H δόμηση των πρώτων μαθηματικών εννοιών μέσω της διαθεματικής προσέγγιση της γνώσης.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "H δόμηση των πρώτων μαθηματικών εννοιών μέσω της διαθεματικής προσέγγιση της γνώσης."

Transcript

1 H δόμηση των πρώτων μαθηματικών εννοιών μέσω της διαθεματικής προσέγγιση της γνώσης. Κατερίνα Κασιμάτη Πάρεδρος ε.θ. Αξιολόγησης και Επιμόρφωσης, Παιδαγωγικού Ινστιτούτου Σύγχρονο Νηπιαγωγείο,49, (2006) Περίληψη Στις σημερινές κοινωνικές συνθήκες, στη δόμηση της «κοινωνίας της γνώσης και της πληροφορίας», η διαθεματική προσέγγιση της γνώσης στηρίζει την ποιοτική αναβάθμιση της εκπαίδευσης και συμβάλλει στην ανάπτυξη κοινωνικο-γνωστικών στάσεων και δεξιοτήτων στους μαθητές. O χώρος του Νηπιαγωγείου προσφέρεται, ώστε ο εκπαιδευτικός σε συνεργασία με τα παιδιά, να κατασκευάζει το περιβάλλον μάθησής τους, να υποστηρίζει τις αυθόρμητες εκδηλώσεις παιγνιδιού, να δομεί δραστηριότητες μέσα από τις οποίες εξετάζεται μία έννοια καθώς αυτή διατρέχει τα διάφορα γνωστικά αντικείμενα, να διδάσκει δεξιότητες πολιτιστικά ενταγμένες στην καθημερινότητά τους και να τα βοηθά να ερμηνεύουν τις πολυπλοκότητες του κοινωνικού τους περιβάλλοντος. H συγκεκριμένη εργασία εξετάζει τη διδακτική προσέγγιση των πρώτων μαθηματικών εννοιών, το σχηματισμό των εννοιών, τα είδη της μαθηματικής γνώσης, την προσέγγιση των ποιοτικών σχέσεων, τη δόμηση της έννοιας του αριθμού και την επίλυση προβλημάτων μέσα από τη δημιουργία διδακτικών καταστάσεων και διαθεματικών δραστηριοτήτων. Εισαγωγή Στην προσχολική ηλικία οι έννοιες που αναπτύσσουν τα παιδιά αντιστοιχούν σε ένα πρωτογενές επίπεδο κατανόησης, χρήσης και εφαρμογής των μαθηματικών εννοιών, κατά το οποίο οι έννοιες εμπλέκονται στη δράση του παιδιού, αλλά το ίδιο δεν τις γνωρίζει, ούτε τις κατονομάζει ακόμα (Chevallard,1986). H διδασκαλία μαθηματικών εννοιών στο Νηπιαγωγείο βοηθά τα παιδιά να αναπτύξουν έννοιες και διαδικασίες μέσω των οποίων θα 1

2 αντικειμενοποιηθεί η εμπειρία τους και θα τους δοθεί η ευκαιρία να γνωρίσουν, να αντιμετωπίσουν, να ερμηνεύσουν, να κατανοήσουν και να ελέγξουν τον κόσμο που τα περιβάλλει (Τζεκάκη, 2002). Το περιβάλλον μάθησης που δομείται στο χώρο του Νηπιαγωγείου ευνοεί τα παιδιά να μάθουν με ποικίλους τρόπους: με ατομικό και κοινωνικό παιχνίδι, με μίμηση άλλων, με εξερευνήσεις, με ομαδικές δραστηριότητες (Woodhead, 1999). Στον εκπαιδευτικό δίνεται η ευκαιρία να υποστηρίζει τις αυθόρμητες εκδηλώσεις παιγνιδιού των παιδιών, να διδάσκει δεξιότητες πολιτιστικά ενταγμένες στην καθημερινότητά τους, να ενθαρρύνει αξίες αναμενόμενης συμπεριφοράς από την κοινωνία και να τα βοηθά να ερμηνεύουν τις πολυπλοκότητες του κοινωνικού τους περιβάλλοντος (Χιονίδου,2002). Η έννοια της Διαθεματικότητας Ως διαθεματικότητα ορίζουμε τον τρόπο οργάνωσης του αναλυτικού προγράμματος που καταργεί ως πλαίσιο επιλογής και οργάνωσης της σχολικής γνώσης τα διακριτά μαθήματα και αντιμετωπίζει τη γνώση ως ολότητα, την οποία προσεγγίζει μέσα από τη συλλογική συνήθως διερεύνηση θεμάτων, ζητημάτων και προβληματικών καταστάσεων, που παρουσιάζουν ενδιαφέρον, σύμφωνα με τα κριτήρια των μαθητών (Ματσαγγούρας,2002). Διαθεματικότητα επομένως σημαίνει, ότι καταλύουμε τα όρια μεταξύ των επιμέρους επιστημονικών πεδίων και αναδεικνύουμε ένα θέμα που απαντά στα ενδιαφέροντα, στις εμπειρίες και στα βιώματα των μαθητών. Προσεγγίζουμε ολιστικά τη γνώση και διαχειριζόμαστε τις συναφείς Επιστήμες, για να μελετήσουμε το θέμα το οποίο επιλέξαμε. Στη διδασκαλία των Μαθηματικών ενσωματώνουμε την προωθημένη μορφή διαθεματικότητας στην οποία έχουμε ενοποίηση των γνώσεων που έχουν κοινά χαρακτηριστικά σε όλες τις Επιστήμες (μακροέννοιες) ώστε να εφοδιάζονται οι μαθητές με μακροδεξιότητες. Στην Προσχολική Αγωγή, όπου το Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων Σπουδών προσδιορίζει τις κατευθύνσεις Προγραμμάτων σχεδιασμού και ανάπτυξης δραστηριοτήτων, η διαχείριση των μαθηματικών εννοιών δε μπορεί παρά να προσεγγίζεται μέσα από διαθεματική ενιαιοποίη ση και διεπιστημονική διασύνδεση. Η μάθηση των μαθηματικών εννοιών τοποθετείται μέσα σε αυθεντικά πλαίσια και συνδέει άμεσα το σχολείο με τη ζωή της κοινωνίας. Ο εκπαιδευτικός σε συνεργασία με τους μαθητές οργανώνει θεματικά πεδία και καθορίζει διδακτικές και μαθησιακές δραστηριότητες που έχουν άμεση αναφορά στα ενδιαφέροντα και στις ανάγκες των μαθητών. 2

3 Κύρια χαρακτηριστικά της διαθεματικής προσέγγισης Τα κύρια χαρακτηριστικά της διαθεματικής προσέγγισης είναι α) η οργάνωση της σχολικής γνώσης γύρω από θέματα ευρύτερου ενδιαφέροντος και β) η ενεργός εμπλοκή των μαθημάτων στις διαδικασίες διερεύνησης των υπό μελέτη θεμάτων. Οι διδακτικές αρχές της διαθεματικής προσέγγισης εστιάζονται στις: αρχή της παιδοκεντρικότητας αρχή της αυτενεργού μάθησης αρχή της συνδιερεύνησης αρχή της παροχής πληροφοριών αρχή της ολιστικής προσέγγισης Το ΔΕΠΠΣ για το Νηπιαγωγείο προσδιορίζει τις κατευθύνσεις των Προγραμμάτων σχεδιασμού και ανάπτυξης δραστηριοτήτων Γλώσσας, Μαθηματικών, Μελέτης Περιβάλλοντος, Δημιουργίας και Έκφρασης (Εικαστικά, Δραματική Τέχνη, Μουσική, Φυσική, Φυσική Αγωγή) και Πληροφορική. Βασικούς κρίκους διασύνδεσης του περιεχομένου των προγραμμάτων και προώθησης της διαθεματικότητας αποτελούν ορισμένες θεμελιώδεις διαθεματικές έννοιες των διαφόρων επιστημών μερικές από τις οποίες είναι οι εξής (ΔΕΠΠΣ,2002): Aλληλεπίδραση (συνεργασία,εξάρτηση, ενέργεια ), Επικοινωνία(κώδικας, πληροφορία ), Σύστημα(ταξινόμηση ), Μεταβολή, Πολιτισμός (παράδοση ), Ομοιότητα-Διαφορά(ισότητα-ανισότητα ), Μονάδα-Σύνολο Μεταβολή(εξέλιξη) Διδακτική προσέγγιση των μαθηματικών εννοιών «Τη στιγμή που το παιδί για πρώτη φορά οικειοποιείται μια καινούργια γι αυτό σημασία ή ορολογία που είναι φορέας μιας επιστημονικής έννοιας, 3

4 ο σχηματισμός της δεν έχει ολοκληρωθεί αλλά μόλις αρχίζει» (Vygotsky,1934). Τα χαρακτηριστικά των μαθηματικών εννοιών δίνουν τα κριτήρια και το επίπεδο κατάκτησής τους από το παιδί. Οι ιδιαιτερότητές τους, οι συνθήκες ανάπτυξής τους, το εννοιολογικό πλαίσιο αναφοράς, οριοθετούν την έκταση και το βάθος στο οποίο μπορεί να επεκταθεί μια ενδεχόμενη μάθηση. H κατάσταση της μαθηματικής γνώσης αποτελεί μία διαρκή διαδικασία επαναδόμησης, όπου η καινούργια γνώση δεν προκαλεί μόνο αύξηση της ποσότητας της γνώσης αλλά και επαναδιάταξη της ήδη προϋπάρχουσας (Κολέζα, 2000). Η αποκτημένη γνώση εξαρτάται από το πλαίσιο μέσα στο οποίο αποκτιέται και επηρεάζει τη μετέπειτα γνωστική πορεία του παιδιού. Η προσέγγιση των εννοιών μέσα από διαθεματικές προσεγγίσεις δημιουργεί ένα κράμα γνωστικών αντικειμένων μέσα από το οποίο η έννοια αποκτά νόημα και μεγαλύτερη αξία για το παιδί (Σιακαλλή,1999). Η ποικιλία από θεματικές ενότητες που μοιράζονται την ίδια εννοιολογική τοποθέτηση συμβάλλει στη βαθύτερη κατανόηση και αποτελεί μια προσπάθεια σύνθεσης και σύνδεσης μαθημάτων, στόχων και δραστηριοτήτων (Erickson,1995).H γνώση προσεγγίζεται ανάμεσα στις διαφορετικές γνωστικές περιοχές μέσα από το παιχνίδι, τη διερεύνηση, την αξιοποίηση διαφόρων πηγών πληροφόρησης, τη συζήτηση, την ανταλλαγή απόψεων, τη δημιουργία, την παρουσίαση ιδεών και στηρίζεται στις προϋπάρχουσες γνώσεις, στα βιώματα και τις εμπειρίες των παιδιών (Γκλιάου, 2002). Όταν οι ενήλικοι προσπαθούν να επιβάλουν μαθηματικές έννοιες σε ένα παιδί πρόωρα, η μάθησή του είναι καθαρά λεκτική. Η αληθινή κατανόηση αυτών των εννοιών συμβαδίζει με τη νοητική του ανάπτυξη (Hughes,1999). Τα στάδια νοητικής ανάπτυξης στη θεωρία του Piaget, στις σημερινές κοινωνικές συνθήκες έχουν περιορισμένη εφαρμογή, γιατί τα στάδια δε διαχωρίζονται από ακριβή όρια, αν και οι μεταβατικές καταστάσεις ανάμεσά τους γίνονται βαθμιαία. Οι τρόποι σκέψης επίσης ενός παιδιού ποικίλουν μέσα στις διάφορες καταστάσεις εμπειρίας. Επιπλέον, όταν έχουμε να κάνουμε με μεγάλες ομάδες παιδιών, θα υπάρχουν παιδιά διαφόρων σταδίων μέσα στην ίδια ομάδα. Σε μια τάξη νηπίων μερικά θα παρουσιάζουν προεννοιακή σκέψη, άλλα ενορατικές παραστάσεις και μερικά θα ενεργούν με συγκεκριμένες ενέργειες (Ρίτσμοντ, 1970). Σύμφωνα με τη θεωρία του Vygotsky ο προσδιορισμός του βαθμού νοητικής ανάπτυξης του παιδιού γίνεται όχι μόνο με τη βοήθεια του νοητικού επιπέδου στο οποίο βρίσκεται αλλά και με βάση τη «ζώνη της 4

5 επικείμενης ανάπτυξής του». Το παιδί επομένως δεν πρέπει να διδάσκεται στο σχολείο μόνο αυτό που μπορεί να κάνει αυτοδύναμο αλλά αυτό που του είναι προσιτό με τη συνεργασία του δασκάλου και υπό την καθοδήγησή του. Το βασικό θέμα στη διδασκαλία είναι ακριβώς αυτό το καινούργιο που μαθαίνει το παιδί. Η ζώνη της επικείμενης ανάπτυξης, η οποία καθορίζει την περιοχή των προσιτών για το παιδί μεταβάσεων, είναι ακριβώς το καθοριστικό στοιχείο της διδασκαλίας. Ο Bruner διατύπωσε περισσότερο τις επιστημονικές του θέσεις ως «μια θεωρία διδασκαλίας» και όχι ως μια «θεωρία μάθησης». Όπως επισημαίνει «μια θεωρία διδασκαλίας εμπεριέχει και τις θεωρίες μάθησης και εξέλιξης καθώς επίσης και τη φύση του ιδιαίτερου αντικειμένου που θα διδαχθεί» (Κολιάδης,1997). Ο Bruner δέχεται ότι η γνωστική ανάπτυξη του ατόμου ακολουθεί μια σειρά από επάλληλα εξελικτικά στάδια. Κάθε επόμενο στάδιο αποτελεί έναν πολυπλοκότερο τρόπο εσωτερικής αναπαράστασης της εξωτερικής πραγματικότητας και περιγράφει τρεις τρόπους αναπαράστασης της γνώσης: Πραξιακή αναπαράσταση: το παιδί μαθαίνει μέσα από τη δράση, τη μίμηση και το χειρισμό των αντικειμένων (αισθησιοκινητικό στάδιο στον Piaget). Εικονιστική αναπαράσταση: το παιδί αναπαραστά τον εξωτερικό κόσμο μέσω εσωτερικών πνευματικών εικόνων. Δεν υπάρχει όμως πλήρης διαχωρισμός ανάμεσα στο εξωτερικό αντικείμενο και στο αντίστοιχο εσωτερικό σύμβολο. Γι αυτό θα πρέπει να χρησιμοποιείται μεγάλη ποικιλία από εποπτικά μέσα κατά τη διάρκεια της διδασκαλίας (προεννοιολογικό στάδιο και στάδιο των συγκεκριμένων λογικών πράξεων του Piaget). Συμβολική αναπαράσταση: το παιδί αναπαριστά την εξωτερική πραγματικότητα με αφηρημένα σύμβολα τα οποία μπορεί να χειρίζεται εσωτερικά, όπως λέξεις, μαθηματικά σύμβολα, σήματα κ.λ.π. (στάδιο των συγκεκριμένων λογικών πράξεων και στάδιο της αφαιρετικής σκέψης του Piaget). Σύμφωνα με τη θεωρία κατασκευής της γνώσης η μάθηση των μαθηματικών ερμηνεύεται είτε ως μια διαδικασία ατομικής οικοδόμησηςριζοσπαστικός κονστρουκτιβισμός- είτε ως μια διαδικασία κοινωνικοποίησης στις μαθηματικές σημασίες και τεχνικές της ευρύτερης κοινωνίας -κοινωνικο-πολιτισμικός κονστρουκτιβισμός-( Κασιμάτη,2001). Σύμφωνα με τους κονστρουκτιβιστές (συνέχεια του Piaget) η μαθηματική μάθηση είναι μια διαδικασία εννοιολογικής αναδιοργάνωσης. Για τους κοινωνικοπολιτισμικούς (συνέχεια του Vygotsky) η μάθηση είναι μια 5

6 διαδικασία κοινωνικο-πολιτισμικής μεταφοράς. Ο Cobb (1994) υπογραμμίζει ανάμεσα στις δύο προσεγγίσεις, οριακές ερμηνευτικές διαστάσεις, αφού η σχέση μεταξύ της αμοιβαίας οικοδόμησης της κοινωνικής γνώσης και της ιδιαίτερης εμπειρίας της κοινωνικής ζωής είναι διαλεκτική. Σχηματισμός εννοιών Ο σχηματισμός εννοιών διέρχεται διάφορα στάδια, ανάλογα με το στάδιο ανάπτυξης που βρίσκεται το παιδί. Η γενετική θεωρία του Piaget, αντιστοιχίζει το παιδί της προσχολικής ηλικίας στην προσυλλογιστική περίοδο ανάπτυξης, η οποία διαδέχεται την αισθησιοκινητική περίοδο και χωρίζεται α) στην προεννοιολογική περίοδο (3 ο και 4 ο έτος) και β) στη διαισθητική περίοδο (5 ο και 6 ο έτος). Η διαισθητική περίοδος θεωρείται ως μεταβατική από την προεννοιολογική περίοδο, στην περίοδο των συγκεκριμένων λογικών ενεργειών. Κατά την προεννοιολογική περίοδο το νήπιο χρησιμοποιεί προέννοιες, που μπορούν να ορισθούν ως έλλειψη σχέσης εγκλεισμού των στοιχείων ενός συνόλου και άμεση ταύτιση των επί μέρους στοιχείων μεταξύ τους, χωρίς τη μεσολάβηση του συνόλου. Η προέννοια είναι το ενδιάμεσο ανάμεσα στο εικονοποιημένο σύμβολο και την έννοια αυτή καθ αυτή (Ρίτσμοντ, 1970). Η σημαντική κατάκτηση της διαισθητικής περιόδου είναι ότι παράλληλα με την έντονη παρουσία της συμβολικής λειτουργίας, το παιδί αρχίζει να σχηματίζει έννοιες. Εμφανίζονται τρεις βασικές λειτουργίες κατά τη διαισθητική περίοδο α) η ικανότητα του παιδιού να σχηματίζει λογικές κατηγορίες. Σε αυτό το στάδιο μπορεί να διαχειριστεί τις διαθεματικές έννοιες, Γλώσσα, Δημιουργία και Έκφραση β) η ικανότητα να διακρίνει σχέσεις διαθεματική έννοια Μελέτη Περιβάλλοντος και γ) η ικανότητα να χειρίζεται αριθμητικές έννοιες -διαθεματική έννοια Πληροφορική. Σύμφωνα με την αναπτυξιακή θεωρία του Vygotsky η εξελικτική πορεία των εννοιών περνά από τρεις βαθμίδες Στην πρώτη βαθμίδα της συγκριτικής σκέψης, που εμφανίζεται στα παιδιά της προσχολικής ηλικίας, η σημασία των λέξεων είναι συγκεχυμένη, απροσδιόριστη και αδιαμόρφωτη, γιατί τα αντικείμενα στα οποία αντιστοιχούν οι έννοιες συνδέονται μεταξύ τους, στην αισθητήρια αντίληψή τους, κατά τρόπο συγκριτιστικό, χωρίς δηλαδή επαρκή εσωτερική συγγένεια και σχέση ανάμεσά τους. 6

7 Στη δεύτερη βαθμίδα της συμπλεκτικής σκέψης, το παιδί αρχίζει να συνενώνει ομοειδή αντικείμενα σε μια ομάδα, συγκροτώντας τα σε συμπλέγματα σύμφωνα με τους νόμους των αντικειμενικών σχέσεων, που έχει ήδη ανακαλύψει μέσα στα πράγματα. Στην τρίτη βαθμίδα της εννοιολογικής σκέψης, κάνει την εμφάνισή της η γνήσια έννοια, η οποία δεν προϋποθέτει μόνο τη συνένωση και γενίκευση των ξεχωριστών συγκεκριμένων εμπειρικών στοιχείων, αλλά και την απόσπαση, την αφαίρεση και την απομόνωση των επιμέρους στοιχείων, δηλαδή την ικανότητα της θεώρησης των στοιχείων έξω από τη συγκεκριμένη σύνδεση, με την οποία μας είναι δοσμένα στην εμπειρία. Βέβαια, παρά την ικανότητα του παιδιού στο στάδιο αυτό του σχηματισμού των γνήσιων εννοιών, υπάρχει ακόμη απόκλιση ανάμεσα στο σχηματισμό της έννοιας και στο λεκτικό ορισμό της, καθόσον η μετάβαση από το αφηρημένο στο συγκεκριμένο αποδεικνύεται εξίσου δύσκολη με την άνοδο από το συγκεκριμένο στο αφηρημένο. Είδη γνώσεων O Piaget διακρίνει τρία είδη γνώσεων: Την κοινωνική, τη φυσική και τη λογικομαθηματική. Η κοινωνική γνώση μεταδίδεται από τον ενήλικαδιαθεματικές έννοιες Αλληλεπίδραση, Πολιτισμός, Επικοινωνία. Η φυσική γνώση προέρχεται από τις φυσικές ιδιότητες των αντικειμένων -διαθεματικές έννοιες Μεταβολή, Ομοιότητα, -Διαφορά. Το παιδί για να ανακαλύψει τις φυσικές ιδιότητες των αντικειμένων πρέπει να ενεργήσει πάνω σ αυτά και να ανακαλύψει τις αντιδράσεις τους στις ενέργειές του. Σημαντικό μέρος της διαδικασίας συγκράτησης της φυσικής γνώσης είναι η απλή αφαίρεση (η αφαίρεση των ιδιοτήτων, που παρατηρούνται μέσα στα πράγματα ή γενικά στην εξωτερική πραγματικότητα). Η φυσική γνώση συγκροτείται μέσα σε ένα λογικομαθηματικό πλαίσιο. Η λογικομαθηματική γνώση δημιουργείται με τη διαδοχική αφαίρεση και έχει ως πηγή το ίδιο το υποκείμενο -διαθεματικές έννοιες Σύστημα, Μονάδα-Σύνολο. Στη σκεπτόμενη αφαίρεση το παιδί δημιουργεί και εισάγει σχέσεις ανάμεσα στα πράγματα. Χωροχρονικές έννοιες (Διαθεματική έννοια -Διάσταση) Οι δεξιότητες στο χώρο στρέφονται προς δύο κυρίως κατευθύνσεις. Η πρώτη ασχολείται με το χώρο και συνδέεται με την εξελικτική Ψυχολογία, σύμφωνα με την οποία οι πρώτοι μετασχηματισμοί του παιδιού είναι αυτοί που διατηρούν τις τοπολογικές ιδιότητες των αντικειμένων και μόνο 7

8 αργότερα το παιδί είναι ικανό να μεταφέρει στο δικό του αναπαραστασιακό χώρο τις ευκλείδειες ιδιότητες των αντικειμένων. Η δεύτερη ασχολείται με τη Γεωμετρία και έχει ως αντικείμενο δεξιότητες και διαδικασίες, όπως αυτές του προσανατολισμού. Προσανατολισμός για το παιδί στο χώρο σημαίνει ότι κατευθύνεται αρχικά με ένα σύστημα αναφοράς επικεντρωμένο στο σώμα του και αργότερα μεταφέρει το σύστημα αναφοράς έξω από το σώμα του. Το παιδί βλέπει τον εαυτό του (το Εγώ του) και τα πράγματα του εξωτερικού κόσμου σε αλληλεξάρτηση μέσα στο χώρο και αυτοδιευθύνεται-αυτοκατευθύνεται μέσα στο χώρο. αξιολογεί τις κινήσεις του από χωροχρονική άποψη τοποθετείται μέσα στο χώρο ενεργεί και περνάει σε δραστηριότητες (Κοντοδήμας,1986). Σύμφωνα με το Metleau-Ponty με το σώμα μου συνειδητοποιώ τα εξωτερικά αντικείμενα, τα χειρίζομαι, τα εποπτεύω και τα περιβάλλω. Το παιδί ανακαλύπτοντας το χώρο (ετερογνωσία), αυτοανακαλύπτεται (αυτογνωσία). Οι πρώτες χωρικές σχέσεις που παρατηρεί το παιδί και διατηρεί και στο σχέδιό του είναι οι τοπολογικές ιδιότητες για την παιδική αναπαράσταση του χώρου και οι σχέσεις όπως εσωτερικό, εξωτερικό, σύνορο κ.α (Πατρώνης, 2001). Οι τοπολογικές σχέσεις αφορούν αμοιβαίες σχέσεις αντικειμένων, χωρίς κάποιο να παίζει έναν ιδιαίτερο ρόλο ένα από τα δύο αντικείμενα. Στις τοπολογικές σχέσεις αντιστοιχούν καταστάσεις στις οποίες δεν παρεμβαίνει η γενική μορφή των αντικειμένων ή τα μεγέθη αλλά ο εγκλεισμός, ο διαχωρισμός, η γειτνίαση, η συνέχεια, η διαδοχή ή η επαφή περιγραμμάτων και σημείων. Προσέγγιση των ποιοτικών σχέσεων (Σύστημα, Μεταβολή) Το παιδί οδηγείται από την αντίληψη του χώρου και του χρόνου προς τις συγκρίσεις και τις ομαδοποιήσεις των στοιχείων με στόχο την επεξεργασία αρχικά ποιοτικών και αργότερα ποσοτικών συγκρίσεων και σχέσεων Η προσέγγιση των ποιοτικών σχέσεων έχει ως στόχο να βοηθήσει τα παιδιά να γίνουν ικανά να επεξεργάζονται και να νοηματοδοτούν τις πληροφορίες που προσλαμβάνουν μέσω των αισθήσεων. Ο σχηματισμός της ενορατικής αναπαράστασης των αντικειμένων και των καταστάσεων στις οποίες βρίσκονται τα παιδιά και η λεκτική διατύπωσή τους, απαιτούν διαδικασίες 8

9 ομαδοποίησης, ταξινόμησης, αφαίρεσης χαρακτηριστικών, γενίκευσης και συμβολισμού. Η έννοια της ταξινόμησης (Σύστημα) Η ταξινόμηση είναι μια βασική λογικομαθηματική έννοια. Στο προεννοιολογικό στάδιο όταν μιλάμε για ταξινόμηση αναφερόμαστε στο μηχανισμό με τον οποίο το παιδί σημειώνει ομοιότητες και διαφορές ανάμεσα στα πράγματα και ξεχωρίζει τα όμοια. Είναι η διαδικασία μέσα από την οποία η σκέψη των παιδιών απομονώνει ορισμένα γνωρίσματα που είναι κοινά σε κάποια αντικείμενα και συνθέτει ένα σχέδιο δράσης. Το παιδί στις επιλογές ταξινόμησης αντικειμένων παρουσιάζει ελλείψεις. O σχηματισμός εννοιών δομεί την ικανότητα του παιδιού να ομαδοποιεί και να ταξινομεί τα διάφορα αντικείμενα, γεγονότα ή καταστάσεις σε ομάδες με βάση κάποιο κοινό τους γνώρισμα. Ο Piaget πιστεύει ότι τα παιδιά μπορούν να παρατηρούν διαφορές και ομοιότητες και να ομαδοποιούν αντικείμενα καθώς και να μπορούν να τα ταξινομούν, δεν μπορούν όμως να μάθουν να ταξινομούν, να βάζουν κατά σειρά ή να χρησιμοποιούν έννοιες σχετικά με τους αριθμούς. Οποιοδήποτε κριτήριο «εφευρίσκει» το παιδί για το σχηματισμό ομάδας θεωρείται σωστό, εφόσον το χρησιμοποιεί με συνέπεια. Ο στόχος στην ταξινόμηση δεν είναι να καταλάβει το παιδί τον τρόπο με τον οποίο επιθυμεί ο παιδαγωγός να ταξινομούνται τα πράγματα. Το παιδί πρέπει να συναισθάνεται το σκοπό για τον οποίο σχηματίζει και ανασχηματίζει διάφορες ομάδες. Να κάνει επεξεργασία ιεραρχήσεων και υποκατηγοριών. Αυτό που προέχει είναι να μάθουν τα παιδιά τη διαδικασία της δημιουργίας και της υποβολής μιας λογικής δομής στην ασάφεια που χαρακτηρίζει τον πραγματικό κόσμο. Η ταξινόμηση γίνεται συνήθως με βάση μια σκοπιμότητα χρήσης ή οργάνωσης των αντικειμένων που μας περιβάλλουν. Ενοποιεί τα αντικείμενα αυτά με βάση τα κοινά τους γνωρίσματα, τα εγκλείει, τα συνθέτει, τα ταξινομεί και τα κατανομάζει. Οι γνωστικές διεργασίες που απαιτούνται για την εκτέλεση πράξεων ταξινόμησης, βασίζονται γενικά στην ικανότητα διαφοροποίησης (δηλαδή αναγνώρισης διαφορών μεταξύ στοιχείων), καθώς και ένταξης (δηλαδή σύνθεσης διαφορετικών στοιχείων σε ένα ενιαίο σύνολο). 9

10 Έννοια του αριθμού Δύο από τα έργα που χρησιμοποίησε ο Piaget, για να μελετήσει τη μετάβαση από την προεννοιολογική στη συγκεκριμένη σκέψη έχει σαφώς σχέση με την έννοια του αριθμού. Αυτά τα δύο προβλήματα της «συμπερίληψης σε ομάδα» και της «διατήρησης» είναι κεντρικής σημασίας για τις απόψεις του Piaget, πάνω στην πρώτη μαθηματική εκπαίδευση. Το πρόβλημα της «συμπερίληψης σε ομάδα» σχεδιάστηκε για να είναι δοκιμασία για την ικανότητα των παιδιών να συγκρίνουν ένα σύνολο με ένα υποσύνολό του ή ένα όλο με ένα μέρος του όλου. Το παιδί μπορεί να εστιάσει την προσοχή του είτε στο σύνολο είτε στο υποσύνολο, αλλά δεν μπορεί ποτέ να λάβει υπόψη του και τα δύο συγχρόνως. Το δεύτερο έργο που είναι κρίσιμο στη θεώρηση του Piaget, για την πρώιμη μαθηματική σκέψη αφορά τη «διατήρηση των αριθμών». Ο Piaget, ισχυρίζεται ότι τα παιδιά κάτω των επτά χρόνων δε διατηρούν συνήθως τον αριθμό. Απαντούν, πιστεύοντας ότι η αλλαγή του μήκους του πλήθους της σειράς αλλάζει τον πληθικό αριθμό. Σύμφωνα με τον Piaget η διατήρηση και η συμπερίληψη σε ομάδα δεν είναι πρωταρχικά μαθηματικές, αλλά λογικές ιδέες. Οι μαθηματικές έννοιες αναπτύσσονται μέσα από την επίλυση προβλημάτων. H Donaldson επικρίνει τις έννοιες «συμπερίληψη» και «διατήρηση». Στη συμπερίληψη το παιδί εστιάζει την προσοχή του στις διαφορές ανάμεσα στις υποομάδες, ενώ του ζητείται η διάκριση ανάμεσα στην υποομάδα και τη συνολική ομάδα. Στη δε διατήρηση, οι ενέργειες του ενηλίκου υπονοούν μια συγκεκριμένη ερμηνεία, ενώ η ερώτηση προς τα παιδιά απαιτεί διαφορετική ερμηνεία. H Donaldson ισχυρίζεται ότι τα παιδιά θα συναντήσουν μεγάλη δυσκολία στη μάθηση των μαθηματικών, αν η γλώσσα των ενηλίκων δεν τους είναι αντιληπτή (μη ενσωματωμένη σκέψη). Στην ικανότητα του παιδιού για αρίθμηση στηρίζεται η ανάπτυξη των πρώτων αριθμητικών εννοιών υποστηρίζουν σύγχρονοι ερευνητές (Bideaud, Meljack& Fisher,1992,Steffe, von Glaserfeld, Richards &Cobb,1983,Steffe & Cobb,1988). Μέσα από τη δημιουργία ενός μοντέλου περιγράφεται εξελικτικά η κατασκευή του αριθμού από το παιδί (Καφούση,2000). Η αρίθμηση ορίζεται ως η απαγγελία μιας σειράς αριθμολέξεων, έτσι ώστε κάθε αριθμολέξη να συνδέεται με μια αριθμήσιμη μονάδα. Σύμφωνα με τη διάκριση αυτή, αρχικά, τα παιδιά έχουν την ικανότητα να αριθμούν μόνο αντικείμενα που γίνονται ορατά από τις αισθήσεις τους. Αργότερα, τα παιδιά μπορούν να θεωρούν ως αριθμήσιμες μονάδες και αντικείμενα που 10

11 δεν είναι διαθέσιμα στο αντιληπτικό τους πεδίο. Η ικανότητά τους αυτή τους επιτρέπει, να βρουν με τη βοήθεια της αρίθμησης πόσα είναι όλα τα αντικείμενα μιας συλλογής που ένα μέρος της δεν είναι ορατό. Συνήθως, στην περίπτωση αυτή τα παιδιά σχηματίζουν στο μυαλό τους εικόνες των συλλογών των αντικειμένων που αριθμούν. Οι φυσικές κινήσεις που χρησιμοποιούνται αυθόρμητα από τα παιδιά όταν αριθμούν (π.χ κινήσεις δακτύλων) αποτελούν ένα πιο εξελιγμένο είδος μονάδων αρίθμησης (Fuson,1982,van den Brink,1981). Επίλυση προβλημάτων μέσα από τη δημιουργία διδακτικών καταστάσεων Η άποψη του Piaget για την επίλυση προβλημάτων σχετίζεται με τις απόψεις του για το πώς και γιατί συμβαίνει η ανάπτυξη. Τα προβλήματα τα οποία από τη φύση τους αποτελούν προκλήσεις για την υπάρχουσα κατανόηση, έχουν το δυναμικό για να διεγείρουν τη γνωστική ανάπτυξη. Όταν οι καθημερινές δραστηριότητες εκτελούνται μηχανικά, λίγα μόνο πράγματα αποκαλύπτονται για τη συλλογιστική των παιδιών. Αντίθετα, όταν τα παιδιά αντιμετωπίζουν ασυνήθιστα προβλήματα, οι στρατηγικές για τη λύση τους αποκαλύπτουν τη λογική τους. Σύμφωνα με τον Vygotsky, η κατανόηση των τρόπων με τους οποίους ο κοινωνικός κόσμος συμβάλλει στη σκέψη των παιδιών και καθορίζει τη δυνατότητά τους να επιλύουν προβλήματα, είναι η ζώνη της επικείμενης ανάπτυξης (ΖΕΑ), το κοινωνικό πλαίσιο υποστήριξης και τα πολιτισμικά εργαλεία. Με την έννοια της Ζώνης Εγγύτερης Ανάπτυξης (ΖΕΑ) ορίζει την απόσταση ανάμεσα στο πραγματικό αναπτυξιακό επίπεδο (αυτό που έχει ολοκληρωθεί), όπως προσδιορίζεται από την ανεξάρτητη λύση προβλημάτων και το ανώτερο επίπεδο της εν δυνάμει ανάπτυξης, όπως προσδιορίζεται από τη λύση προβλημάτων υπό την καθοδήγηση των ενηλίκων(vygotsky, 1997). Το κοινωνικό πλαίσιο στήριξης, περιλαμβάνει τη βοήθεια προς τα παιδιά για να σκεφτούν τον κατάλληλο τρόπο τηs μοντελοποίησης επίλυσης προβλημάτων. O κοινωνικός κόσμος επηρεάζει επίσης τη γνωστική ανάπτυξη, παρέχοντας μια ποικιλία εργαλείων για την επίλυση προβλημάτων.o πολιτισμός, ως σύνολο, μεταδίδει συμπεριφορές και αξίες που επηρεάζουν τη γνωστική ανάπτυξη (Fuson, 1988). Η μοντελοποίηση επίσης επιδιώκει τη συγκρότηση της μαθηματικής σκέψης των παιδιών. Ο εκπαιδευτικός επιλέγει κατάλληλα προβλήματα που θα συμβάλουν στα γνωστικά αποτελέσματα που επιθυμεί. Ανάμεσα στη στιγμή που ο μαθητής δέχεται το πρόβλημα ως δικό του και στη στιγμή που 11

12 επιλέγει την απάντησή του, ο εκπαιδευτικός δεν παρεμβαίνει. Συμμετέχει σε ένα παιχνίδι με το σύστημα των αλληλεπιδράσεων του μαθητή με το πρόβλημα που του θέτει αυτός. Η μοντελοποίηση μας εισάγει σχέσεις ανάμεσα στα πράγματα. H διδακτική σπουδαιότητα ενός μοντέλου συνίσταται στη δυνατότητά του «να γεννά, να παράγει και να αναπαριστάνει ένα απεριόριστο πλήθος ιδιοτήτων, ξεκινώντας από έναν περιορισμένο αριθμό στοιχείων και κανόνων που συνδυάζονται μεταξύ τους»(κλαουδάτος, 1997) Ο τρόπος με τον οποίο τα παιδιά δομούν την πραγματικότητα και επεξεργάζονται τις απαντήσεις τους στα προβλήματα συνδέεται με τις παραστάσεις τους και τις ερμηνείες που δίνουν στην κατάσταση. Η μεταφορά ορισμένων γνωστικών στρατηγικών από τον ένα τομέα στον άλλο, η γενίκευση των σχημάτων επίλυσης δε γίνεται άμεσα και απευθείας, αλλά διαμέσου μιας αναλογίας που επιτρέπει στο άτομο να μοντελοποιήσει την καινούργια κατάσταση. Μια σειρά επίσης ερευνητών συμφωνούν ότι τα παιδιά έρχονται στο σχολείο διαθέτοντας μία ποικιλία από αυτοσχέδιες στρατηγικές λύσεων μαθηματικών προβλημάτων (Carpenter & Moser,1982, Steffe,Cobb & Glasersferd, 1988). H μετάβαση από τις αυθόρμητες γνώσεις των παιδιών στις τυποποιημένες μαθηματικές γνώσεις αποτελεί το σημαντικότερο ίσως στάδιο της διαδικασίας μάθησης των μαθηματικών. Η διδασκαλία στο σχολείο πολλές φορές υποβαθμίζει τις αυθόρμητες γνώσεις των παιδιών, με αποτέλεσμα να επιβάλει στους μικρούς μαθητές μαθηματικές γνώσεις που συχνά δεν έχουν κανένα νόημα για τους ίδιους. Οι μαθητές επομένως δε θα πρέπει να αρχίσουν τη δραστηριότητα της μάθησης τυχαία αλλά σχεδιασμένα με τη χρήση μεθόδων που οδηγούν στην εξερεύνηση και στην έρευνα. Η υποθετική πορεία μάθησης συμβάλλει προς αυτή την κατεύθυνση σε τρεις άξονες: Τους στόχους της μάθησης που καθορίζουν την κατεύθυνση της διδασκαλίας Τις εκπαιδευτικές δραστηριότητες Την υποθετική διαδικασία της μάθησης δηλαδή μια πρόβλεψη για το πως οι μαθητές σκέπτονται και μαθαίνουν κατά την είσοδό τους σε ένα πλαίσιο εκπαιδευτικών δραστηριοτήτων. Οι κατάλληλα διαμορφωμένες για το παιδί αυτής της ηλικίας καταστάσεις, το προτρέπουν να δράσει, να εμπλακεί, να κινητοποιήσει τις γνώσεις και τις δεξιότητές του. Αν οι γνώσεις που διαθέτει το παιδί δεν είναι αρκετές για να αντιμετωπίσει το «πρόβλημα» (την κατάλληλα 12

13 διαμορφωμένη κατάσταση), τότε θα τις μετασχηματίσει, θα τις επανοργανώσει και θα τις επαναπροσδιορίσει. Οι δραστηριότητες είναι απαραίτητο να πλαισιώνονται με το κατάλληλο υλικό. Αυτό μπορεί να είναι λειτουργικό (για τις ανάγκες ανάδειξης της μαθηματικής έννοιας) ή συνοδευτικό (για τη δημιουργία κινήτρων συμμετοχής). Σημαντικό ρόλο στη διδακτική κατάσταση, κατέχει η απεικόνιση της εμπειρίας που προτείνουμε στο παιδί, η δραματοποίηση της κατάστασης και η σαφής οριοθέτηση της δράσης με τη βοήθεια του υλικού (Τζεκάκη,2002). Επίλογος Η διαθεματική προσέγγιση διδασκαλίας μας διευκολύνει να αποσαφηνίσουμε τον ιδιαίτερο ρόλο των μαθηματικών εννοιών, στην ευρύτερη δομή των πολλαπλών γνωστικών περιοχών. Η διδασκαλία θεμάτων ή δεξιοτήτων χωρίς αποσαφήνιση του ιδιαίτερου ρόλου τους στην ευρύτερη δομή του αντίστοιχου θεματικού γνωστικού πεδίου δεν είναι αποδεκτή διδακτικά (Κολέζα,2000). Μια τέτοια διδασκαλία καθιστά για το παιδί εξαιρετικά δύσκολη τη γενίκευση από αυτά που έχει μάθει στις γνώσεις που καλείται να διαχειριστεί αργότερα. Η μάθηση επίσης, που υστερεί ως προς τη σύλληψη των γενικών αρχών, προκαλεί ελάχιστο νοητικό ενδιαφέρον και διάθεση για αυτοανακάλυψη. Οι γνώσεις επιπλέον που αποκτήθηκαν χωρίς να είναι ενταγμένες στο πλαίσιο μιας συνολικής δομής ξεχνιούνται πολύ γρήγορα από τα παιδιά. Συνολικά, μια σύγχρονη προσέγγιση των μαθηματικών εννοιών θα πρέπει να χαρακτηρίζεται από δύο κύριες τάσεις: Το παιδί να μην αντιμετωπίζεται ως αποδέκτης μαθηματικών εννοιών, οι οποίες προσφέρονται από το διδάσκοντα με τη μορφή αφήγησης ή ερωταπόκρισης, αλλά να εμπλέκεται δυναμικά στη δόμηση της μαθηματικής γνώσης. Η μαθηματική γνώση να αναδεικνύεται μέσα από κατάλληλες και ειδικά διαμορφωμένες διδακτικές δραστηριότητες, προβλήματα και διδακτικές καταστάσεις για το κάθε μαθηματικό αντικείμενο που θα διδαχτεί. Μέσα από τέτοιες προσεγγίσεις τα μαθηματικά αντιμετωπίζονται, όπως πραγματικά είναι, ως μία δημιουργική ανθρώπινη δραστηριότητα. 13

14 Βιβλιογραφία Bideaud, J., Meljack, C. & Fisher, J.P. (Eds) (1992). Pathways to number Children s developing numerical abilities. Hillsdale, NJ:Lawrence Erlbaum Associates. Carpenter,Τ.P & J. M Moser, (1982).The development of addition and subtraction problem-solving skills. In T.P Carpenter, J. M Moser & T.A Romberg (Eds.), Addition and Subtraction: A Cognitive Perspective (pp.9-24) Hillsdale, NJ: Lawrence Erlbaum Associates. Chevallard,Y.(1986).Transposition didactique. Grenoble:Pensee Sauvage. Cobb, P. (1994). Where In the Mind? Constructivist and Socioculturul Perspectives on Mathematical Development. Educational Researcher, 7(23), Cobb,P & Wheatley,G. (1988). Children s initial understanding of ten. Focus on Learning Problems in Mathematics,10(3),1-28. Donald Children s son M., Grieve, R., Pratt, C., (επιμ.)(1984). Early Children s Childhood Development and education. N.Y: Basil Blackwell Erickson, L. (1995). Stirring he head, heart and soul: redefining curriculum and instruction. Corwin Press, Thousand Oaks Fuson, K., C.(1982).An analysis of the counting on solution procedure in addition. In T. Carpenter, J. Moser & T. Romberg (Eds.). Addition and subtraction: A cognitive perspective (pp 67-81). Hillsdale, NJ: Lawrence Errlbaum. Fuson, K.,C.,(1988). Children s Counting and Concept of Number. N.Y: Springer- Verlag. Hughes, M.(1999).Τα παιδιά και η έννοια των αριθμών. Δυσκολίες στην εκμάθηση των μαθηματικών. Βοσνιάδου Σ., (επιμ).αθήνα:gutenberg. Επιστημονική θεώρηση Kamii C.& Devries R.,(1979).Η θεωρία του Jean Piaget και η προσχολική αγωγή. Αθήνα: Δίπτυχο. Metleau-Ponty (Φαινομενολογία) Εκδ.Gallimard, Paris Piaget, J. (2000). Περί Παιδαγωγικής. Σαμαρτζή, Σ. (επιμ.). Αθήνα:Ελληνικά Γράμματα. Steffe, L.P, & Cobb, P. (1988). Construction of arithmetical meanings and strategies. Springer- Verlag. Steffe, L.P, von Glaserfeld, E., Richards J& Cobb,P.,(1983). Children s counting types : philosophy, theory and application. N.Y: Praeger Scientific. Van den Bring, J.(1981). Queries around the number concept. In Psychology of Mathematics Education: Proceedings of the Fifth Conference of the International Group (1), Grenoble: Laboratorie Institut Mathématiques Appliques. (j de Ajuriaguerra Psychiatrie de l enfant) Vygotsky, L.S. (1997). Νους στην Κοινωνία. Αθήνα : Gutenberg. 14

15 Vygotsky,L.S.(1934). Σκέψη και Γλώσσα. Αθήνα :Γνώση,1988. Γκλιάου,Ν.,(2002).Το νέο Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων Σπουδών για το Νηπιαγωγείο. Σύγχρονο Νηπιαγωγείο,27, Δαγδιλέλη,Β.(2000).Οι πολλαπλές διαστάσεις των δραστηριοτήτων με προμαθηματικό περιεχόμενο. Σύγχρονο Νηπιαγωγείο,13, Κασιμάτη, Κατερίνα (2001). Θεωρία κατασκευής της γνώσης (constructivism): Μια σύγχρονη διδακτική προσέγγιση. Πανελλήνιο Συνέδριο Κυθηραικών Μελετών. Κύθηρα. Καφούση, Σ.(2002).Τα Μαθηματικά των παιδιών του Νηπιαγωγείου. Σύγχρονο Νηπιαγωγείο,(13), Κολέζα, Ε.,(2000).Γνωσιολογική και διδακτική προσέγγιση των στοιχειωδών μαθηματικών εννοιών εκδ.leader Books,Αθήνα. Κολέζα,Ε. (2000). Γνωσιολογική και διδακτική προσέγγιση των στοιχειωδών μαθηματικών εννοιών. Αθήνα: Leader Bocks. Κολιάδης Ε.(1997). Θεωρίες μάθησης και εκπαιδευτική πράξη. Αθήνα:Ελληνικά Γράμματα. Κοντοδήμας, Δ. (1986).Εισαγωγή του παιδιού κανονικού/ ειδικού στα Μαθηματικά. Αθήνα: Ρακούγγα. Ν. Κλαουδάτος, Η διδασκαλία των Μαθηματικών ως Λύση Προβλήματος: Ο ρόλος των ερευνητικών δραστηριοτήτων, Ερευνητική Διάσταση Διδακτικής των Μαθηματικών, Θεσσαλονίκη 1997, τχ 2, σ Πατρώνης, Τ.(2001).Θεμελιώδεις μαθηματικές έννοιες και παιδική σκέψη. Αθήνα:Δίπτυχο. Ρίτσμοντ, Π.(1970).Εισαγωγή στον Piaget. Αθήνα: Υποδομή. Σιακαλλή, Μ.(1999).Διαθεματική Προσέγγιση:Διαπλοκή στόχων από διαφορετικές γνωστικές περιοχές. Σύγχρονο Νηπιαγωγείο,10, Τζεκάκη,M.(2002).Μαθηματικές δραστηριότητες για την Προσχολική Ηλικία. Αθήνα :Gutenberg. 15

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Σκο κ π ο ο π ί ο ί τ ης Ε κπαί α δ ί ε δ υ ε σ υ η σ ς η Φυσ υ ι σ κ ι ώ κ ν ώ ν Ε πιστ σ η τ μ η ώ μ ν

Σκο κ π ο ο π ί ο ί τ ης Ε κπαί α δ ί ε δ υ ε σ υ η σ ς η Φυσ υ ι σ κ ι ώ κ ν ώ ν Ε πιστ σ η τ μ η ώ μ ν Σκοποί της Εκπαίδευσης Φυσικών Επιστημών Βασικές Θεωρίες Μάθησης των Φυσικών Επιστημών Η δομή του Ελληνικού Εκπαιδευτικού Συστήματος Η θέση των Φ.Ε και της Γεωλογίας Φυσικές επιστήμες Γεωλογία 1 Εκπαιδευτικοί

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΤΡΟΣ ΟΙΚΟΝΟΜΟΥ ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ Απευθύνεται: Σε κάθε εκπαιδευτικό που ενδιαφέρεται να βελτιώσει και να εκσυγχρονίσει τη διδασκαλία του/της. Στους/ις υποψήφιους/ες

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 ΟΡΙΣΜΟΣ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η έννοια της ανακύκλωσης» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής

Διαβάστε περισσότερα

Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα.

Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα. Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης. Το ελεύθερο παιχνίδι είτε ατομικό,είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να χρησιμοποιούν δημιουργικά

Διαβάστε περισσότερα

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Λαδιάς Αναστάσιος, Σχολικός Σύµβουλος Πληροφορικής Β Αθήνας Μπέλλου Ιωάννα, Σχολικός Σύµβουλος Πληροφορικής

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ

ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ ΘΕΜΑΤΑ ΓΙΑ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ Στις ερωτήσεις πολλαπλών επιλογών για την ειδικότητα των νηπιαγωγών των εκπαιδευτικών πρέπει να δοθεί ιδιαίτερη έμφαση, ακριβώς λόγω του μεγάλου ανταγωνισμού και των υψηλών βαθμολογιών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ ΔΙ.ΜΕ.ΠΑ. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΔΑΣΚΩΝ ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Θέμα Εργασίας ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΕΠΙΜΕΛΕΙΑ: Νάκου Αλεξάνδρα Εισαγωγή στις Επιστήμες της Αγωγής Ο όρος ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ δημιουργεί μία αίσθηση ασάφειας αφού επιδέχεται πολλές εξηγήσεις. Υπάρχει συνεχής διάλογος και προβληματισμός ακόμα

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

Διαφοροποιημένη διδασκαλία: Τι, Πώς, Γιατί

Διαφοροποιημένη διδασκαλία: Τι, Πώς, Γιατί Διαφοροποιημένη διδασκαλία: Τι, Πώς, Γιατί Επιμέλεια: Μαρία Λαζαρίδου Σχολική Σύμβουλος 14 ης Περιφέρειας Π.Ε. Θεσσαλονίκης 3 Μαρτίου 2015-13 ο Δημ. Σχολείο Σταυρούπολης Ενεργός συμμετοχή Καλλιέργεια των

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ Το μάθημα της Θεατρικής Αγωγής θα διδάσκεται από φέτος στην Ε και Στ Δημοτικού. Πρόκειται για μάθημα βιωματικού χαρακτήρα, με κύριο

Διαβάστε περισσότερα

Επαγγελματικές κάρτες

Επαγγελματικές κάρτες Επαγγελματικές κάρτες Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι στον γραμματισμό Θεματική: Τα επαγγέλματα των γονιών της τάξης μας ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ:

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας Οι ΤΠΕ στο Α.Π. του νηπιαγωγείου και η επιμόρφωση των νηπιαγωγών στην αξιοποίηση και εφαρμογή τους στη διδακτική πράξη: Σκέψεις, προβληματισμοί και προτάσεις Συντονίστρια: Γιώτα Παναγιωτοπούλου Σχολ. Σύμβουλος

Διαβάστε περισσότερα

ΤΟ ΑΕΙΦΟΡΟ ΣΧΟΛΕΙΟ ΠΑΡΑΔΕΙΓΜΑ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΜΑΣ ΣΥΣΤΗΜΑΤΟΣ

ΤΟ ΑΕΙΦΟΡΟ ΣΧΟΛΕΙΟ ΠΑΡΑΔΕΙΓΜΑ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΜΑΣ ΣΥΣΤΗΜΑΤΟΣ ΤΟ ΑΕΙΦΟΡΟ ΣΧΟΛΕΙΟ ΠΑΡΑΔΕΙΓΜΑ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΜΑΣ ΣΥΣΤΗΜΑΤΟΣ Δρ Αραβέλλα Ζαχαρίου, Συντονίστρια ΠΕ/ΕΑΑ, ΠΙ aravella@cytanet.com.cy zachariou.a@cyearn.pi.ac.cy Ημερίδα: Πολιτικές

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας.

ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) Περιγραφή του περιεχομένου της ενότητας. Α/Α ΣΤΟΧΟΙ (επιθυμητές γνώσεις-δεξιότητες-ικανότ ητες) ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ (Τίτλοι) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΙΑΡΚΕΙΑ (ενδεικτικά σε ώρες) Το Πρόγραμμα πιστοποιήθηκε από την

Διαβάστε περισσότερα

Γεωργική Εκπαίδευση. Θεματική ενότητα 10 1/2. Όνομα καθηγητή: Αλέξανδρος Κουτσούρης Τμήμα: Αγροτικής Οικονομίας και Ανάπτυξης

Γεωργική Εκπαίδευση. Θεματική ενότητα 10 1/2. Όνομα καθηγητή: Αλέξανδρος Κουτσούρης Τμήμα: Αγροτικής Οικονομίας και Ανάπτυξης Γεωργική Εκπαίδευση Θεματική ενότητα 10 1/2 Όνομα καθηγητή: Αλέξανδρος Κουτσούρης Τμήμα: Αγροτικής Οικονομίας και Ανάπτυξης ΜΑΘΗΣΙΑΚΟΙ ΣΤΟΧΟΙ Οι φοιτητές/τριες πρέπει να είναι ικανοί/ες: α) να αναφέρουν

Διαβάστε περισσότερα

Η ΠΡΩΤΗ ΜΟΥ ΒΟΛΤΑ ΣΤΟ ΔΑΣΟΣ

Η ΠΡΩΤΗ ΜΟΥ ΒΟΛΤΑ ΣΤΟ ΔΑΣΟΣ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 205 Η ΠΡΩΤΗ ΜΟΥ ΒΟΛΤΑ ΣΤΟ ΔΑΣΟΣ (Ένα παραμύθι από μεγάλα παιδιά) Παπαλουκά Κων/να Εκπαιδευτικός Β θμιας Εκπαίδευσης Νηπιοβρεφοκόμος Τσαγκουρνού Ελισάβετ Εκπαιδευτικός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Εισαγωγή Ενεργός συμμετοχή Κοινωνική αλληλεπίδραση Δραστηριότητες που έχουν νόημα Σύνδεση των νέων πληροφοριών με τις προϋπάρχουσες γνώσεις Χρήση στρατηγικών Ανάπτυξη της αυτορρύθμισης και εσωτερική σκέψη

Διαβάστε περισσότερα

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου» ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ «Τα μυστικά ενός αγγείου» ΜΠΙΛΙΟΥΡΗ ΑΡΓΥΡΗ 2011 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΟΥΣΕΙΑΚΗΣ ΑΓΩΓΗΣ «ΤΑ ΜΥΣΤΙΚΑ ΕΝΟΣ ΑΓΓΕΙΟΥ» ΘΕΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Η παρούσα εργασία αποτελεί το θεωρητικό

Διαβάστε περισσότερα

Εισαγωγικό Σημείωμα. Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής

Εισαγωγικό Σημείωμα. Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής Εισαγωγικό Σημείωμα Αγαπητοί γονείς, Η είσοδος στο νηπιαγωγείο είναι ένας από τους σημαντικότερους σταθμούς της ζωής κάθε παιδιού. Οι στέρεες βάσεις και τα θεμέλια της μάθησης και της ολόπλευρης ανάπτυξής

Διαβάστε περισσότερα

«ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ» ΟΙΚΟΔΟΜΗΣΗ ΤΩΝ ΠΡΩΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΥΠΟΛΟΓΙΣΤΗ

«ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ» ΟΙΚΟΔΟΜΗΣΗ ΤΩΝ ΠΡΩΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΥΠΟΛΟΓΙΣΤΗ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 207 «ΠΑΙΧΝΙΔΙΑ ΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ» ΟΙΚΟΔΟΜΗΣΗ ΤΩΝ ΠΡΩΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΥΠΟΛΟΓΙΣΤΗ Κανελλοπούλου Ελένη Μαθηματικός / δασκάλα Μεταπτυχιακή φοιτήτρια

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Θεματικές ενότητες για τις εισαγωγικές εξετάσεις του Μεταπτυχιακού Προγράμματος του Παιδαγωγικού

Διαβάστε περισσότερα

Δραστηριότητες γραμματισμού: Σχεδιασμός

Δραστηριότητες γραμματισμού: Σχεδιασμός Δραστηριότητες γραμματισμού: Σχεδιασμός Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Μαρία Παπαδοπούλου Αν. Καθηγήτρια, Π.Τ.Π.Ε., Π.Θ. mariapap@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι

Διαβάστε περισσότερα

EDUS265 Εκπαιδευτική Τεχνολογία

EDUS265 Εκπαιδευτική Τεχνολογία EDUS265 Εκπαιδευτική Τεχνολογία Χαράλαμπος Βρασίδας www.cardet.org www.unic.ac.cy 2004-2006 CARDET 1 Απόψεις Γιατί οι ορισμοί ενός κλάδου είναι σημαντικοί; Πώς θα ορίζατε τον όρο «Τεχνολογία»; Πώς θα ορίζατε

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Σπουδών (ΑΠΣ) Curriculum Γεωλογίας - Γεωγραφίας Κική Μακρή, Γεωλόγος M.Sc Υπ. Διδάκτορας Διδασκαλίας της Γεωλογίας kmakri@geo.auth.gr Η δομή του Ελληνικού Εκπαιδευτικού Συστήματος Η

Διαβάστε περισσότερα

Master s Degree. www.unic.ac.cy. Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως)

Master s Degree. www.unic.ac.cy. Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως) Master s Degree www.unic.ac.cy Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως) «Σε αυτό το ταξίδι για την ανακάλυψη της γνώσης μας εντυπωσίασε ιδιαίτερα η οργάνωση και το φιλικό κλίμα του Πανεπιστημίου.»

Διαβάστε περισσότερα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα

Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών. Γ Οµάδα Άσκηση Διδακτικής του Μαθήµατος των Θρησκευτικών Γ Οµάδα Διδάσκων: Αθ. Στογιαννίδης Λέκτορας 11ο Μάθηµα Διερεύνηση Προϋποθέσεων Διδασκαλίας - Α : Η θεωρία του Jean Piaget για τη νοητική ανάπτυξη του ανθρώπου

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ

ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Νηπιαγωγείο «Le Petit La Salle» ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Νηπιαγωγείου Κολέγιο «ΔΕΛΑΣΑΛ» Νηπιαγωγείο «Le Petit La Salle» ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΚΟΠΟΣ ΤΟΥ ΝΗΠΙΑΓΩΓΕΙΟΥ Σκοπός του Νηπιαγωγείου είναι να

Διαβάστε περισσότερα

Όταν κοιτάς από ψηλά Σχήµα-Ανάγλυφο της Γης

Όταν κοιτάς από ψηλά Σχήµα-Ανάγλυφο της Γης ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η γη από το διάστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΣΠΟΥΔΩΝ 2010 ΟΔΗΓΟΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ

ΣΠΟΥΔΩΝ 2010 ΟΔΗΓΟΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ 2010 10-2011 ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟ ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ Το Ανοικτό Ίδρυμα Εκπαίδευσης είναι ένα σύγχρονο εκπαιδευτήριο προσανατολισμένο στην

Διαβάστε περισσότερα

Πρακτικές Εκπαίδευσης Ενηλίκων. Επιμόρφωση εκπαιδευτών/τριών Επιμορφωτικών Κέντρων 28-03-2015 Λευκωσία

Πρακτικές Εκπαίδευσης Ενηλίκων. Επιμόρφωση εκπαιδευτών/τριών Επιμορφωτικών Κέντρων 28-03-2015 Λευκωσία Πρακτικές Εκπαίδευσης Ενηλίκων Σύνδεση με τα προηγούμενα: 1. Χαρακτηριστικά ενήλικων εκπαιδευομένων 2. Δεξιότητες επικοινωνίας ενηλίκων εκπαιδευομένων 3. Μεθοδολογία διδασκαλίας για ενήλικες εκπαιδευομένους

Διαβάστε περισσότερα

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe» «Ψηφιακές και Διαδικτυακές εφαρμογές στην Εκπαίδευση» «Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια Εκθέσεων

Διαβάστε περισσότερα

Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press, 2004

Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press, 2004 Τα Μαθηματικά, ένα παιχνίδι. Τζεκάκη, Μ. & Χριστοδούλου, Ι. Στo Π. Χατζηκαμάρη & Μ. Κοκκίδου (επιμ.), Το παιχνίδι στην εκπαιδευτική διαδικασία, Πρακτικά Διημερίδας, 109-118. Θεσσαλονίκη: University Press,

Διαβάστε περισσότερα

Νεοελληνική Γλώσσα. Γ Λυκείου. Τίτλος: «Κοινωνικές Αξίες»

Νεοελληνική Γλώσσα. Γ Λυκείου. Τίτλος: «Κοινωνικές Αξίες» Π.3.2.1 Εκπαιδευτικά σενάρια και μαθησιακές δραστηριότητες, σύμφωνα με συγκεκριμένες προδιαγραφές, που αντιστοιχούν σε 30 διδακτικές ώρες ανά τάξη Νεοελληνική Γλώσσα Γ Λυκείου Τίτλος: «Κοινωνικές Αξίες»

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) 1. 9 Εκπαιδευτική χρήση βασικών εργαλείων πληροφορικής, πολυµεσικών εργαλείων και του διαδικτύου

Διαβάστε περισσότερα

Θεωρίες Μάθησης και ΤΠΕ Συμπεριφορισμός

Θεωρίες Μάθησης και ΤΠΕ Συμπεριφορισμός Θεωρίες Μάθησης και ΤΠΕ Συμπεριφορισμός 3 ο Κεφάλαιο Κόμης, Β. (2004), Εισαγωγή στις Εφαρμογές των ΤΠΕ στην Εκπαίδευση, Αθήνα, Εκδόσεις Νέων Τεχνολογιών 1/46 Σκοπός Μπιχεβιορισμός Η συνοπτική παρουσίαση

Διαβάστε περισσότερα

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΜΑΘΗΣΗ ΜΕΣΩ ΣΧΕΔΙΑΣΜΟΥ 1 ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΙΣΗΓΗΣΗΣ 1. Τι αλλαγές επιχειρούν τα νέα ΠΣ; 2 2. Γιατί το πέρασμα στην πράξη (θα)

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2008 ( ΠΡΟΚΗΡΥΞΗ 3Π /2008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδοι: ΠΕ 05 ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ, ΠΕ 06 ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ, ΠΕ 07 ΓΕΡΜΑΝΙΚΗΣ ΓΛΩΣΣΑΣ,

Διαβάστε περισσότερα

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή:

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή: ΕΥΤΕΡΑ * Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Το ελεύθερο παιχνίδι είτε ατομικό, είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να αναπτύσσονται,

Διαβάστε περισσότερα

ΑΙΘΟΥΣΑ 4. ΕΡΓΑΣΤΗΡΙΟ 2 Θετικές σχέσεις: θεωρία και πράξη

ΑΙΘΟΥΣΑ 4. ΕΡΓΑΣΤΗΡΙΟ 2 Θετικές σχέσεις: θεωρία και πράξη TETARTH 15 ΜΑΪΟΥ 2013 14.00-15.00 ΠΡΟΣΕΛΕΥΣΗ ΣΥΝΕΔΡΩΝ-ΕΓΓΡΑΦΕΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ, ΝΕΑ ΧΗΛΗ ΚΑΡΑΘΕΟΔΩΡΗ ΑΜΦΙΘΕΑΤΡΟ ΑΙΘΟΥΣΑ 9 ΑΙΘΟΥΣΑ 10 ΑΙΘΟΥΣΑ ΣΥΝΕΛΕΥΣΕΩΝ 15.00-17.00 ΕΡΓΑΣΤΗΡΙΟ 1 Σκέφτομαι & Πράττω

Διαβάστε περισσότερα

Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές προσεγγίσεις

Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές προσεγγίσεις Έργο: «Ένταξη παιδιών παλιννοστούντων και αλλοδαπών στο σχολείο - για τη Δευτεροβάθμια Εκπαίδευση (Γυμνάσιο)» Επιμορφωτικό Σεμινάριο Η διαπολιτισμική διάσταση των φιλολογικών βιβλίων του Γυμνασίου: διδακτικές

Διαβάστε περισσότερα

ΘΕΑΤΡΙΚΗ ΑΓΩΓΗ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ. Δρ Χάρις Πολυκάρπου Συντονίστρια Θεατρικής Αγωγής, Γραφείο Αναλυτικών Π.Ι.

ΘΕΑΤΡΙΚΗ ΑΓΩΓΗ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ. Δρ Χάρις Πολυκάρπου Συντονίστρια Θεατρικής Αγωγής, Γραφείο Αναλυτικών Π.Ι. ΘΕΑΤΡΙΚΗ ΑΓΩΓΗ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Δρ Χάρις Πολυκάρπου Συντονίστρια Θεατρικής Αγωγής, Γραφείο Αναλυτικών Π.Ι. Ν.Α.Π. Θεατρικής Αγωγής Ορολογία: «Θεατρική Αγωγή αποτελεί η παιδαγωγική και κοινωνική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

Διδακτική πρόταση για την «Ψηφιακή εικόνα και τα χαρακτηριστικά της»

Διδακτική πρόταση για την «Ψηφιακή εικόνα και τα χαρακτηριστικά της» Διδακτική πρόταση για την «Ψηφιακή εικόνα και τα χαρακτηριστικά της» Καλλιάρας Κωνσταντίνος Καθηγητής Πληροφορικής, 7 ο Γυμνάσιο Τρικάλων kkalliaras@sch.gr ΠΕΡΙΛΗΨΗ Σε αυτή την εργασία παρουσιάζεται μια

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

ΠΡΟΣ: Οι Υπουργοί Εσωτερικών, Αποκέντρωσης και Ηλεκτρονικής Διακυβέρνησης Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων

ΠΡΟΣ: Οι Υπουργοί Εσωτερικών, Αποκέντρωσης και Ηλεκτρονικής Διακυβέρνησης Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ. ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΤΜΗΜΑ Β, ΠΡΟΣΩΠΙΚΟΥ -----

Διαβάστε περισσότερα

«ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21ου αιώνα) Πιλοτική Εφαρμογή, στους Άξονες Προτεραιότητας 1,2,3 -Οριζόντια Πράξη»

«ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21ου αιώνα) Πιλοτική Εφαρμογή, στους Άξονες Προτεραιότητας 1,2,3 -Οριζόντια Πράξη» «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21ου αιώνα) Πιλοτική Εφαρμογή, στους Άξονες Προτεραιότητας 1,2,3 -Οριζόντια Πράξη» Οι Κύκλοι της Επιμόρφωσης κατά την πιλοτική εφαρμογή των νέων ΠΣ και ο ρόλος του Εκπαιδευτικού Αλεξάνδρα

Διαβάστε περισσότερα

ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ

ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ ΜΙΑ ΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ ΜΕ ΧΡΗΣΗ ΠΕΝΤΕ ΙΑΦΟΡΕΤΙΚΩΝ ΛΟΓΙΣΜΙΚΩΝ ΕΝΤΥΠΟ Α ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Ιώ Παπαδηµητρίου 757 Σηµείωση: Θα πρέπει εδώ να σηµειωθεί ότι στην προσχολική αγωγή δε συνηθίζεται

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

Ο Ηλεκτρονικός Υπολογιστής στο Νηπιαγωγείο - Το Λογισμικό Tux Paint

Ο Ηλεκτρονικός Υπολογιστής στο Νηπιαγωγείο - Το Λογισμικό Tux Paint 20 ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΠΑΤΡΑ 28-30/4/2011 1139 Ο Ηλεκτρονικός Υπολογιστής στο Νηπιαγωγείο - Το Λογισμικό Tux Paint Μ. Μπέση1, Λ. Παππά2 1Σχολική Σύμβουλος Νηπιαγωγών, 43η εκπ. Περιφέρεια Άρτας, marinabesi@gmail.com

Διαβάστε περισσότερα

Στρατηγικέςμάθησης- διδακτικά μοντέλα γιατη διδασκαλία τηςστατιστικής.

Στρατηγικέςμάθησης- διδακτικά μοντέλα γιατη διδασκαλία τηςστατιστικής. Στρατηγικέςμάθησης- διδακτικά μοντέλα γιατη διδασκαλία τηςστατιστικής. Ο Bruner, Piaget και Dienes θεωρούνται εκπρόσωποι μιας από τις θεωρίες μάθησης, της θεωρίας της αλληλεπίδρασης. Σύμφωνα με τη θεωρία

Διαβάστε περισσότερα

1o ΤΕΣΤ ΓΕΝΙΚΗΣ ΔΙΔΑΚΤΙΚΗΣ

1o ΤΕΣΤ ΓΕΝΙΚΗΣ ΔΙΔΑΚΤΙΚΗΣ Συντάκτης: Eπιστημονική ομάδα εισηγητών 1o ΤΕΣΤ ΓΕΝΙΚΗΣ ΔΙΔΑΚΤΙΚΗΣ 1. Μάθηση είναι μια διαδικασία κατά την οποία: Α) Η συμπεριφορά του ατόμου δεν μεταβάλλεται Β) Η συμπεριφορά του ατόμου τροποποιείται

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) 2011 Οδηγός

Διαβάστε περισσότερα

ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ. ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ E-learning Εκπαίδευση

ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ. ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ E-learning Εκπαίδευση ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ ΤΑΧΥΡΥΘΜΑ ΣΕΜΙΝΑΡΙΑ ΠΡΟΣΩΠΙΚΗΣ & ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ E-learning Εκπαίδευση ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ 2009-2010 ΤΟ ΑΝΟΙΚΤΟ ΙΔΡΥΜΑ ΕΚΠΑΙΔΕΥΣΗΣ Το Ανοικτό Ίδρυμα Εκπαίδευσης είναι ένα

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Web 1.0, Web 2.0, Σύγχρονη Μάθηση από Απόσταση

Web 1.0, Web 2.0, Σύγχρονη Μάθηση από Απόσταση Τεχνολογίες Πρόσβασης στη Μάθηση Web 1.0, Web 2.0, Σύγχρονη Μάθηση από Απόσταση Χαρίκλεια Τσαλαπάτα 8/11/2012 Μέχρι Στιγμής Αναφερθήκαμε σε Σχεδιασμό μαθησιακής διαδικασίας Μαθησιακά πλάνα Νέες μεθοδολογίες

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Αναπαραστάσεις και Κατανόηση Συνόλων Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Ειρήνη Αριστοτέλους, Χρυστάλλα Περικλέους, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών Αγωγής,

Διαβάστε περισσότερα

Οι αρχικές αριθμητικές ικανότητες των παιδιών όταν έρχονται στο Δημοτικό Σχολείο.

Οι αρχικές αριθμητικές ικανότητες των παιδιών όταν έρχονται στο Δημοτικό Σχολείο. 1 Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό ΕΥΚΛΕΙΔΗΣ Γ το 2001. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (2001). Οι αρχικές αριθμητικές ικανότητες των παιδιών όταν έρχονται στο Δημοτικό Σχολείο.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 2 ΗΣ ΤΗΛΕΔΙΑΣΚΕΨΗΣ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 2 ΗΣ ΤΗΛΕΔΙΑΣΚΕΨΗΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 2 ΗΣ ΤΗΛΕΔΙΑΣΚΕΨΗΣ ΟΔΥΣΣΕΑΣ 2008 Ερευνητικό Εκπαιδευτικό Πρόγραμμα Εξ Αποστάσεως Εκπαίδευσης σε Δημοτικά Σχολεία της Ελλάδος 70 Ο Δημοτικό Σχολείο Αθήνας Δημοτικό Σχολείο Μαγούλας ( Νομού

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

ΤΟ ΣΥΓΚΕΚΡΙΜΕΝΟ ΠΡΟΓΡΑΜΜΑ ΕΧΕΙ ΠΟΛΛΕΣ ΒΙΩΜΑΤΙΚΕΣ ΔΡΑΣΕΙΣ ΑΠΑΡΑΙΤΗΤΟ ΜΕΣΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΙΑ ΤΗΝ ΙΔΙΑΙΤΕΡΟΤΗΤΑ ΠΟΥ ΠΑΡΟΥΣΙΑΖΕΙ Η ΕΚΠΑΙΔΕΥΣΗ ΕΝΗΛΙΚΩΝ

ΤΟ ΣΥΓΚΕΚΡΙΜΕΝΟ ΠΡΟΓΡΑΜΜΑ ΕΧΕΙ ΠΟΛΛΕΣ ΒΙΩΜΑΤΙΚΕΣ ΔΡΑΣΕΙΣ ΑΠΑΡΑΙΤΗΤΟ ΜΕΣΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΙΑ ΤΗΝ ΙΔΙΑΙΤΕΡΟΤΗΤΑ ΠΟΥ ΠΑΡΟΥΣΙΑΖΕΙ Η ΕΚΠΑΙΔΕΥΣΗ ΕΝΗΛΙΚΩΝ Α/Α ΣΤΟΧΟΙ (επιθυμητές γνώσεις-δεξιότητε ς-ικανότητες) ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ (Τίτλοι) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΩΝ (περιγραφή) ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΙΑΡΚΕΙΑ (ενδεικτικά σε ώρες) «ΕΚΠΑΙΔΕΥΟΝΤΑΣ ΕΚΠΑΙΔΕΥΤΕΣ ΕΝΗΛΙΚΩΝ:

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Εκπαιδευτική Ρομποτική: Το παράδειγμα του αυτόματου συστήματος διαχείρισης νερού

Εκπαιδευτική Ρομποτική: Το παράδειγμα του αυτόματου συστήματος διαχείρισης νερού 5ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ - ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 1 Εκπαιδευτική Ρομποτική: Το παράδειγμα του αυτόματου συστήματος διαχείρισης νερού Μάριος Ξένος Κων/νος Ασημακόπουλος Πληροφορικός ΠΕ20 Μηχανολόγος ΠΕ12 mariosxenos@gmail.com

Διαβάστε περισσότερα

Η γεωμετρική σκέψη και το μάθημα της Γεωμετρίας στο Δημοτικό σχολείο, με βάση τη διδακτική αξιοποίηση του μοντέλου Van Heile

Η γεωμετρική σκέψη και το μάθημα της Γεωμετρίας στο Δημοτικό σχολείο, με βάση τη διδακτική αξιοποίηση του μοντέλου Van Heile Γιαννίκας Αθανάσιος, Προϊστάμενος Παιδαγωγικής & Επιστημονικής Καθοδήγησης ΠΕ Πελοποννήσου - Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Η γεωμετρική σκέψη και το μάθημα της Γεωμετρίας στο Δημοτικό σχολείο,

Διαβάστε περισσότερα

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Αθανάσιος Βράντζας 1 vrantzas@sch.gr 1 Καθηγητής Πληροφορικής Περίληψη Στην εργασία αυτή θα επιχειρηθεί να παρουσιαστεί η διδασκαλία του εσωτερικού

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ «Οι παροιμίες του τόπου μας» Αθήνα Μάρτιος 2008 Εκπαιδευτικό σενάριο 1 1. ΣΥΝΟΠΤΙΚΗ

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ

ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ ΜΙΑ ΜΕΡΑ ΣΤΟ ΠΑΙΔΚΟ ΣΤΑΘΜΟ ΤΟ ΠΑΙΧΝΙΔΙ ΤΗΣ ΧΑΡΑΣ ΚΑΤΕΡΙΝΑ ΠΟΥΛΕΑ Μια μέρα στο παιδικό σταθμό «Το παιχνίδι της χαράς» Στο παιχνίδι της χαράς υπάρχει ένα περιβάλλον όπου παρέχει στα παιδιά ασφάλεια, φροντίδα,

Διαβάστε περισσότερα

ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ

ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ Υπεύθυνη Συντονισµού Διδακτικού Μαθησιακού Αντικειµένου της Γεωγραφίας: Αικατερίνη Κλωνάρη, Επίκουρη Καθηγήτρια, Τµήµα Γεωγραφίας, Πανεπιστήµιο Αιγαίου ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ (Β ΕΠΙΠΕΔΟΥ) ΕΙΔΙΚΟ ΜΕΡΟΣ ΠΕ60/70

ΕΡΩΤΗΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ (Β ΕΠΙΠΕΔΟΥ) ΕΙΔΙΚΟ ΜΕΡΟΣ ΠΕ60/70 ΕΡΩΤΗΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ (Β ΕΠΙΠΕΔΟΥ) ΕΙΔΙΚΟ ΜΕΡΟΣ ΠΕ60/70 1. Έστω τα ακόλουθα τρία µοντέλα ένταξης των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών

Διαβάστε περισσότερα

Ολοήμερα Δημοτικά Σχολεία με Ενιαίο Αναμορφωμένο Εκπαιδευτικό Πρόγραμμα. Σοφία Καλογρίδη Σχολική Σύμβουλος

Ολοήμερα Δημοτικά Σχολεία με Ενιαίο Αναμορφωμένο Εκπαιδευτικό Πρόγραμμα. Σοφία Καλογρίδη Σχολική Σύμβουλος Ολοήμερα Δημοτικά Σχολεία με Ενιαίο Αναμορφωμένο Εκπαιδευτικό Πρόγραμμα Σοφία Καλογρίδη Σχολική Σύμβουλος ΔΣ ΕΑΕΠ Σε 960 ολοήμερα Δημοτικά Σχολεία της χώρας, 12/θεσια και με τον μεγαλύτερο μαθητικό πληθυσμό

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθημα: Εφαρμοσμένη Διδακτική των Φυσικών Επιστημών (Πρακτικές Ασκήσεις Β Φάσης) για φοιτητές του ΤΕΠΑΕΣ ΜΙΧΑΗΛ ΣΚΟΥΜΙΟΣ Λέκτορας στο

Διαβάστε περισσότερα

Πρότυπα-πειραματικά σχολεία

Πρότυπα-πειραματικά σχολεία Πρότυπα-πειραματικά σχολεία 1. Τα πρότυπα-πειραματικά: ένα ιστορικό Τα πειραματικά σχολεία (στα οποία εντάχθηκαν με το Ν. 1566/85 και τα ιστορικά πρότυπα σχολεία) έχουν μακρά ιστορία στον τόπο μας. Τα

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 169 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.2 Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΣΤΗΝ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΤΙΚΗ Ι ΑΚΤΙΚΗ ΙΑ ΙΚΑΣΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΣΤΗΝ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΤΙΚΗ Ι ΑΚΤΙΚΗ ΙΑ ΙΚΑΣΙΑ ΕΠΕΑΕΚ ΙΙ, Άξονας Προτεραιότητας 2, Μέτρο 2.1 ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΣΤΗΝ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΤΙΚΗ Ι ΑΚΤΙΚΗ ΙΑ ΙΚΑΣΙΑ Ερωτήσεις Αυτοµατοποιηµένου Μέρους Πιστοποίησης Επιµορφωτών

Διαβάστε περισσότερα

Η παραγωγή και η χρήση εκπαιδευτικού λογισμικού ως διδακτική επιλογή

Η παραγωγή και η χρήση εκπαιδευτικού λογισμικού ως διδακτική επιλογή Η παραγωγή και η χρήση εκπαιδευτικού λογισμικού ως διδακτική επιλογή Κ. Ραβάνης Νέες τεχνολογίες και εκπαίδευση Η μεγάλη ανάπτυξη των νέων τεχνολογιών και οι υψηλές ταχύτητες πρόσβασης στις πληροφορίες,

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

Ερωτηματολόγιο προς εκπαιδευτικούς

Ερωτηματολόγιο προς εκπαιδευτικούς Ερωτηματολόγιο προς εκπαιδευτικούς Σκοπός της έρευνας αυτής είναι η διερεύνηση των απόψεων των εκπαιδευτικών αναφορικά με την ιδιαίτερη πολιτική του σχολείου τους. Η έρευνα αυτή εξετάζει, κυρίως, την πολιτική

Διαβάστε περισσότερα

[CE312] Διδακτική της πληροφορικής

[CE312] Διδακτική της πληροφορικής [CE312] Διδακτική της πληροφορικής Αντωνόπουλος Εμμανουήλ-Άρης Βασιλειάδης Βασίλειος Ελευθεριάδης Χαράλαμπος Θεοδωρίδης Αθανάσιος Παρασύρης Κωνσταντίνος Σκρέκα Λαμπρινή Τάτση Μαρία November 29, 2011 1

Διαβάστε περισσότερα

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ Η παρούσα έρευνα έχει σκοπό τη συλλογή εμπειρικών δεδομένων σχετικά με

Διαβάστε περισσότερα