Konvencija o znacima za opterećenja grede

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Konvencija o znacima za opterećenja grede"

Transcript

1 Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju 1

2 Savijanje Savijanje se najčešće analizira kod nosača već izučavanih u okviru mehanike I ili statike Noseće konstrukcije mašina i postrojenja se se po principima statike prevode u prostorne i ravanske proste nosače Opterećenja se prevode u odgovarajuće: koncentrisane sile, kontinualna opterećenja, momente i spregove Čisto savijanje Ravan savijanja Neutralna ravan Neutralna osa Neutralna (elastična) linija 2

3 Čisto savijanje ko deluje samo moment savijanja, naprezanje je čisto savijanje Na gredu deluju dva sprega jednakih intenziteta, a suprotnih smerova u vertikalnoj ravni m z m Čisto savijanje proste grede spregovima Spregovi istog intenziteta, a suprotnih smerova deluju u vertikalnoj ravni koja prolazi kroz uzdužnu osu nosača z Ova vertikalna ravan je RVN SVIJNJ Horizontalna osa u ravni koja sadrži uzdužnu osu, a upravna je na nju (obeležena sa ) naziva se NEUTRLN OS 3

4 Čisto savijanje proste grede spregovima Čisto savijanje proste grede spregovima - M +M l -M -M -M z Yi Y 0 Z i M Z Y 0 Z 0 M M l 0 Y 0 M f M 0 TR z TR 0 4

5 5 Čisto savijanje Ovakvo opterećenje grede moguće je ostvariti kod grede sa dva jednaka prepusta na čijim krajevima deluju jednake sile l c c Čisto savijanje grede i Y Y Y i Z Z Z 0 l l c c M Y l c c Y

6 Čisto savijanje Statički dijagrami za ovu gredu sa prepustima c Y l c I polje II polje III polje Za II polje -M -M -M z M f c z z c - TR - z TR 0 Čisto savijanje 6

7 Deformacija usled savijanja momentima Pod dejstvom prikazanih spregova greda se deformiše tako što vlakna menjaju svoju dužinu Dužina jednih vlakana se povećava, a dužina drugih se smanjuje Vlakna koja se niti izdužuju niti skraćuju zovu se neutralna vlakna Deformacija usled savijanja momentima u ravni savijanja Uočava se utoliko veće izduženje vlakana ukoliko je vlakno udaljenije od neutralne ose sa spoljašnje strane (a-a veće od b-b) Sa druge strane, sa unutrašnje strane skraćenje vlakana je veće što su vlakna udaljenija od neutralne linije (c-c veće od d-d) Najviše se izdužuju spoljašnja vlakna 7

8 Deformacija usled savijanja momentima Uočena vlakna čija je dilatacija jednaka nuli (niti se izdužuju niti skraćuju) Neutralna vlakna se pojavljuju po čitavom poprečnom preseku Obrazuju neutralnu površinu Presečna linija ravni savijanja i neutralnih linija savijanja naziva se neutralnom linijom ili ELSTIČNOM LINIJOM Čisto savijanje nastaje Kada je ravan dejstva spregova (ravan savijanja) istovremeno i ravan simetrije grede Kada ravan savijanja prolazi kroz geometrijsku osu z grede 8

9 Osnovne jednačine savijanja Veza izmeďu aksijalne deformacije i napona I jednačina savijanja - promena normalnog napona II jednačina savijanja krivina elastične linije Prizmatična greda opterećena na čisto savijanje Nastaju deformacije - izduženja ili skraćenja vlakana Poprečni preseci unutar grede su zaokrenuti jedan u odnosu na drugi Dilatacija posmatranih vlakana na nekom udaljenju y od neutralne linije može se dovesti u vezu sa modulom elastičnosti (Hukov zakon) i poluprečnikom krivine elastične linije 9

10 Prva jednačina savijanja Normalni napon u nekoj tački poprečnog preseka s M moment sprega s z M I I aksijalni moment inercije površine za tu osu y udaljenost posmatranog vlakna od ose y Druga jednačina savijanja K 1 Rk K- krivina elastične linije M moment sprega I aksijalni moment inercije površine za tu osu E modul elastičnosti =E. I krutost savijanja grede R k poluprečnik krivine Μ E I Μ 10

11 Prva jednačina savijanja pokazuje da: s z Normalni napon u nekoj tački poprečnog preseka proporcionalan je napadnom momentu M savijanja i udaljenju y od neutralne ose Normalni napon je obrnuto proporcionalan momentu inercije poprečnog preseka za neutralnu osu I koja se poklapa sa težišnom osom M I y Prva jednačina savijanja pokazuje da: s z M I Kod čistog savijanja napadni moment je u svakom preseku isti, pa normalan napon ne zavisi od koordinate z To znači da ne zavisi i od udaljenosti poprečnog preseka od oslonca Normalni napon ne zavisi od koordinate, što znači da je isti u svim tačkama ravni paralelnoj koordinatnoj ravni z kroz osu grede z y 11

12 Prva jednačina savijanja pokazuje da: s z M I Normalni napon zavisi samo od udaljenosti vlakana od neutralne ose C U tačkama neutralne ose C, on je jednak 0 Zbog toga se ti naponi nazivaju i ivični naponi y Druga glavna jednačina savijanja pokazuje da: Μ Μ K 1 R E I Usled savijanja osa z se krivi i postaje elastična linija grede Druga glavna jednačina služi za odreďivanje krivine te elastične linije Za gredu konstantnog poprečnog preseka i konstantan napadni moment: k K =const. 12

13 Druga glavna jednačina savijanja pokazuje da: K 1 R k Μ E I Μ Krivina elastične linije je konstantna Ovu osobinu ima samo kružni luk koji prolazi kroz oslonce i. Kod čistog savijanja elastična linija je kružni luk koji prolazi kroz oslonce i. Savijanje vertikalnim teretima koncentrisanim silama; kontinualnim opterećenjima u vertikalnoj ravni 13

14 Primer grede sa dve koncentrisane sile Y i M a 24a 6a 0 30kN 40kN 0 Primer grede sa dve koncentrisane sile Maksimalni moment savijanja M fma = 80 knm Maksimalna transverzalna sila tma = 40 kn 14

15 Promena transverzalne sile i momenta savijanja duž podužne ose nosača: U svakom poprečnom preseku imamo odgovarajuću transverzalnu silu U svakom poprečnom preseku imamo odgovarajući moment savijanja. Transverzalna sila izaziva smicanje Moment savijanja izaziva savijanje nosača oko poprečne težišne ose Jednačine savijanja važe i kod savijanja silama i moraju biti ispunjeni uslovi: Da neutralna linija prolazi kroz težište svih poprečnih preseka Da je neutralna osa težišna osa poprečnog preseka Da je neutralna osa, osa simetrije poprečnog preseka tj. glavna centralna ose inercije preseka. 15

16 Glavne jednačine savijanja s z M I K 1 R k y Μ f E I Treća glavna jednačina T S I b - Tangencijalni napon grede opterećene na savijanje S - Moment inercije površine za neutralnu osu C b - širina poprečnog preseka za neutralnu osu 16

17 Raspored normalnog napona po poprečnom preseku s z M I y Raspored normalnog napona po poprečnom preseku Odnos I /y ma zavisi od oblika poprečnog preseka i naziva se OTPORNI MOMENT POPREČNOG PRESEK W I L 3 y ma 17

18 Otporni moment različitih ravnih preseka pravougaonik Otporni moment različitih ravnih preseka kvadrat 18

19 Otporni moment različitih ravnih preseka Krug i kružni prsten Raspodela tangencijalnog napona po poprečnom preseku S I T S T Transverzalna sila - Tangencijalni napon grede opterećene na savijanje - Moment inercije površine za neutralnu osu C - promenljiva širina poprečnog preseka za neutralnu osu 19

20 Maksimalni normalni napon nosača izloženog opterećenju na savijanje s ma M ma W Maksimalni normalni napon Maksimalni moment savijanja Otporni moment poprečnog preseka Raspodela tangencijalnog napona po poprečnom preseku pravougaonika ma 2 3 T ma 1 ma 4 y h 2 20

21 Raspodela tangencijalnog napona po poprečnom preseku kruga ma 4 3 T ma ma 1 y R 2 Raspodela tangencijalnog napona po poprečnom preseku limenog nosača ma T ma 0 21

22 Dimenzionisanje nosača opterećenih na savijanje Postoje dva različita zadatka: 1. Poznato je opterećenje koje deluje na nosač, a treba odrediti vrednosti najvećeg normalnog i tangencijalnog napona koji se javljaju 2. Poznato je opterećenje, raspon, način oslanjanja i oblik nosača koji se mora upotrebiti, a traže se dimenzije poprečnog preseka OdreĎivanje veličina normalnog i tangencijalnog napona ako je poznato opterećenje s M ma ma W I S Najveći normalni napon javlja se u opasnom preseku, u najudaljenijem vlaknu Najveći tangencijalni napon javlja se u preseku u kome je najveća tangencijalna sila Opasni presek najveći moment savijanja i najveća transverzalna sila definišu se iz statičkih dijagrama nosača T 22

23 OdreĎivanje dimenzija poprečnog preseka nosača M ma s s ma W fdoz s ma s fdoz Maksimalni napon manji od dozvoljenog ma s fdoz Prema definisanom opterećenju izračunati otporni moment preseka Po odreďivanju dimenzija proveriti da li je tangencijalni napon manji od dozvoljenog W M ma fdoz Provera tangencijalnih napona Kod čeličnih konstrukcija tangencijalni naponi su vrlo mali pa se ova provera često i ne vrši Proveru obavezno vršiti kod drvenih konstrukcija 23

24 Rezime: Dimenzionisanje nosača Odrediti otpore oslonaca Nacrtati statičke dijagrame i iz njih odrediti najveći napadni moment i najveću transverzalnu silu Prema izabranom materijalu definisati dozvoljene napone na savijanje Odrediti otporni moment poprečnog preseka Proveriti da li su najveći normalni i tangencijalni napon manji od dozvoljenih 24

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

unutrašnja opterećenja

unutrašnja opterećenja * Ravnoteža u deformabilnom tijelu Koncentrisana sila (idealizacija) Površinska sila Spoljašnja opterećenja: površinske i zapreminske sile Reakcije oslonaca Jednačine ravnoteže Linearna raspodjela opterećenja

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Mehanika, kinematika i elastičnost

Mehanika, kinematika i elastičnost Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG S R P S K K M I J N U K KLSIƒNI NUƒNI SPISI KNJIG III MTMTIƒKI INSTITUT KNJIG 3 GOMTRISK ISPITIVNJ IZ TORIJ PRLLNIH LINIJ O N. I. LOƒVSKOG Preveo RNISLV PTRONIJVI RUGO, PRO IRNO IZNJ O G R 1951 Na²ao sam

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10 adatak temenima kvadrata stranice a (Sl) nalaze se mala tela istoimene količine naelektrisanja Q 0 C u vakumu Koliku količinu elektriciteta negativnog znaka treba postaviti u tačku preseka dijagonala da

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Sadržaj 1 Kalem Sadržaj Kalem 1 Kalem - definicije Kalem Kalem je pasivna elektronska komponenta koja

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Prijanjanje i klizanje

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Prijanjanje i klizanje PRIJANJANJE I KLIZANJE Uslov kotrljanja točka TRENJE PRIJANJANJE IZMEĐU TOČKA I PODLOGE Kulonovo trenje uprošćen matematički model, važi za kruta tela tj. nedeformabilne materijale Ne važi za gumu Guma

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

TEHNOLOGIJA MAŠINOGRADNJE

TEHNOLOGIJA MAŠINOGRADNJE TEHNOLOGIJA MAŠINOGRADNJE DEO: TEHNOLOGIJA PLASTIČNOG DEFORMISANJA Doc. dr Mladomir Milutinović SAVIJANJE Savijanje je tehnološka metoda plastičnog deformisanja koja nalazi široku primenu u praksi, kako

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE

LABORATORIJSKE VEŽBE IZ FIZIKE LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa: UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU

MIKRO-NANO FLUIDIKA 8. UVOD U ELEKTROHEMIJU MIKRO-NANO FLUIDIKA Handout 4 2012/2013 8. UVOD U ELEKTROHEMIJU Elektrohemija je grana hemije koja proučava hemijske reakcije koje se dešavaju na granici izmeďu električnog provodnika (metalne, poluprovodničke

Διαβάστε περισσότερα

15. MIKROFONI Uvod Osnovne karakteristike mikrofona

15. MIKROFONI Uvod Osnovne karakteristike mikrofona AKUSTIKA 15 - Mikrofoni 197 15. MIKROFONI 15.1 Uvod Mikrofon je ulazni elektroakustički pretvarač koji je prilagođen radu u vazduhu kao mediju. Mikrofon pretvara zvučni pritisak, koji mu je ulazna veličina,

Διαβάστε περισσότερα

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE Visoke građevine VISOKE GRAĐEVINE SADRŽAJ PREDAVANJA (1.dio) Uvodno Povijest i kronologija visokih građevina Nosivi elementi za osnovna opterećenja Mjere

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA : MERENJE BRZINE I UBRZANJA UVOD Iako brzina predstavlja prvi, a ubrzanje drugi izvod, ne preporučuje se njihovo određivanje preko izvoda, jer usled šuma greška može biti velika. Može se koristi sledeća

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

(Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ

(Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ 10.6.2013 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 158/1 II (Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 517/2013 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 13ης Μαΐου 2013 για την προσαρμογή ορισμένων κανονισμών

Διαβάστε περισσότερα

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija 12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija Elementarna pitanja: 1. Nabrojati sve geometriske figure prikazane na slici ispod. [kocka, kvadar, četverostrana piramida, sfera

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA

OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Tihomir Latinović Miroslav Prša Tihomir Latinović, Miroslav Prša OSNOVI ELEKTROTEHNIKE I ELEKTRIČNIH MAŠINA Banja Luka, 2013. 1 Osnovi elektrotehnike i električnih mašina Biblioteka: INFORMACIONE TEHNOLOGIJE

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA

Konopi. ARTIKl BOJA PlAVO/ŽUTA. ARTIKl BOJA CRVENO/PlAVA. PREKIDNA ČVRSTOĆA (dan) DUŽINA (m) Φ (mm) ARTIKl BOJA PlAVA. ARTIKl BOJA CRVENA KONOP ZA ŠKOTE RACE - materijal jezgra dyneema na 16 struka, izvana poliester na 32 struka - za dizanje i spuštanje jedara, otporan na habanje, mala rastezljivost CRVENO/ PlAVO/ TF30 05000 TF33 05000 5

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR

KGV Šutalo d.o.o. Vukovarska Jakšić, Hrvatska OIB VAT ID: HR KGV Šutalo d.o.o. Vukovarska 14 34308 Jakšić, Hrvatska +385 34 257 734 info@kgv-sutalo.hr OIB VAT ID: HR06692893248 grijač za bojler 1 1/4 ravni / water heating element 1 1/4 straight RTS12 1200W/230V

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

EKSTERNA MATURA za učenike osnovne škole

EKSTERNA MATURA za učenike osnovne škole EKSTERNA MATURA za učenike osnovne škole ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 202/203. GODINI FIZIKA Stručni tim za fiziku: Maida Beganović Sanela Karović Mirsada Ţiko Sead Hanjalić Divna Petrović

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14.

LABORATORIJSKE VEŽBE IZ FIZIKE. za generaciju 2013/14. LABORATORIJSKE VEŽBE IZ FIZIKE za generaciju 03/4. UNIVERZITET U NIŠU UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka rada pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku

Διαβάστε περισσότερα

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA PROSTA KORELACIONA I REGRESIONA ANALIZA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. shvatite razliku između funkcionalne i stohastičke veze i razumete stohastički model. znate

Διαβάστε περισσότερα

E2. Električni titrajni krug

E2. Električni titrajni krug Električni titrajni krug 1 E. Električni titrajni krug 1. Ključni pojmovi Impedancija, rezonancija, faktor dobrote, LC titrajni krug. Teorijski uvod a) Slobodne oscilacije Serijski titrajni krug zamišljamo

Διαβάστε περισσότερα

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA d.o.o Radnicka bb 32240 LU ČANI SRBIJA TR: 205-68352-90; MB: 17533606; PIB: 103195754; E-mail:

Διαβάστε περισσότερα

7. ELEKTRIČNA MJERENJA. 7.1 Opšte o mjerenju

7. ELEKTRIČNA MJERENJA. 7.1 Opšte o mjerenju 7. ELEKTRIČN MJERENJ 7. pšte o mjerenju Mjerenja imaju značajnu ulogu u razvoju ljudskog društva uopšte, a u razvoju nauke i tehnike posebno.u elektrotehničkoj nauci i njenoj primjeni, električna mjerenja

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

5.1 Njutnov zakon univerzalne gravitacije

5.1 Njutnov zakon univerzalne gravitacije Glava 5 Gravitacija Orbitiranje prirodnih i veštačkih satelita oko Zemlje, planeta oko Sunca, fenomen plime i oseke, prenos toplote strujanjem fluida, visoka temperatura unutrašnjosti planeta, padanje

Διαβάστε περισσότερα

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014

Nermin Okiˇci c Vedad Paˇsi c MATEMATIKA II 2014 Nermin Okičić Vedad Pašić MATEMATIKA II 014 Sadržaj 1 Funkcije više promjenljivih 1 1.1 Pojam funkcije više promjenljivih................ 1.1.1 Osnovni elementi preslikavanja.............. 1.1. Grafičko

Διαβάστε περισσότερα

KORISNOST VJETROENERGIJE

KORISNOST VJETROENERGIJE Karla Srnec Željka Toplek Mentor: Karmena Vadlja-Rešetar, prof. karmena.vadlja-resetar@ck.t-com.hr KORISNOST VJETROENERGIJE Čakovec 11.02.2013. Gimnazija Josipa Slavenskog Čakovec Vladimira Nazora 34 40

Διαβάστε περισσότερα

8. ALATI ZA PREOBLIKOVANJE

8. ALATI ZA PREOBLIKOVANJE 8. ALATI ZA PREOBLIKOVANJE 8.1 Osnove preoblikovanja Preoblikovanje je promjena oblika čvrstog tijela postupcima trajne ili plastične deformacije bez odvajanja i promjene mase materijala (DIN 8850, 2.grupa).

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα