τα βιβλία των επιτυχιών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "τα βιβλία των επιτυχιών"

Transcript

1 Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από τη διαρκή τους αξιοποίηση στις τάξεις μας διασφαλίζουμε τον εμπλουτισμό τους, τη συνεχή τους βελτίωση και την επιστημονική τους αρτιότητα, καθιστώντας τα βιβλία των Εκδόσεών μας εγγύηση για την επιτυχία των μαθητών. τα βιβλία των επιτυχιών

2

3 ΝΙΚΟΣ ΤΑΣΟΣ άλγεβρα α τόμος α λυκείου

4 Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο A Λυκείου Άλγεβρα Α Λυκείου, α τόμος Νίκος Τάσος ISBN: SET: Θεώρηση κειμένου: Κυριάκος Εμμανουηλίδης Σχεδιασμός έκδοσης: Γεωργία Λαμπροπούλου Στοιχειοθεσία-σελιδοποίηση: Άννα Βάιμπεργ Συμπληρωματική σελιδοποίηση: Δημήτρης Κάπος Εξώφυλλο: Πωλίνα Κοντογεώργη Υπεύθυνος έκδοσης: Κυριάκος Εμμανουηλίδης Copyright 2015 ΕΚΔΟΣΕΙΣ ΠΟΥΚΑΜΙΣΑΣ, Νίκος Τάσος για την ελληνική γλώσσα σε όλο τον κόσμο Επικοινωνία με συγγραφέα: Νίκος Τάσος Απαγορεύεται η με οποιονδήποτε τρόπο, μέσο και μέθοδο αναδημοσίευση, αναπαραγωγή, μετάφραση, διασκευή, θέση σε κυκλοφορία, παρουσίαση, διανομή και η εν γένει πάσης φύσεως χρήση και εκμετάλλευση του παρόντος έργου στο σύνολό του ή τμηματικά, καθώς και της ολικής αισθητικής εμφάνισης του βιβλίου (στοιχειοθεσίας, σελιδοποίησης κ.λπ.) και του εξωφύλλου του, σύμφωνα με τις διατάξεις της υπάρχουσας νομοθεσίας περί προστασίας πνευματικής ιδιοκτησίας και των συγγενικών δικαιωμάτων περιλαμβανομένων και των σχετικών διεθνών συμβάσεων. Σωτήρος και Αλκιβιάδου 132, ΤΚ Πειραιάς Τ F

5 Στη Στέλλα Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο αφενός να βοηθήσει τους μαθητές της A Λυκείου να κατανοήσουν καλύτερα την ύλη της Άλγεβρας, αφετέρου να αποτελέσει χρήσιμο βοήθημα για τους συνάδελφους εκπαιδευτικούς. Κάθε κεφάλαιο αποτελείται από ενότητες, καθεμιά από τις οποίες περιέχει: Ι. ΘΕΩΡΙΑ ΣΕ ΜΟΡΦΗ ΕΡΩΤΗΣΕΩΝ ΑΠΑΝΤΗΣΕΩΝ Πλήρης θεωρία, η οποία συνοδεύεται από σχόλια και παρατηρήσεις προκειμένου να αναδειχθούν τα «σκοτεινά» σημεία της. ΙΙ. ΜΕΘΟΔΟΛΟΓΙΕΣ ΕΦΑΡΜΟΓΕΣ Έγινε προσπάθεια, ώστε όλες οι ασκήσεις να ενταχθούν σε ένα πλαίσιο μεθοδολογιών. Πιστεύοντας ότι δεν υπάρχουν εύκολες ή δύσκολες ασκήσεις, αλλά μόνο ασκήσεις που μπορούν να επιλυθούν με κατάλληλη μεθοδολογία, δημιουργήσαμε κατηγορίες, οι οποίες βοηθούν τους μαθητές να αυτενεργήσουν προκειμένου να λύσουν εφαρμογές κάθε επιπέδου δυσκολίας. ΙΙΙ. ΕΦΑΡΜΟΓΕΣ ΕΜΠΕΔΩΣΗΣ ΚΑΙ ΕΜΒΑΘΥΝΣΗΣ Κάθε λυμένη εφαρμογή συνοδεύεται από παρόμοιες εφαρμογές για λύση. Όπου κρίνεται απαραίτητο υπάρχουν και επιπλέον εφαρμογές για λύση, ώστε ο μαθητής να αποκτήσει μεγαλύτερη εμπειρία. ΙV. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερωτήσεις σωστού λάθους, αντιστοίχισης, συμπλήρωσης κενού και πολλαπλής επιλογής, οι οποίες στοχεύουν να ελέγξουν τις γνώσεις που έχει αποκτήσει ο μαθητής. V. ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Στο τέλος των περισσότερων παραγράφων υπάρχουν φύλλα αξιολόγησης με στόχο τον έλεγχο των γνώσεων που αποκτήθηκαν. VI. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Στο τέλος κάθε κεφαλαίου υπάρχουν όλες οι ασκήσεις της Τράπεζας Θεμάτων, όπως δόθηκαν από το Υπουργείο Παιδείας. Στο τελευταίο τμήμα του βιβλίου υπάρχουν: οι απαντήσεις υποδείξεις όλων των εφαρμογών, των ερωτήσεων κατανόησης και των διαγωνισμάτων του παρόντος βιβλίου, οι αναλυτικές απαντήσεις της Τράπεζας Θεμάτων, οι απαντήσεις όλων των ασκήσεων του σχολικού βιβλίου. Ελπίζοντας ότι η προσπάθεια αυτή θα βρει τον στόχο της, παραδίδουμε το παρόν πόνημα στην αυστηρή κρίση των μαθητών και των συνάδελφων εκπαιδευτικών. Νίκος Τάσος Μαθηματικός M.Sc.

6

7 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ερωτήσεων απαντήσεων εμβάθυνσης Ερωτήσεις αξιολόγησης ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Περ ι ε χ ο μ ε ν α ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ ΠΙΘΑΝΟΤΗΤΕΣ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 2. ΣΥΝΟΛΑ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης ΚΑΝΟΝΕΣ ΛΟΓΙΣΜΟΥ ΠΙΘΑΝΟΤΗΤΩΝ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης Τράπεζα Θεμάτων: ΠΙΘΑΝΟΤΗΤΕΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης ΔΥΝΑΜΕΙΣ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΜΕΘΟΔΟΙ ΑΠΟΔΕΙΞΗΣ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης

8 11. ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ 12.ΡΙΖΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΡΙΘΜΟΥ ερωτήσεων απαντήσεων ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές Μεθοδολογίες Εφαρμογές εμβάθυνσης εμβάθυνσης Ερωτήσεις αξιολόγησης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης Φύλλο αξιολόγησης Τράπεζα Θεμάτων: ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΞΙΣΩΣΕΙΣ 13. ΕΞΙΣΩΣΕΙΣ 1ου ΒΑΘΜΟΥ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΕΞΙΣΩΣΕΙΣ 1ου ΒΑΘΜΟΥ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΑ Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης Η ΕΞΙΣΩΣΗ x ν = α ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Η ΕΞΙΣΩΣΗ αx 2 + βx + γ = 0 ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης ΑΘΡΟΙΣΜΑ ΚΑΙ ΓΙΝΟΜΕΝΟ ΡΙΖΩΝ ερωτήσεων απαντήσεων Μεθοδολογίες Εφαρμογές εμβάθυνσης Ερωτήσεις αξιολόγησης Φύλλο αξιολόγησης ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Μεθοδολογίες Εφαρμογές εμβάθυνσης Τράπεζα Θεμάτων: ΕΞΙΣΩΣΕΙΣ Απαντήσεις άλυτων ασκήσεων Απαντήσεις Τράπεζας Θεμάτων Απαντήσεις ασκήσεων σχολικού βιβλίου

9 ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ

10

11 1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΘΕΩΡΙΑ ΣΕ ΜΟΡΦΗ ΕΡΩΤΗΣΕΩΝ ΑΠΑΝΤΗΣΕΩΝ 1. Πώς ορίζεται η έννοια της πρότασης στη Μαθηματική Λογική; Απάντηση Πρόταση είναι κάθε ισχυρισμός του οποίου το περιεχόμενο μπορούμε να χαρακτηρίσουμε ως αληθές ή ψευδές. Παραδείγματα Η φράση «Ο Ολυμπιακός έχει κατακτήσει τα περισσότερα πρωταθλήματα ποδοσφαίρου στην Ελλάδα» είναι μία πρόταση, διότι είναι αληθής. Η φράση «Ο Ολυμπιακός θα κατακτήσει την επόμενη χρονιά το πρωτάθλημα ποδοσφαίρου στην Ελλάδα» δεν είναι πρόταση, διότι δεν μπορεί να χαρακτηριστεί ως αληθής ή ψευδής. Σχόλια i. Προσοχή! Στα Μαθηματικά, για να ελέγξουμε αν ένας ισχυρισμός είναι πρόταση, δεν εξετάζουμε αν είναι γραμματικά και συντακτικά ορθώς. ii. Τις προτάσεις τις συμβολίζουμε συνήθως με τα λατινικά γράμματα P, Q. iii. Μία πρόταση χαρακτηρίζεται απλή όταν κανένα τμήμα της δεν μπορεί να χρησιμοποιηθεί για να δημιουργήσει μία άλλη πρόταση. iv. Μία πρόταση χαρακτηρίζεται σύνθετη όταν μπορούμε να τη χωρίσουμε σε δύο ή περισσότερες προτάσεις. 2. Πώς ορίζεται η συνεπαγωγή και πώς συμβολίζεται; Απάντηση Αν Ρ και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε όταν αληθεύει ο Ρ να αληθεύει και ο Q, τότε λέμε ότι ο Ρ συνεπάγεται τον Q. Συμβολίζουμε: P Q Παραδείγματα i. Μια μητέρα, προκείμενου να πείσει το παιδί της να φάει όλο το φαγητό του, του λέει: _ Αν φας το φαγητό σου θα σου πάρω παγωτό. ii. Αν α = 4 α = 2. 11

12 Εισαγωγικό κεφάλαιο Σχόλια i. Ο ισχυρισμός «P Q» λέγεται συνεπαγωγή και πολλές φορές διαβάζεται «αν Ρ, τότε Q» ή «ο Ρ συνεπάγεται τον Q». ii. Ο Ρ λέγεται υπόθεση της συνεπαγωγής, ενώ ο Q λέγεται συμπέρασμα αυτής. iii. Η συνεπαγωγή είναι αληθής όταν: Ο Ρ είναι _ αληθής _ και ο Q είναι αληθής. π.x. 9 = 3 ( 9) 2 = 3 2 Ο Ρ είναι ψευδής και ο Q είναι αληθής. π.x. 1 = 1 ( 1) 2 = 1 2 Ο Ρ είναι ψευδής και ο Q είναι ψευδής. π.x. 1 = 1 2 ( 1) = 2 1 iv. Η συνεπαγωγή είναι ψευδής όταν: Ο Ρ είναι αληθής και ο Q είναι ψευδής. π.x. ( 1) 2 = = 1 v. Με βάση τα όσα αναπτύσσονται στο σχολικό βιβλίο, εμείς θα ασχοληθούμε κυρίως με την περίπτωση όπου και οι δύο ισχυρισμοί P, Q είναι αληθείς. vi. Στο τέλος της ενότητας παραθέτουμε έναν πίνακα αλήθειας όπου είναι κλασικός στο πλαίσιο της Μαθηματικής Λογικής. 3. Πώς ορίζεται η ισοδυναμία ή διπλή συνεπαγωγή και πώς συμβολίζεται; Απάντηση Αν Ρ και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε όταν αληθεύει ο Ρ να αληθεύει και ο Q, και όταν αληθεύει ο Q να αληθεύει και ο P, τότε λέμε ότι ο Ρ συνεπάγεται τον Q και αντιστρόφως ή, αλλιώς, ότι ο Ρ είναι ισοδύναμος με τον Q. Συμβολίζουμε: P Q Παραδείγματα i. «Η Στέλλα είναι η σύζυγος του Νίκου.» «Ο Νίκος είναι ο σύζυγος της Στέλλας.» ii. Για κάθε πραγματικό αριθμό α, β, γ ισχύει ότι: α = β α + γ = β + γ iii. Για κάθε τρίγωνο ΑΒΓ ισχύει ότι: ΑΒΓ ισόπλευρο τρίγωνο A = B = Γ Σχόλια i. Ο ισχυρισμός «Ρ Q» λέγεται ισοδυναμία και αρκετές φορές διαβάζεται «Ρ αν και μόνο αν Q» ή «Ρ τότε και μόνο τότε Q». ii. Ισοδυναμίες έχουμε στους ορισμούς. 12

13 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 4. Πώς ορίζεται ο σύνδεσμος ή; Απάντηση Αν Ρ και Q είναι δύο ισχυρισμοί, τότε ο ισχυρισμός Ρ ή Q αληθεύει μόνο στην περίπτωση που ένας τουλάχιστον από τους δύο ισχυρισμούς αληθεύει. Παραδείγματα i. Για να προσληφθεί κάποιος σε ένα εστιατόριο ως μάγειρας πρέπει να ξέρει να μαγειρεύει ελληνικά ή ιταλικά φαγητά. Αυτό σημαίνει ότι ο μάγειρας που θα προσληφθεί πρέπει να ξέρει να μαγειρεύει ή μόνο ελληνικά φαγητά ή μόνο ιταλικά φαγητά ή, προφανώς, και από τις δύο κουζίνες φαγητά. ii. Όταν γράφουμε: α β = 0 α = 0 ή β = 0 εννοούμε ότι αληθεύει μία τουλάχιστον από τις προτάσεις «α = 0», «β = 0», δηλαδή: (α = 0 και β 0), (α 0 και β = 0), (α = 0 και β = 0) Σχόλια i. Ο ισχυρισμός «Ρ ή Q» λέγεται διάζευξη των Ρ και Q. ii. Η διάζευξη Ρ ή Q είναι ψευδής μόνο όταν και ο ισχυρισμός Ρ και ο ισχυρισμός Q είναι ψευδείς. iii. Ο ισχυρισμός «ή Ρ ή Q» λέγεται αποκλειστική διάζευξη των Ρ και Q και είναι αληθής, όταν η μία είναι αληθής και η άλλη ψευδής. 5. Πώς ορίζεται ο σύνδεσμος και; Απάντηση Αν Ρ και Q είναι δύο ισχυρισμοί, τότε ο ισχυρισμός Ρ και Q αληθεύει μόνο στην περίπτωση που και οι δύο ισχυρισμοί αληθεύουν. Παραδείγματα i. Η Αθήνα είναι πόλη της Ελλάδας και της Ευρώπης. ii. Όταν γράφουμε: α β 0 α 0 και β 0 εννοούμε ότι αληθεύουν και οι δύο προτάσεις «α 0», «β 0». Σχόλιo Ο ισχυρισμός «Ρ και Q» λέγεται σύζευξη των Ρ και Q. 13

14 Εισαγωγικό κεφάλαιο 6. Πώς ορίζεται η άρνηση μίας πρότασης; Απάντηση Αν Ρ είναι ένας ισχυρισμός, τότε ο ισχυρισμός «όχι Ρ» ονομάζεται άρνηση του Ρ, συμβολίζεται συνήθως με Ρ ή Ρ και χαρακτηρίζεται ως: αληθής, αν ο Ρ είναι ψευδής, ψευδής, αν ο Ρ είναι αληθής. Παραδείγματα i. Αν Ρ: «α = β», τότε η άρνηση της Ρ είναι Ρ: «α < β ή α > β». ii. Η άρνηση του και είναι το ή και αντίστροφα. Για παράδειγμα, η άρνηση της πρότασης «θα φάμε κρέας και ρύζι» είναι η «θα φάμε κρέας ή ρύζι». iii. Η άρνηση του για κάθε είναι το υπάρχει και αντίστροφα. Για παράδειγμα, η άρνηση της πρότασης «για κάθε πραγματικό αριθμό α, ισχύει α 2 0» είναι η «υπάρχει πραγματικός αριθμός, ώστε α 2 < 0». Σχόλια Αν η συνεπαγωγή «Ρ Q» είναι αληθής, τότε και η συνεπαγωγή «Q Ρ» είναι αληθής και αντίστροφα. Ισχύει δηλαδή ότι: (Ρ Q) (Q Ρ) που είναι γνωστός ως νόμος της αντιθετοαντιστροφής. Παράδειγμα Ισχύει ότι: α β = 0 α = 0 ή β = 0 Επομένως, ισχύει και η αντιθετοαντιστροφή: α 0 και β 0 α β 0 7. Ποιος είναι ο πίνακας αλήθειας για τη Μαθηματική Λογική; Απάντηση Ο πίνακας είναι ο εξής: Ισχυρισμοί Συνεπαγωγή Ισοδυναμία Διάζευξη Σύζευξη P Q P Q P Q P ή Q P και Q Αληθής Αληθής Αληθής Αληθής Αληθής Αληθής Αληθής Ψευδής Ψευδής Ψευδής Αληθής Ψευδής Ψευδής Αληθής Αληθής Ψευδής Αληθής Ψευδής Ψευδής Ψευδής Αληθής Αληθής Ψευδής Ψευδής 14

15 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΕΜΠΕΔΩΣΗΣ ΚΑΙ ΕΜΒΑΘΥΝΣΗΣ ΛΟΓΙΚΕΣ ΠΡΟΤΑΣΕΙΣ 1.1 Να εξετάσετε ποιοι από τους ακόλουθους ισχυρισμούς είναι προτάσεις και να τις χαρακτηρίσετε ως αληθείς ή ψευδείς. i. Ο αριθμός 5 είναι μεγαλύτερος του 10. ii. Ο αριθμός x είναι περιττός. iii. Η Άλγεβρα είναι το καλύτερο μάθημα. iv. 2 3 = 6 v = 3 vi. Ο Παναθηναϊκός θα κερδίσει το πρωτάθλημα ποδοσφαίρου την επόμενη χρονιά. ΣΥΝΕΠΑΓΩΓΗ ΙΣΟΔΥΝΑΜΙΑ 1.2 Σε καθέναν από τους ισχυρισμούς Ρ, Q να εξετάσετε ποια από τις συνεπαγωγές Ρ Q ή Q P ισχύει. i. Ρ: Ο Κώστας είναι μαθητής της Γ Λυκείου. Q: Ο Κώστας τελειώνει το σχολείο. ii. Ρ: Σήμερα είναι 25 Δεκεμβρίου. Q: Σήμερα είναι Χριστούγεννα. iii. P: Στην Ελλάδα είναι χειμώνας. Q: Στην Ελλάδα βρέχει. iv. P: Ο Νίκος παίζει πιάνο. Q: Ο Νίκος αγαπάει τη μουσική. Ερωτήσεις Σωστού Λάθους 1.3 Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις. i. Για κάθε πραγματικό αριθμό α, β ισχύει ότι α 2 = β 2 α = β. ii. Για κάθε πραγματικό αριθμό α, β, γ ισχύει ότι α = β α + γ = β + γ. iii. Η σύζευξη «Ρ και Ρ» είναι πάντα ψευδής. iv. Ο ισχυρισμός «1 + 1 = 3» είναι μία πρόταση. v. Ο ισχυρισμός «Στην Ελλάδα θα εμφανιστούν εξωγήινοι» είναι μία πρόταση. vi. Ο ισχυρισμός «2014 < 2013» είναι μία πρόταση. vii. α 2 1 α 1 ή α 1 viii. α = 0 και β 0 α β = 0 ix. x = 5 x 2 = 25 x. x = 5 x 2 = 25 15

16 Εισαγωγικό κεφάλαιο 1.4 Να χαρακτηρίσετε ως σωστές (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις. i. x 5 x 2 25 ii. x 5 x 2 25 iii. x 5 και x 5 x 2 25 iv. x 2 x x 1 v. α β 0 α 0 ή β 0 vi. Αν β 0, ισχύει ότι: α β > 0 α β > 0 vii. α < 3 και β < 4 α β < 12 viii. α < 1 α 2 < 1 ix. α > 1 α 2 > 1 x. Αν το τρίγωνο ΑΒΓ είναι ισοσκελές, τότε A = B. Ερωτήσεις Αντιστοίχισης 1.5 Να αντιστοιχίσετε καθέναν από τους ισχυρισμούς της στήλης Α με τον ισοδύναμό του ισχυρισμό στη στήλη Β. Στήλη Α Στήλη Β i. 3α(α + 2) = 0 α. α = 1 ή α = 1 ii. α(α 1) = 0 και α(α + 1) = 0 β. α = 0 ή α = 2 iii. α 2 = 4, α > 0 γ. α 0 και α 2 iv. α 2 = 1 δ. α = 2 v. 3α(α + 2) 0 ε. α = 0 Ερωτήσεις Συμπλήρωσης 1.6 Να συμπληρώσετε τον ακόλουθο πίνακα. Ρ α = 2 ή α = 0 α < 3 α 0 και α 1 1 α < 10 α < 2 και α 5 όχι Ρ 1.7 Στις ακόλουθες προτάσεις να γράψετε την άρνησή τους. i. Ρ: «α = β», άρνηση Ρ: ii. Ρ: «α > 0», άρνηση Ρ: iii. Ρ: «α = 0 και β = 0», άρνηση Ρ: iv. Ρ: «για κάθε μη αρνητικό πραγματικό αριθμός α, ισχύει α 0», άρνηση Ρ: v. Ρ: «υπάρχει πραγματικός αριθμός α, ώστε α = 0», άρνηση Ρ: 16

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Aλγεβρα A λυκείου α Τομος

Aλγεβρα A λυκείου α Τομος Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Θετικής-Τεχνολογικής Κατεύθυνσης

Θετικής-Τεχνολογικής Κατεύθυνσης Mα θ η μ α τ ι κ ά Β Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Μαθηματικά Β Λυκείου Θετικής-Τεχνολογικής

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

Aλγεβρα A λυκείου B Τομος

Aλγεβρα A λυκείου B Τομος Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv) ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού www.ziti.gr Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του Γενικού Λυκείου, που θα διδάσκεται από το σχολικό έτος 00-0. Είναι ένα

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Βιολογία. Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Βιολογία. Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Βιολογία Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Νότα Λαζαράκη, Βιολογία Γ Λυκείου Γενικής Παιδείας Υπεύθυνος έκδοσης: Αποστόλης Αντωνόπουλος Θεώρηση κειμένου: Κυριάκος Εμμανουηλίδης

Διαβάστε περισσότερα

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Μάθηµα 1 Κεφάλαιο: Εισαγωγικό Θεµατικές Ενότητες: A. Το Λεξιλόγιο της Λογικής B. Σύνολα A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Ορισµός Πρόταση λέµε κάθε φράση που µε βάση το νοηµατικό της περιεχόµενο µπορούµε να

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Α ΤΟΜΟΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Α ΤΟΜΟΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Α ΤΟΜΟΣ ΜΑΝΟΣ ΒΑΣΙΛΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Α ΤΟΜΟΣ Σειρά: Γενικό Λύκειο Οικονομικές Επιστήμες Αρχές Οικονομικής Θεωρίας,

Διαβάστε περισσότερα

EXEIΣ; Μετάφραση από τα αγγλικά. Κωνσταντίνος Παπαπαναγιώτου

EXEIΣ; Μετάφραση από τα αγγλικά. Κωνσταντίνος Παπαπαναγιώτου EXEIΣ; EXEIΣ; Μετάφραση από τα αγγλικά Κωνσταντίνος Παπαπαναγιώτου Σειρά: Γνώση και Ψυχαγωγία Πόσο Μεγάλο Εγκέφαλο Έχεις; Μετάφραση: Κωνσταντίνος Παπαπαναγιώτου Υπεύθυνος έκδοσης: Θεόδωρος Πενέσης Φιλολογική

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Μαθηματικά. Α' Λυκείου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Α' Λυκείου. Μαρίνος Παπαδόπουλος Μαθηματικά Α' Λυκείου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Α Λυκείου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν µια εισαγωγή σε βασικές µαθηµατικές

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες)

Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες) Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες) Στόχοι του μαθήματος Αλέξανδρος Γ. Συγκελάκης Οι μαθητές στο τέλος της ενότητας θα πρέπει

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1 Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΘΕΩΡΙΑ 1. Η συνεπαγωγή Η πρόταση P Q σηµαίνει ότι, όταν αληθεύει (ισχύει) ο ισχυρισµός P, θα αληθεύει (ισχύει) και o Q. Το σύµβολο διαβάζεται : άρα τότε συνεπάγεται.. Η ισοδυναµία

Διαβάστε περισσότερα

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ Κάθε αντίτυπο φέρει την υπογραφή της συγγραφέα Σειρά: Γυμνάσιο Θεωρητικές Επιστήμες Νεοελληνική γλώσσα, Α Γυμνασίου Μαρία Συνοδινού Βαλλιάνου Επιμέλεια κειμένου: Κυριάκος

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Εκπαιδευση Σχολικά βοηθήματα (για το Λύκειο) Πλάτωνος Πρωταγόρας Γ Λυκείου Θεωρητική Κατεύθυνση

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος» ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο

Διαβάστε περισσότερα

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόµενος να επιλέξει την ορθή απάντηση από περιορισµένο αριθµό προτεινόµενων απαντήσεων ή να συσχετίσει µεταξύ

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο Μαθηματικών Δυτικής Θεσσαλονίκης gthom@otenet.gr ΕΙΣΑΓΩΓΗ Έχουν γίνει αρκετές απόπειρες στο παρελθόν για τη διδασκαλία στοιχείων της μαθηματικής λογικής

Διαβάστε περισσότερα

Στον αδελφό μου και εξαιρετικό μαθηματικό, Γιώργο Ξένο

Στον αδελφό μου και εξαιρετικό μαθηματικό, Γιώργο Ξένο www.ziti.gr Στον αδελφό μου και εξαιρετικό μαθηματικό, ιώργο Ξένο Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του ενικού Λυκείου, που

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

x x και µε P το γινόµενο x1 x2 2α 2α α

x x και µε P το γινόµενο x1 x2 2α 2α α o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΑΘΡΟΙΣΜΑ ΓΙΝΟΜΕΝΟ ΡΙΖΩΝ ΑΘΡΟΙΣΜΑ ΓΙΝΟΜΕΝΟ ΡΙΖΩΝ I ΑΘΡΟΙΣΜΑ ΓΙΝΟΜΕΝΟ ΡΙΖΩΝ Θεώρηµα (Τύποι του Vieta) Έστω ότι η εξίσωση αx + βx+ γ=, α έχει πραγµατικές ρίζες x Αν συµβολίσουµε µε S

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Λύσεις

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Αγαπητέ αναγνώστη

ΠΡΟΛΟΓΟΣ. Αγαπητέ αναγνώστη Άλγεβρα Α Λυκείου Σημειώσεις ο Ενιαίο Λύκειο Αλεξανδρούπολης 05-06 Αγαπητέ αναγνώστη ΠΡΟΛΟΓΟΣ Σκοπός των σημειώσεων που ακολουθούν δεν είναι σε καμία περίπτωση να υποκαταστήσουν το σχολικό βιβλίο. Άλλωστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τµήµα Εφαρµοσµένων Μαθηµατικών «Γραµµική Άλγεβρα Ι» (ΕΜ111) Χειµερινό Εξάµηνο 2006-2007, ιδάσκων: Ι. Τσαγράκης 5 Ο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Έστω V ένας διανυσµατικός χώρος επί

Διαβάστε περισσότερα

ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2016 2017 ΑΠΟ ΤΟ 1980 ΠΡΩΤΟΠΟΡΟΙ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΗΣ ΕΠΙΤΥΧΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΓΥΜΝΑΣΙΑ Μαθηματικά 3 ώρες/εβδομάδα Φυσική /εβδομάδα Γλώσσα Έκθεση /εβδομάδα

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

ΓΡΑΜΜΑΤΙΚΗ ΤΗΣ ΑΡΧΑΙΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ. Παναγιώτης Δεμέστιχας Στέλλα Γκανέτσου

ΓΡΑΜΜΑΤΙΚΗ ΤΗΣ ΑΡΧΑΙΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ. Παναγιώτης Δεμέστιχας Στέλλα Γκανέτσου ΓΡΑΜΜΑΤΙΚΗ ΤΗΣ ΑΡΧΑΙΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ Παναγιώτης Δεμέστιχας Στέλλα Γκανέτσου ΓΡΑΜΜΑΤΙΚΗ ΤΗΣ ΑΡΧΑΙΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ Συγγραφείς: Παναγιώτης Δεμέστιχας, Στέλλα Γκανέτσου Υπεύθυνη Παραγωγής: Φωτεινή

Διαβάστε περισσότερα