with N 4. We are concerned

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "with N 4. We are concerned"

Transcript

1 Houston Journal of Mathematics c 6 University of Houston Volume 3, No. 4, 6 THE EFFECT OF THE OMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF AN ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS PIGONG HAN Communicated by Giles Auchmuty Abstract. In this paper, we consider the irichlet problem for an elliptic system of two equations involving the critical Sobolev exponents. By means of the variational method, we study the effect of the domain topology on the number of positive solutions, prove the existence of at least cat () positive solutions. 1. Introduction Let be a smooth bounded domain in R N with the problem with N 4. We are concerned (1.1) u = v = α α + β uα 1 v β + λu in, β α + β uα v β 1 + µv in, u, v in, u = v = on, where λ >, µ > are parameters, α > 1, β > 1 satisfying α + β =, denotes the critical Sobolev exponent, that is, = N N. efinition 1. A pair of nonnegative functions (u, v) H 1 () H 1 () is said to be a weak solution of problem (1.1) if Mathematics Subject Classification. 35J6, 35J5, 35B33. Key words phrases. Elliptic system, Energy functional, (P.S.) c condition, Critical point, Critical Sobolev exponent. 141

2 14 P. HAN (1.) ( u ϕ 1 + v ϕ λuϕ 1 µvϕ )dx α α + β u α 1 v β ϕ 1 dx β u α v β 1 ϕ dx α + β = ϕ = (ϕ 1, ϕ ) H 1 () H 1 (). (1.3) The corresponding energy functional of problem (1.1) is defined by J λ,µ (u, v) = 1 α + β ( u + v λu µv )dx u α +v β +dx (u, v) H 1 () H 1 (), where u + = max{u, }. It is well known that the nontrivial solutions of problem (1.1) are equivalent to the nonzero critical points of J λ,µ in H 1 () H 1 (). Moreover, every weak solution of problem (1.1) is classical (see Remark 4 in [1]). In a recent paper, C. O. Alves et al [1] considered problem (1.1) generalized the results in [4] to the case of (1.1). There seems no progress on problem (1.1) since then. In this paper, we are interested in the effect of the domain topology on the number of positive solutions of problem (1.1). N N Let α = β =, λ = µ u = v, then problem (1.1) reduces to the scalar semilinear elliptic problem: u = u N+ N + λu in, (1.4) u in, u = on. O. Rey [9] studied the effect of the topology of the domain on the existence of solutions of problem (1.4) for N 5, proved that problem (1.4) has at least cat () distinct positive solutions for λ > small, where cat () denotes the Ljusternik-Schnirelman category of in itself ( see [11] for the definition). For N 4, M. Lazzo [8] obtained the same result. Relevant papers on this matter are [, 5, 6, 7, 11] the references therein. Set (1.5) S = inf u,v H 1 ()\{} ( u + v )dx ( u α v β dx ),

3 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 143 then (see [1]) (1.6) S = (( ) β ( ) α ) α β + S, β α where S is the best Sobolev constant defined by S = u dx ( u dx ), inf u H 1 ()\{} which is achieved if only if = R N by U(x) = N (N(N )) 4 (1 + x ) N In the present paper, we first establish the concentration-compactness principle for elliptic systems; then by the variational method the category theory, we prove that problem (1.1) has at least cat () positive solutions for λ, µ > small. Let λ 1 be the first eigenvalue of the operator with zero irichlet boundary conditions. We state our main result as the following: 4mm Theorem 1.1. If N 4, then there exists < λ < λ 1 such that for any λ, µ (, λ ), problem (1.1) has at least cat () positive solutions. Throughout this paper, we denote the norm of the Banach space X by X, the positive constants (possibly different) by C... Proof of the main result Before giving the proof of Theorem 1.1, we introduce some notations preliminary lemmas. Lemma.1. Let R N (possibly unbounded) u n u, v n v weakly in H 1 (); u n u, v n v a.e in. Then lim u n u α v n v β dx n (.1) = lim u n α v n β dx u α v β dx. n

4 144 P. HAN Proof. It is not difficult to see that u n α v n β dx (.) where = α +β = α u n u α v n v β dx u n tu α (u n tu)u v n β dxdt u n u α v n tv β (v n tv)vdxdt f n udxdt + β 1 g n vdxdt, f n = u n tu α (u n tu) v n β, g n = u n u α v n tv β (v n tv), t [, 1], since moreover, f n (1 t) α 1 u α u v β g n a. e on (, 1), ( C, ( C, 1 1 f n 1 1 g n we conclude that 1 dxdt ) α 1 ( u n tu 1 dxdt 1 dxdt f n (1 t) α 1 u α u v β Hence ) α ( u n u 1 dxdt 1 1 ) β v n 1 dxdt ) β 1 v n tv 1 dxdt g n weakly in L 1 ( (, 1)). (.3) α α 1 1 f n udxdt (1 t) α 1 u α v β dxdt = u α v β dx,

5 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 145 (.4) β 1 g n vdxdt. Inserting (.3) (.4) into (.), we obtain (.1). To proceed, we need to generalize the concentration-compactness principle (see [3, 11]) to the case of systems. Lemma.. Let {(u n, v n )} 1, (R N ) 1, (R N ) be a sequence such that u n u, v n v weakly in 1, (R N ); u n u, v n v a.e on R N, (u n u) + (v n v) µ weakly in the sense of measures, define (.5) (.6) Then u n u α v n v β ν weakly in the sense of measures, µ = lim lim sup ( u n + v n )dx, R x R ν = lim R lim sup u n α v n β dx. x R (.7) (.8) = lim sup ( u n + v n )dx R N R N ( u + v )dx + µ + µ, lim sup u n α v n β dx = R N u α v β dx + ν + ν, R N (.9) ν S 1 µ, (.1) ν Moreover, if u v ν single point. S 1 µ. = S 1 µ, then µ ν concentrate at a

6 146 P. HAN Proof. Set w 1n = u n u, w n = v n v, then w 1n, w n weakly in 1, (R N ); w 1n, w n a.e on R N, w 1n + w n µ weakly in the sense of measures, w 1n α w n β ν weakly in the sense of measures. For any nonnegative function h C (R N ), by Lemma.1, we have lim h w 1n α w n β dx = lim h u n α v n β dx h u α v β dx. R N R N R N Hence we obtain (.11) u n + v n u + v + µ weakly in the sense of measures (.1) u n α v n β u α v β + ν weakly in the sense of measures. (a) (.13) For any h C (R N ), we infer that ( S 1 hw 1n α hw n β dx R N ) R N ( (hw 1n ) + (hw n ) )dx. Since w 1n w n strongly in L loc, we easily obtain from (.13) that (.14) x >R ( R N h d ν ) S 1 h d µ R N which implies (.9). (b) Since lim sup w 1n dx = lim sup u n dx u dx x >R x >R lim sup x >R w n dx = lim sup v n dx v dx, x >R x >R

7 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 147 we deduce that (.15) x >R lim R lim sup ( w 1n + w n )dx = µ. x >R By Lemma.1, we have lim sup w 1n α w n β dx = lim sup So (.16) lim R x >R lim sup w 1n α w n β dx = ν. x >R u n α v n β dx u α v β dx. x >R Let R >, ψ R C (R N ) be such that ψ R (x) = for x < R; ψ R (x) = 1 for x > R + 1 ψ R (x) 1 on R N. Then we have ( R N ψ R w 1n α ψ R w n β dx ) S 1 ( (ψ R w 1n ) + (ψ R w n ) )dx. R N Since w 1n w n strongly in L loc, we infer that (.17) Observe that ( lim sup S 1 lim sup ψ R w 1n α ψ R w n β dx R N ) R N ( w 1n + w n )ψ Rdx. (.18) x >R+1 w in dx w in ψrdx R N w in dx, i = 1, x >R (.19) w 1n α w n β dx x >R+1 Thus, from (.15)-(.19), we get (.1). ψ R w 1n α ψ R w n β dx R N w 1n α w n β dx. x >R

8 148 P. HAN (c) From (.11) (.1), we deduce that lim sup ( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + lim sup (1 ψ R )( u n + v n )dx R N = lim sup ψ R ( u n + v n )dx R N + (1 ψ R )( u + v )dx + (1 ψ R )d µ. R N R N By the dominated convergence theorem, we obtain that lim sup ( u n + v n )dx = R N ( u + v )dx + µ + µ, R N lim R which is (.7). Similarly we get (.8). (d) Let u v ν we derive that for any h C (R N ) h d ν S R N = S 1 µ µ. By Hölder inequality (.14), N We deduce that ν = S µ N µ. Hence, from (.14) we obtain for any h C (R N ) µ N ( so for each open set Q R N, R N h d µ ) ( µ(r N )) N ( µ(q)) R N h d µ. R N h d µ, µ(q), which is equivalent to µ(r N ) µ(q). This proves that µ is concentrated at a single point. Suppose that (A) X is a Banach space, I C 1 (X, R), I d = {z X I(z) d}, ψ C (X, R), V = {z X ψ(z) = 1}, for every z V, ψ (z).

9 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 149 We denote the tangent space of V at z by T z V = {y X ψ (z), y = } the norm of the derivative of I V at z V by (I V ) (z) := sup I (z), y. y T z V, y =1 The functional I V is said to satisfy the (P.S.) c condition if any sequence {z n } V such that I V (z n ) c, (I V ) (z n ) contains a convergent subsequence. In the sequel, we take X = H 1 () H 1 (), I V (u, v) = I(u, v) = (u + ) α (v + ) β dx, ψ(u, v) = ( u + v λu µv )dx λ, µ (, λ 1 ), V = { (u, v) H 1 () H 1 () ψ(u, v) = 1 }. Obviously, the assumption (A) is satisfied for our choices. Lemma.3. I satisfies (P.S.) c condition for any c (S N, ) on V. Proof. Let {(u n, v n )} V satisfy I(u n, v n ) c, I (u n, v n ). Then, there exists a sequence {t n } R such that as n N α(u n ) α 1 + (v n ) β + + β(u n ) α +(v n ) β 1 + t n ( un v n λu n µv n ) strongly in H 1 () H 1 (). So (α + β)i(u n, v n ) t n, then t n ()c >.

10 15 P. HAN efine w 1n = ( ) N 4 4t n u n, w n = ( ) N 4 4t n v n, we obtain 1 ( w 1n + w n λw1n µw n)dx (w 1n ) α α + β +(w n ) β +dx = 1 ( ) N α + β ( u n + v n λu n µv 4t n)dx n ( ) N α + β (u n ) α α + β 4t +(v n ) β +dx n 1 N ( 1 c ) N w 1n w n λw 1n µw n α α + β (w 1n) α 1 + (w n ) β + β α + β (w 1n) α +(w n ) β 1 + strongly in H 1 () H 1 (). So {(w 1n, w n )} X is a (P.S.) c sequence of J λ,µ, which is defined in (1.3). It follows easily that (w 1n, w n ) X C. Thus, up to a subsequence, we may assume that (w 1n, w n ) (w 1, w ) weakly in H 1 () H 1 (); (w 1n, w n ) (w 1, w ) a.e on. Then (w 1, w ) is a weak solution of problem (1.1) (.) = J λ,µ (w 1, w ) ( 1 1 ) α + β ( w1 + w λw1 µw ) dx. Setting w 1n = w 1n w 1, w n = w n w, we have w in dx = w in dx w i dx + o(1), i = 1,.

11 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 151 By Lemma.1, we also have ( w 1n ) α +( w n ) β +dx = (w 1n ) α +(w n ) β +dx (w 1 ) α +(w ) β +dx + o(1). Hence ( w 1n + w n )dx ( w 1n ) α +( w n ) β +dx as n. We may assume that as n ( w 1n + w n )dx a, ( w 1n ) α +( w n ) β +dx a, where a is a nonnegative number. If a =, the proof is complete. Assume a >, since ( ) S ( w 1n ) α +( w n ) β +dx ( w 1n + w n )dx, we get S ( a (.1) ) a, then a ( S On the other h, by (.) we have ) N. a a α + β = 1 α + β ( w 1n + w n )dx = J λ,µ ( w 1n, w n ) + o(1) ( w 1n ) α +( w n ) β +dx + o(1) = J λ,µ (w 1n, w n ) J λ,µ (w 1, w ) + o(1) J λ,µ (w 1n, w n ) + o(1) which contradicts (.1). = 1 ( 1 N c < N ( S ) N ) N, The following lemma follows from [1].

12 15 P. HAN Lemma.4. Let N 4, λ, µ (, λ 1 ). Then m(λ, µ, ) := sup (u,v) V Moreover, m(λ, µ, ) is achieved on V. efine H(u, v) = then we have the following I(u, v) > S N N. x ( u + v λu µv ) dx (u, v) V, Lemma.5. If {(u n, v n )} V satisfies lim (u n) α +(v n ) β +dx = S N N, then (.) lim dist(h(u n, v n ), ) =. Proof. Since {(u n, v n )} V, it is easy to verify that (u n, v n ) is bounded in H 1 () H 1 (). Thus, up to a subsequence, we may assume that (u n ) + u (v n ) + v weakly in H 1 (), ((u n ) + u) + ((v n ) + v) µ weakly in the sense of measures, (u n ) + u α (v n ) + v β ν weakly in the sense of measures. Since is bounded, Lemma. implies (.3) (.4) (.5) 1 = ( u + v )dx + µ, S N N = S ν u α v β dx + ν, µ.

13 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 153 If ( u + v )dx µ =, we deduce that ( ) 1 = ( u + v )dx + µ > ( S = S = 1, ( u + v )dx N S N ) u α v β dx + S ν + µ which is a contradiction. Thus, ( u + v )dx = or µ =. If µ =, from (.3)- (.5), we get ( u + v )dx = 1 u α v β dx = S N N. Then R ( u + v )dx ( R u α v dx) β = S, which means that S is achieved by (u, v). It is impossible since S cannot be attained on any bounded domain. Hence, (.6) ( u + v )dx = µ = 1. Then, u v on, so lim n we easily have ν single point x. Thus H(u n, v n ) = ( λu n + µv n) dx =. From (.3), (.4), = 1 = S 1 µ. By Lemma., µ is concentrated at a x( u n + v n λu n µvn)dx xd µ = x. Without loss of generality, we may assume choose r > small enough such that B r (), such that + r = {x R N dist(x, ) r} r = {x dist(x, ) r}

14 154 P. HAN are homotopically equivalent to. efine m(λ, µ, r) := m(λ, µ, B r ()) > S N N, recall I d = {z H 1 () H 1 () I(z) d}. Then we have Lemma.6. If N 4. Then there exists < λ < λ 1 such that for any λ, µ (, λ ), (.7) cat Im(λ,µ,r) (I m(λ,µ,r) ) cat (). Proof. We first show that there exists < λ < λ 1 such that for any λ, µ (, λ ), if (u, v) I m(λ,µ,r), then H(u, v) + r. In fact, set λ (, λ 1 ), λ, µ (, λ ), from the proof s process of (.), we know that there is a positive number ɛ (independent of λ, µ) such that (u, v) V, N u α +v+dx β S N + ɛ = H(u, v) + r. Choosing λ = { ( )} λ, λ 1 1 (1 + ɛs ) (, λ1 ), for any λ, µ (, λ ) (u, v) I m(λ,µ,r), we obtain u α +v β +dx S ( ( S λ1 S ( u + v )dx ) ) ( v µv )dx ( u λu )dx + λ 1 λ 1 λ λ 1 µ ( λ 1 ( u + v λu µv )dx λ 1 max{λ, µ} ( ) < S λ1 λ 1 λ = S N N + ɛ. So that H(u, v) + r. efine γ : r I m(λ,µ,r) by (u λ,µ ( x y ), v λ,µ ( x y )) x B r (y), γ(y)(x) = x \B r (y), )

15 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 155 where (u λ,µ ( x ), v λ,µ ( x )) is a positive function, radially symmetric about the origin, such that (see [1]) B r () B r () u α λ,µv β λ,µ dx = m(λ, µ, r) ( u λ,µ + v λ,µ λu λ,µ µv λ,µ)dx = 1. It is not difficult to check that H γ = id. Let n = cat Im(λ,µ,r) (I m(λ,µ,r) ), then there exist n closed, contractible sets {A i } (1 i n) in I m(λ,µ,r) n corresponding mappings h i C([, 1] A i, I m(λ,µ,r) ) (1 i n) such that I m(λ,µ,r) = n A i for any (u, v), (ū, v) A i i=1 h i (, (u, v)) = (u, v), h i (1, (u, v)) = h i (1, (ū, v)). Set B i = γ 1 (A i ) (1 i n). Then the sets B i are closed r = n B i. Let g i (t, x) = H(h i (t, γ(x))), then g i C([, 1] r, + r ) for any x, y r i=1 g i (, x) = H(h i (, γ(x))) = H(γ(x)) = x g i (1, x) = H(h i (1, γ(x))) = H(h i (1, γ(y))) = g i (1, y). So B i (1 i n) is contractible in r. Therefore, cat () = cat + r ( r ) n. Proof of Theorem 1.1. It is not difficult to check that m(λ, µ, r) < m(λ, µ, ). By Lemmas.3.4, I satisfies the (P.S.) c condition for any c [m(λ, µ, r), m(λ, µ, )]. Let J(u) = I(u) J d = {z H 1 () H 1 () J(z) d}. Then J is bounded below on V. Since (J V ) = (I V ) for every u V, it follows that J V satisfies the (P.S.) c condition for any c m(λ, µ, r), u is a critical point of I V if only if it is a critical point of J V. Hence, Lemma.6 Theorem 5. in [11] yields that I m(λ,µ,r) = J m(λ,µ,r) contains at least cat () critical points of I V, denoted by (u i, v i ) (1 i cat ()) satisfying

16 156 P. HAN u i = αt i α + β (u i) α 1 + (v i ) β + + λu i in, v i = βt i α + β (u i) α +(v i ) β µv i in, u i = v i = on, 1 where t i = I(u i,v i ) > is a Lagrange multiplier. Since λ, µ (, λ ), by the strong maximum principle, (u i, v i ) > in, 1 i cat (). Let ũ i = t N 4 i u i, ṽ i = t N 4 i v i. Then (ũ i, ṽ i ) (1 i cat ()) is a positive solution of problem (1.1). Acknowledgements The author would like to thank the anonymous referee for carefully reading this paper suggesting many useful comments. References [1] C. O. Alves,. C. de Morais Filho M. A. S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents, Nonlinear Anal, TMA., 4 (), [] V. Benci G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal., 114 (1991), [3] G. Bianchi, J. Chabrowski A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal, TMA., 5 (1995), [4] H. Brezis L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), [5]. Cao J. Chabrowski, On the number of positive solutions for nonhomogeneous semilinear elliptic problem, Advs. iff. Equats., 1 (1996), [6] A. Castro M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity, 16 (3), [7]. Cao, G. Li X. Zhong, A note on the number of positive solutions of some nonlinear elliptic problems, Nonlinear Anal, TMA., 7 (1996), [8] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec l exposant critique de Sobolev, C. R. Acad. Sci. Paris 314 (199), [9] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal, TMA., 13 (1989), [1] W. C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. ifferential Equations, 4 (1981), [11] M. Willem, Minimax Theorems, PNLE 4, Birkhäuser, Boston-Basel-Berlin 1996.

17 ELLIPTIC SYSTEM INVOLVING CRITICAL SOBOLEV EXPONENTS 157 Received March 3, 4 Revised version received ecember 8, 4 Institute of Applied Mathematics, Academy of Mathematics Systems Science, Chinese Academy of Sciences, Beijing 18, P. R. China address:

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term

On a p(x)-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term On a p(x-kirchhoff Equation with Critical Exponent and an Additional Nonlocal Term Francisco Julio S.A. Corrêa Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

arxiv: v3 [math.ca] 4 Jul 2013

arxiv: v3 [math.ca] 4 Jul 2013 POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear

Διαβάστε περισσότερα

Multistring Solutions of the Self-Graviting Massive W Boson

Multistring Solutions of the Self-Graviting Massive W Boson Multistring Solutions of the Self-Graviting Massive W Boson Dongho Chae Department of Mathematics Sungkyunkwan University Suwon 44-746, Korea e-mail: chae@skku.edu Abstract We consider a semilinear elliptic

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography Nonlinear Fourier transform and the Beltrami equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki Beltrami equation: z f(z) = µ(z) z f(z) non linear Fourier transform

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

MATRIX INVERSE EIGENVALUE PROBLEM

MATRIX INVERSE EIGENVALUE PROBLEM English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract

AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract AN APPLICATION OF THE SUBORDINATION CHAINS Georgia Irina Oros Abstract The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 1, 1996, 11-26 PARTIAL AVERAGING FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH SUPREMUM D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA Abstract. Partial averaging for

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions

Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions www.ccsenet.org/jmr Journal of Mathematics Research Vol., No. 3; August 010 Generalized Quasilinearization versus Newton s Method for Convex-Concave Functions Cesar Martínez-Garza (Corresponding author)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Operator theory in finite-dimensional vector spaces av Kharema Ebshesh 2008 - No 12 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Well-posedness for compressible Euler with physical vacuum singularity

Well-posedness for compressible Euler with physical vacuum singularity Well-posedness for compressible Euler with physical vacuum singularity Juhi Jang and Nader Masmoudi May 28, 28 Abstract An important problem in the theory of compressible gas flows is to understand the

Διαβάστε περισσότερα

Study of limit cycles for some non-smooth Liénard systems

Study of limit cycles for some non-smooth Liénard systems 3 011 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 011 Article ID: 1000-5641(011)03-0044-10 Study of limit cycles for some non-smooth Liénard systems YANG Lu, LIU Xia, XING

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

arxiv: v2 [math.ap] 7 Jun 2016

arxiv: v2 [math.ap] 7 Jun 2016 VALIDITY AND REGULARIZATION OF CLASSICAL HALF-SPACE EQUATIONS QIN LI, JIANFENG LU, AND WEIRAN SUN arxiv:66.3v2 [math.ap] 7 Jun 26 Abstract. Recent result [] has shown that over the 2D unit disk, the classical

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let

Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let 4. Ordinals July 26, 2011 In this chapter we introduce the ordinals, prove a general recursion theorem, and develop some elementary ordinal arithmetic. A set A is transitive iff x A y x(y A); in other

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

ON INTUITIONISTIC FUZZY SUBSPACES

ON INTUITIONISTIC FUZZY SUBSPACES Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 433 450 DOI 10.4134/CKMS.2009.24.3.433 ON INTUITIONISTIC FUZZY SUBSPACES Ahmed Abd El-Kader Ramadan and Ahmed Aref Abd El-Latif Abstract. We introduce a

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES TIN-YAU TAM AND MARY CLAIR THOMPSON Abstract. We completely describe

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions

On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 29, 1403-1411 On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions A. Deb Ray Department of Mathematics West Bengal State University Berunanpukuria,

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

DERIVATION OF OROWAN S LAW FROM THE PEIERLS-NABARRO MODEL. Régis Monneau. Stefania Patrizi

DERIVATION OF OROWAN S LAW FROM THE PEIERLS-NABARRO MODEL. Régis Monneau. Stefania Patrizi DERIVATION OF OROWAN S LAW FROM THE PEIERLS-NABARRO MODEL Régis Monneau Université Paris-Est, CERMICS, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne

Διαβάστε περισσότερα

Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination?

Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Online Appendix to When o Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Andrzej Baniak Peter Grajzl epartment of Economics, Central European University,

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Two-parameter preconditioned NSS method for non-hermitian and positive definite linear systems

Two-parameter preconditioned NSS method for non-hermitian and positive definite linear systems 013 9 7 3 Sept. 013 Communication on Applied Mathematics and Computation Vol.7 No.3 DOI 10.3969/j.issn.1006-6330.013.03.005 Two-parameter preconditioned NSS method for non-hermitian and positive definite

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα