < λ 1 such that for any λ, µ (, λ ), if (u, v) I m(λ,µ,r), then H(u, v) + r. In fact, set λ (, λ 1 ), λ, µ (, λ ), from the proof s process of (.), we know that there is a positive number ɛ (independent of λ, µ) such that (u, v) V, N u α +v+dx β S N + ɛ = H(u, v) + r. Choosing λ = { ( )} λ, λ 1 1 (1 + ɛs ) (, λ1 ), for any λ, µ (, λ ) (u, v) I m(λ,µ,r), we obtain u α +v β +dx S ( ( S λ1 S ( u + v )dx ) ) ( v µv )dx ( u λu )dx + λ 1 λ 1 λ λ 1 µ ( λ 1 ( u + v λu µv )dx λ 1 max{λ, µ} ( ) < S λ1 λ 1 λ = S N N + ɛ. So that H(u, v) + r. efine γ : r I m(λ,µ,r) by (u λ,µ ( x y ), v λ,µ ( x y )) x B r (y), γ(y)(x) = x \B r (y), )

15 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 155 where (u λ,µ ( x ), v λ,µ ( x )) is a positive function, radially symmetric about the origin, such that (see [1]) B r () B r () u α λ,µv β λ,µ dx = m(λ, µ, r) ( u λ,µ + v λ,µ λu λ,µ µv λ,µ)dx = 1. It is not difficult to check that H γ = id. Let n = cat Im(λ,µ,r) (I m(λ,µ,r) ), then there exist n closed, contractible sets {A i } (1 i n) in I m(λ,µ,r) n corresponding mappings h i C([, 1] A i, I m(λ,µ,r) ) (1 i n) such that I m(λ,µ,r) = n A i for any (u, v), (ū, v) A i i=1 h i (, (u, v)) = (u, v), h i (1, (u, v)) = h i (1, (ū, v)). Set B i = γ 1 (A i ) (1 i n). Then the sets B i are closed r = n B i. Let g i (t, x) = H(h i (t, γ(x))), then g i C([, 1] r, + r ) for any x, y r i=1 g i (, x) = H(h i (, γ(x))) = H(γ(x)) = x g i (1, x) = H(h i (1, γ(x))) = H(h i (1, γ(y))) = g i (1, y). So B i (1 i n) is contractible in r. Therefore, cat () = cat + r ( r ) n. Proof of Theorem 1.1. It is not difficult to check that m(λ, µ, r) < m(λ, µ, ). By Lemmas.3.4, I satisfies the (P.S.) c condition for any c [m(λ, µ, r), m(λ, µ, )]. Let J(u) = I(u) J d = {z H 1 () H 1 () J(z) d}. Then J is bounded below on V. Since (J V ) = (I V ) for every u V, it follows that J V satisfies the (P.S.) c condition for any c m(λ, µ, r), u is a critical point of I V if only if it is a critical point of J V. Hence, Lemma.6 Theorem 5. in [11] yields that I m(λ,µ,r) = J m(λ,µ,r) contains at least cat () critical points of I V, denoted by (u i, v i ) (1 i cat ()) satisfying

16 156 P. HAN u i = αt i α + β (u i) α 1 + (v i ) β + + λu i in, v i = βt i α + β (u i) α +(v i ) β µv i in, u i = v i = on, 1 where t i = I(u i,v i ) > is a Lagrange multiplier. Since λ, µ (, λ ), by the strong maximum principle, (u i, v i ) > in, 1 i cat (). Let ũ i = t N 4 i u i, ṽ i = t N 4 i v i. Then (ũ i, ṽ i ) (1 i cat ()) is a positive solution of problem (1.1). Acknowledgements The author would like to thank the anonymous referee for carefully reading this paper suggesting many useful comments. References [1] C. O. Alves,. C. de Morais Filho M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal, TMA., 4 (), [] V. Benci G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), [3] G. Bianchi, J. Chabrowski A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal, TMA., 5 (1995), [4] H. Brezis L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), [5]. Cao J. Chabrowski, On the number of positive solutions for nonhomogeneous semilinear elliptic problem, Advs. iff. Equats., 1 (1996), [6] A. Castro M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity, 16 (3), [7]. Cao, G. Li X. Zhong, A note on the number of positive solutions of some nonlinear elliptic problems, Nonlinear Anal, TMA., 7 (1996), [8] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l exposant critique de Sobolev, C. R. Acad. Sci. Paris 314 (199), [9] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal, TMA., 13 (1989), [1] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. ifferential Equations, 4 (1981), [11] M. Willem, Minimax Theorems, PNLE 4, Birkhäuser, Boston-Basel-Berlin 1996.

17 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 157 Received March 3, 4 Revised version received ecember 8, 4 Institute of Applied Mathematics, Academy of Mathematics Systems Science, Chinese Academy of Sciences, Beijing 18, P. R. China address:

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### arxiv: v3 [math.ca] 4 Jul 2013

POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Two generalisations of the binomial theorem

39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

### AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract

AN APPLICATION OF THE SUBORDINATION CHAINS Georgia Irina Oros Abstract The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

### ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### MATRIX INVERSE EIGENVALUE PROBLEM

English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Operator theory in finite-dimensional vector spaces av Kharema Ebshesh 2008 - No 12 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

Διαβάστε περισσότερα

### Study of limit cycles for some non-smooth Liénard systems

3 011 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 011 Article ID: 1000-5641(011)03-0044-10 Study of limit cycles for some non-smooth Liénard systems YANG Lu, LIU Xia, XING

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### Well-posedness for compressible Euler with physical vacuum singularity

Well-posedness for compressible Euler with physical vacuum singularity Juhi Jang and Nader Masmoudi May 28, 28 Abstract An important problem in the theory of compressible gas flows is to understand the

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

### Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

### arxiv: v2 [math.ap] 7 Jun 2016

VALIDITY AND REGULARIZATION OF CLASSICAL HALF-SPACE EQUATIONS QIN LI, JIANFENG LU, AND WEIRAN SUN arxiv:66.3v2 [math.ap] 7 Jun 26 Abstract. Recent result [] has shown that over the 2D unit disk, the classical

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let

4. Ordinals July 26, 2011 In this chapter we introduce the ordinals, prove a general recursion theorem, and develop some elementary ordinal arithmetic. A set A is transitive iff x A y x(y A); in other

Διαβάστε περισσότερα

### A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

### ON INTUITIONISTIC FUZZY SUBSPACES

Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 433 450 DOI 10.4134/CKMS.2009.24.3.433 ON INTUITIONISTIC FUZZY SUBSPACES Ahmed Abd El-Kader Ramadan and Ahmed Aref Abd El-Latif Abstract. We introduce a

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

### Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

### ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

### Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination?

Online Appendix to When o Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Andrzej Baniak Peter Grajzl epartment of Economics, Central European University,

Διαβάστε περισσότερα

### DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES TIN-YAU TAM AND MARY CLAIR THOMPSON Abstract. We completely describe

Διαβάστε περισσότερα

### THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions

Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 29, 1403-1411 On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions A. Deb Ray Department of Mathematics West Bengal State University Berunanpukuria,

Διαβάστε περισσότερα

### DERIVATION OF OROWAN S LAW FROM THE PEIERLS-NABARRO MODEL. Régis Monneau. Stefania Patrizi

DERIVATION OF OROWAN S LAW FROM THE PEIERLS-NABARRO MODEL Régis Monneau Université Paris-Est, CERMICS, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα

### The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Περίληψη (Executive Summary)

1 Περίληψη (Executive Summary) Η παρούσα διπλωματική εργασία έχει ως αντικείμενο την "Αγοραστική/ καταναλωτική συμπεριφορά. Η περίπτωση των Σπετσών" Κύριος σκοπός της διπλωματικής εργασίας είναι η διερεύνηση

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

### ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### arxiv: v1 [stat.me] 13 Oct 2015

A note on the best attainable rates of convergence for estimates of the shape parameter of regular variation Meitner Cadena arxiv:151.3617v1 [stat.me] 13 Oct 15 October 14, 15 Abstract Hall Welsh gave

Διαβάστε περισσότερα

### ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

### Brinkmann Model and Double Penalization Method for the Flow Around a Porous Thin Layer

Brinkmann Model and Double Penalization Method for the Flow Around a Porous Thin Layer Gilles Carbou Mathématiques Appliquées de Bordeaux, UMR 5466 et Université Bordeaux 1, 351 cours de la Libération,

Διαβάστε περισσότερα

### HOMOGENIZATION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

HOMOGENIZATION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment

Διαβάστε περισσότερα

### Elements of Information Theory

Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE

Διαβάστε περισσότερα

### Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

Τρίμηνη, ηλεκτρονική έκδοση του Τμήματος Νοσηλευτικής Α, Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας _ΑΝΑΣΚΟΠΗΣΗ_ Πολυκανδριώτη Μαρία 1, Φούκα Γεωργία 2 1. Καθηγήτρια Εφαρμογών Νοσηλευτικής Α, ΤΕΙ Αθήνας 2.

Διαβάστε περισσότερα

### LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS

LECTURE 2 CONTEXT FREE GRAMMARS CONTENTS 1. Developing a grammar fragment...1 2. A formalism that is too strong and too weak at the same time...3 3. References...4 1. Developing a grammar fragment The

Διαβάστε περισσότερα

### Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

### Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

### The Normal and Lognormal Distributions

The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα