1η Νύχτα Σκέψεις Δραστηριότητες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1η Νύχτα Σκέψεις Δραστηριότητες"

Transcript

1 Μέρος Ι: Μασκαράτα Προτείνεται η συµµετοχή των µαθητών να είναι βιωµατική στο µεγαλύτερο µέρος της ανάγνωσης του βιβλίου. στο συντονιστή αφήνεται να αποφασίσει το εάν και πόσο. Δηλαδή, πριν την ανάγνωση του εκάστοτε ονείρου, δύο παιδιά της ο µάδας θα αναλαµβάνουν να παίξουν το ρόλο του Πειραχτηριού και του Robert αντίστοιχα. Οι δύο µαθητές θα έχουν προετοιµαστεί για τις δραστηριότητες που προτείνονται σε κάθε όνειρο. Σκοπός είναι να προκαλέσουν στους συµµαθητές τους το ενδιαφέρον που φαίνεται να προκαλεί τ ο Πειραχτήρι των Αριθµών στον Robert. Μπαίνοντας στη διαδικασία να πείσουν τους συµµαθητές τους, αναζητούν, ψάχνουν για τις µαθηµατικές έννοιες που πρέπει να παρουσιάσουν και σκαρφίζονται τρόπους για να διατηρήσουν το ενδιαφέρον ζωντανό. Η επιλογή τους γίνεται από τους ίδιους τους µαθητές µετά από ψηφοφορία. Όλοι οι µαθητές θα ήταν καλό να συµµετέχουν σε αυτή τη διαδικασία µέχρι το τέλος του βιβλίου. Για ποιο λόγο; Η µορφή του βιβλίου όπως αναφέραµε, είναι διαλογική και ευνοεί ένα είδος δραµατοποίησης. Η σ υµµετοχή των µαθητών σε µια τέτοια διαδικασία, βοηθάει να εµπλακούν αλλά και να εµπλέξουν τους συµµαθητές τους σε ένα παιχνίδι ρόλων. «Η δραµατοποίηση είναι ένας παιδαγωγικός τρόπος που οδηγεί το παιδί να βιώσει και να µεταλλάξει σε εµπειρίες τις πληροφορίες-γνώσεις και τις συνειδητές και τις ασυνείδητες ποιότητες του εσωτερικού κόσµου, εκφράζοντας τις δυναµικά µέσα από το σώµα και το λόγο στον εξωτερικό κόσµο».[άλκηστις, Το βιβλίο της δραµατοποίησης, Αθήνα, 1989, Άλκηστις, σε. 42] Το βιβλίο του Hans Magnus Enzensberger έχει, όπως αναφέραµε, το εξής χαρακτηριστικό γνώρισµα: είναι γραµµένο σε διαλογική µορφή. Με τον τρόπο αυτό µας παρουσιάζει σε ένα µεγάλο µέρος του την εξέλιξη του αριθµού στην ιστορία των µαθηµατικών. Από την αρχή, µας εισάγει την έννοια τ ου «απείρου» και της «πυκνότητας» των πραγµατικών αριθµών. Χωρίς να αναφέρει ακριβή πρόσωπα και χρονικές περιόδους, δίνει τη χρήση του ρωµαϊκού τρόπου γραφής για να καταλήξει στη σηµασία της ύπαρξης του µηδενός. Περιγράφει µε συµβολικό τρόπο τους άρρητους αριθµούς, τους πρώτους, τους τρίγωνους, τους τετράγωνους και καταλήγει στους αριθµούς της ακολουθίας Fibonacci. Στην έβδοµη νύχτα, καταλήγει µε τη βοήθεια µικρών πλαστικών, χρωµατιστών κύβων να ολοκληρώσει το «παζλ» των αριθµών και να συνθέσει το τρίγωνο τ ου Pascal. Τότε ακριβώς, ξεκινάει ένας νέος κύκλος «µαγικών τρυκ» για τον µικρό Robert, µεταξύ των αριθµών που δοµούν το διάσηµο τρίγωνο. 1

2 1η Νύχτα Ο Robert όπως κάθε βράδυ αποκοιµήθηκε Ποιος θα ήταν ο αποψινός του εφιάλτης; Κάθε βράδυ βλέπει περιπετειώδη όνειρα, όπου πότε τον καταπίνει µια τεράστια φάλαινα, πότε κατεβαίνει µε ιλιγγιώδη ταχύτητα µια πανύψηλη τσουλήθρα και πότε βλέπει ένα πολυπόθητο ποδήλατο που ποτέ δεν καταλήγει στα χέρια του. Απόψε ό µως, κάνει τη θεαµατική του πρώτη εµφάνιση το Πειραχτήρι τον Αριθµών. Ένας διαβολάκος βουτηγµένος στους αριθµούς και έτοιµος να εκνευρίσει για τα καλά το κοιµισµένο αγόρι. «Ποιος είσαι;» είναι τα πρώτα λόγια του Robert και τότε αρχίζουν όλα. Τι θέλει να δείξει το Πειραχτήρι µε τους υπολογισµούς και ; Ποιους αριθµούς περιγράφει; Γιατί ο πολλαπλασιασµός x δεν ανταποκρίνεται στις προσδοκίες του Πειραχτηριού; Γιατί πιστεύετε ότι στη σελίδα 29, το Πειραχτήρι δείχνει τ όσο εκνευρισµένο; Σχολιάστε: «Στα µαθηµατικά δεν µαντεύουµε!» 2η Νύχτα Δεν είναι δυνατόν! Αυτό το παράξενο γέρικο ανθρωπάκι επισκέπτεται για δεύτερη φορά τον ήρωα µας. Και µάλιστα καθισµένος πάνω σε ένα µανιτάρι. Σήµερα θα µας ταξιδέψει στην Ινδία και το θεσιακό σύστηµα. Έχετε αλήθεια προσπαθήσει να γράψετε µε ρωµαϊκούς αριθµούς την ηµεροµηνία της γέννησης σας; Για προσπαθήστε. Ποια είναι η σηµασία του µηδενός; Ποια η ιστορία του µηδενός; Το αριθµητικό σύστηµα των Mayas είχε µηδέν! 2

3 Προτεινόµενη Βιβλιογραφία 1. Denis Guedj: Το Θεώρηµα του Παπαγάλου, Εκδόσεις Πόλις 2. Charles Seife: Zero-The Biography of a Dangerous Idea, Penguin Books, η Νύχτα Οι πρώτοι και καλύτεροι αριθµοί (prima donnas στα Αγγλικά και µάλλον πιο πετυχηµένο ως ονοµασία) θα απασχολήσουν κυρίως το 3 ο όνειρο του Robert, µε καθοδηγητή το Πειραχτήρι. Στα µαθηµατικά πρώτος αριθµός είναι ένας φυσικός αριθµός µεγαλύτερος της µονάδας µε την ιδιότητα οι µόνοι φυσικοί διαιρέτες του να είναι η µονάδα και ο εαυτός του. Η ακολουθία των πρώτων ξεκινάει παρακάτω: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, Η εύρεση των πρώτων αριθµών απασχόλησε από την αρχαιότητα τους µαθηµατικούς. Ένας από τους πιο απλούς αλλά και αργούς τρόπους για (µαζική) εύρεση πολλών πρώτων είναι το λεγόµενο Κόσκινο του Ερατοσθένη: Στο σύνολο των φυσικών αριθµών πρακτικά έως κάποιο µεγάλο αριθµό Ν αρχίζουµε και αποκλείουµε πρώτα τα πολλαπλάσια του 2, µετά τα πολλαπλάσια του επόµενου µη διαγραµµένου αριθµού κ.ο.κ. έως το Ν. Παρατηρούµε ότι όλο και λιγότερους αριθµούς θα βρίσκουµε προς διαγραφή. Οι αριθµοί που θα αποµείνουν είναι όλοι πρώτοι. Το Κόσκινο του Ερατοσθένη είναι ένας αργός αλγόριθµος για να διαπιστώσουµε εάν ένας συγκεκριµένος αριθµός Ν είναι πρώτος ή όχι. Στις 15 Δεκεµβρίου 2005 ανακαλύφθηκε ο µεγαλύτερος γνωστός αριθµός. Είναι ο και έχει ψηφία. Ένα από τα ανοιχτά ερωτήµατα της σύγχρονης θεωρίας αριθµών είναι το πρόβληµα της παραγοντοποίησης µεγάλων ακεραίων, δηλαδή της εύρεσης εκτελέσιµου αλγορίθµου παραγοντοποίησης. Για την επίλυση αυτού του προβλήµατος αναπτύχθηκε η κρυπτογραφία δηµόσιου κλειδιού και ειδικότερα του κρυπτοσυστήµατος RSA.[http://el.wikipedia.org]. 3

4 Βρείτε τους αριθµούς που δεν είναι πρώτοι και καλύτεροι. «Κόσκινο του Ερατοσθένη» «Διάλεξε όποιον ζυγό θέλεις. [ ] Μόνο να είναι µεγαλύτερος απ το δύο. Και θα σου δείξω ότι είναι το άθροισµα δύο πρώτων και καλύτερων αριθµών..κανείς δεν µπόρεσε να βρει µια απόδειξη ότι είναι πάντοτε έτσι.» Μήπως αναφέρεται ο Hans Magnus Enzensberger σε συγκεκριµένο πρόβληµα των µαθηµατικών; Για..ψάξτε! (Εικασία του Goldbach) Αναφορά στην εικασία του Riemann. «[ ] πάρε έναν αριθµό µεγαλύτερο από το ένα, [ ] και διπλασίασέ τον. [ ] Ανάµεσα σε αυτόν και τον διπλάσιό του υπάρχει πάντα [ ] τουλάχιστον ένας πρώτος και καλύτερος αριθµός.» Σε τι αναφέρεται το Πειραχτήρι; Υπάρχει απόδειξη; (Εικασία του Betrand) Πόσο σηµαντικοί είναι οι πρώτοι αριθµοί στην Κρυπτογραφία; Προτεινόµενη Βιβλιογραφία 1. Donald M. Davis:Η Φύση και η Δύναµη των µαθηµατικών, Πανεπιστηµιακές Εκδόσεις Κρήτης 2.Απόστολος Δοξιάδης: Ο Θείος Πέτρος και η Εικασία του Γκόλντµπαχ, Εκδόσεις Καστανιώτης 3. Denis Guedj :Τα Αστέρια της Βερενίκης, Εκδόσεις Ψυχογιός 4. Simon Singh: Κώδικες και Μυστικά, Εκδόσεις Τραυλός 5. Simon Singh: Το Τελευταίο Θεώρηµα του Φερµά, Εκδόσεις Τραυλός 4

5 6. Marcus du Sautoy: Η Μουσική των Πρώτων Αριθµών (σ. 255, 264 για Εικασία Bertrand), Εκδόσεις Τραυλός 4η Νύχτα Στα χνάρια του Ίππασου κινείται αυτή τη φορά η δράση. Στην θάλασσα..γιατί άραγε επέλεξε ο Hans Magnus Enzensberger αυτό το σκηνικό; Ίσως για να µας µυήσει στην πρώτη µεγάλη επανάσταση στην ιστορία των µαθηµατικών, την αρρητότητα! Συζήτηση. Πυθαγόρειο Θεώρηµα. Πως ανακαλύφθηκε το ; Ιστορία µε Ίππασο. κ.τ.λ. Προτεινόµενη Βιβλιογραφία 1. Donald M. Davis:Η Φύση και η Δύναµη των µαθηµατικών, Πανεπιστηµιακές Εκδόσεις Κρήτης 2. Denis Guedj: Το Θεώρηµα του Παπαγάλου, Εκδόσεις Πόλις 3. B.L.Van der Waerden: Η Αφύπνιση της Επιστήµης: Πανεπιστηµιακές Εκδόσεις Κρήτης. 5η Νύχτα Οι διακοπές στη θάλασσα συνεχίζονται και σε αυτό το όνειρο. Ποιος θα το περίµενε ότι ο Robert θα µάθαινε για τους τρίγωνους αριθµούς από τις καρύδες; Μάλιστα, τις καρύδες! Οι τρίγωνοι και οι τετράγωνοι αριθµοί ανήκουν στην κατηγοριοποίηση των αριθµών από τους Πυθαγορείους. Δραστηριότητα στην σελίδα 107. Μπορείτε να περιγράψετε την ιστορία του από τους Βαβυλώνιους έως σήµερα; Προτεινόµενη Βιβλιογραφία 1. Denis Guedj: Το Θεώρηµα του Παπαγάλου, Εκδόσεις Πόλις 5

6 2. B.L.Van der Waerden: Η Αφύπνιση της Ε πιστήµης: Πανεπιστηµιακές Εκδόσεις Κρήτης. 6η Νύχτα Στην έκτη νύχτα έχει ολοκληρωθεί η γνωριµία του Robert µε τους αριθµούς και ελπίζουµε και η δική σας. Αρχίζουν οι παράξενες συµπτώσεις που κάνουν τα µαθηµατικά τόσο µυστήρια, όσο και διασκεδαστικά. Οι αριθµοί Fibonacci κλέβουν την παράσταση. «Εάν είχατε ένα ζευγάρι λαγών και γεννούσαν ένα λαγουδάκι και» καταλήγουµε στην ακολουθία των αριθµών Fibonacci, 1, 1, 2, 3, 5, 8, 13, 21, Τους αριθµούς αυτούς θα τους συνδέσουµε στη συνέχεια και µε τον µαγικό αριθµό φ. Που συναντάµε τους αριθµούς της ακολουθία Fibonacci στη φύση; Θεωρούµε ότι έχουµε µια σειρά από 7 καρέκλες. Με πόσους διαφορετικούς τρόπους µπορούν να καθίσουνε σ αυτές άνδρες και γυναίκες, έτσι ώστε να µην είναι δυνατόν να µην κάθονται δίπλα- δίπλα δύο γυναίκες; [Martin Gardner: Το Πανηγύρι των Μαθηµατικών, Μετάφραση: Θ. Παπαδόπουλος, Εκδόσεις Τροχαλία, Αθήνα 1986, σ.. 177]. (Ανάγωγη του προβλήµατος σε πιο απλό. Διαδικασία Λύσης Προβλήµατος. Ο καθηγητής παίζει το ρόλο του διαπραγµατευτή) 7η Νύχτα Σκέψεις - Δραστηριότητες Στην έβδοµη νύχτα, ο Robert δείχνει να έχει συνηθίσει και µάλλον να απολαµβάνει τη παρουσία του άλλοτε ενοχλητικού διαβολάκου. Το πρόγραµµα περιλαµβάνει σήµερα το τρίγωνο του Pascal. O Blaise Pascal ήταν γάλλος µαθηµατικός, φυσικός, φιλόσοφος και συγγραφέας. Σε ηλικία 12 ετών διατύπωσε τα πρώτα του θεωρήµατα στη γεωµετρία και στα δεκαέξι του χρόνια έγραψε το σύγγραµµα «Περί των κωνικών τοµών», ενώ την ίδια εποχή ανακάλυψε τη πρώτη αριθµοµηχανή. Μεταξύ του 1646 και 1649 ασχολείται µε πειράµατα Φυσικής και εκδίδει το «Περί κενού σύγγραµµα». Θεµελίωσε επίσης, τη θεωρία πιθανοτήτων και τον απειροστικό λογισµό. Πέθανε σε ηλικία 39 ετών. Το τρίγωνο της παρακάτω εικόνας, ονοµάστηκε τρίγωνο Pascal γιατί ήταν ο πρώτος που έγραψε σχετικά µε αυτό στην «Πραγµατεία πάνω στο Αριθµητικό Τρίγωνο», το Το τρίγωνο αυτό ήταν από πριν γνωστό. Είχε εµφανιστεί στη σελίδα τίτλων ενός 6

7 βιβλίου αριθµητικής των αρχών του 16 ου αιώνα του αστρονόµου Petrus Apianus. Επίσης, µια εικόνα σ ένα βιβλίο του 1303 ενός Κινέζου µαθηµατικού περιγράφει το τριγωνικό σχέδιο. Κάποιες πρόσφατες έρευνες τοποθετούν τη καταγωγή του ακόµα πιο πίσω. Ο Omar Khayyám, µαθηµατικός και φιλόσοφος, γνώριζε το τρίγωνο γύρω στα 1110, ίσως µάλιστα να το είχε γνωρίσει και αυτός από Κινεζικές ή Ινδικές αρχές. [Martin Gardner: Το Πανηγύρι των Μαθηµατικών, Μετάφραση: Θ. Παπαδόπουλος, Εκδόσεις Τροχαλία, Αθήνα 1986, σ ]. Σχολιάστε τη φράση: «Τα µαθηµατικά είναι µια ιστορία χωρίς τέλος». Που συναντάµε τον Pascal στη Φυσική (θέµατα πίεσης); (Μοιράζεται σε όλους τους µαθητές το τρίγωνο του Pascal της εικόνας στη σ. 150) Βρείτε τους πρωταγωνιστές αριθµούς που έχουµε συναντήσει ως τώρα στο βιβλίο. Που κρύβονται οι αριθµοί της ακολουθίας Fibonacci; Στη σελίδα 148, διαβάζουµε: «Το τρίγωνο µας όµως είναι τουλάχιστον δύο χιλιάδων χρόνων. Νοµίζω ότι κάποιος Κινέζος κατέβασε την ιδέα». Ποια είναι η ιστορία του τριγώνου; 7

8 Μαγικό τρυκ µε τράπουλα Ένας µαθητής το παρουσιάζει στους συµµαθητές του. Χρειάζεται µία τράπουλα από την οποία αφαιρούµε τα δεκάρια και τις φιγούρες. Ο ταχυδαχτυλουργός µαθητής ζητάει από έναν εθελοντή συµµαθητή του να ανοίξει πέντε χαρτιά τυχαία στη σειρά. Αυτός παίρνει αµέσως ένα χαρτί και το τοποθετεί κλειστό κάπου ψηλότερα από την προηγούµενη σειρά. (Βλ.εικόνα) Ο εθελοντής στη συνέχεια κατασκευάζει µια πυραµίδα από χαρτιά µε τον ακόλουθο τρόπο: προσθέτει δυο δυο τα ανοιχτά φύλλα της σειράς. Αν το άθροισµα είναι διψήφιο αφαιρεί από αυτόν τον αριθµό 9 ή προσθέτει τα δύο ψηφία του. Ένα καινούργιο φύλλο που αντιστοιχεί στον αριθµό που προκύπτει τοποθετείται στη συνέχεια πάνω και ανάµεσα από αυτά που άθροισε λίγο νωρίτερα. Για παράδειγµα, εάν προσθέσουµε τα δύο πρώτα χαρτιά της εικόνας δίπλα θα πάρουµε = 16, = 7. Η διαδικασία αυτή συνεχίζεται µέχρι να φτάσει η εξέλιξη της πυραµίδας στο κλειστό χαρτί, το οποίο βρίσκεται στην κορυφή. Όταν αυτό αναποδογυριστεί, αποδεικνύεται ότι είναι το σωστό χαρτί για το τελευταίο άθροισµα. [Martin Gardner: Το Πανηγύρι των Μαθηµατικών, Μετάφραση: Θ. Παπαδόπουλος, Εκδόσεις Τροχαλία, Αθήνα 1986, σ ]. Κινεζικό Τρίγωνο του Pascal από τον Καθρέπτη από Νεφρίτη των Αγνώστων (1303). [Une histoire des mathématiques chinoises, Kiyosi Yabuuti] 8

9 8η Νύχτα Όγδοη νύχτα. Ο κύριος Enzensberger επιλέγει σαν σκηνικό τη σχολική τάξη και ηθοποιούς τους συµµαθητές του Robert. Το ρόλο του «κονφερασιέ» παίζει µα και βέβαια αυτός που όλοι φαντάζεστε! Θέµα της αποψινής βραδιάς είναι η Συνδυαστική, Μεταθέσεις και Συνδυασµοί των ν ανά κ. Βιωµατική δραστηριότητα: Οι µαθητές παίρνουν αντίστοιχα το ρόλο της Βίλι, του Άλµπερτ, του Γουόλτ, κ.τ.λ.. Η ανάγνωση του κειµένου γίνεται ταυτόχρονα µε τη δράση των µαθητών. Συντονιστής είναι ο καθηγητής του προγράµµατος, που έχει το ρόλο του διαπραγµατευτή. Σκοπός, να καταλήξουν οι µαθητές να εµπλακούν όσο το δυνατό περισσότερο και να φτάσουν από µόνοι τους στο συµπέρασµα. Βιωµατική δραστηριότητα: Το πρόβληµα µε τις χειραψίες ή παραλλαγή αυτού µε σηµεία και ευθείες. Δηλαδή, πόσες ευθείες διέρχονται από ν σηµεία. Ανάγωγη του προβλήµατος σε πιο απλό. Διαδικασία Λύσης Προβλήµατος. Ο καθηγητής παίζει το ρόλο του διαπραγµατευτή. Σύνδεση µε το τρίγωνο του Pascal. 9η Νύχτα Σκέψεις - Δραστηριότητες Στην ένατη νύχτα το Πειραχτήρι των Αριθµών εισβάλλει για ακόµα µια φορά στον ονειρικό κόσµο του µικρού, αλλά τολµηρού Robert. Αυτή τη φορά την τιµητική του έχει το Άπειρο. Μέσα από µια απλουστευµένη µορφή του Παράδοξου του Ζήνωνα, το Πειραχτήρι προσπαθεί να µυήσει τον µικρό µαθητή του στο ταξίδι προς το άπιαστο Ένα. Την έννοια του Απείρου τη συναντάµε για πρώτη φορά στην Αρχαία Ελλάδα το 450 π.χ., στην Ελεατική Σχολή. Ο Ζήνων ο Ελεάτης παρήγαγε τέσσερα παράδοξα, όπως µας αναφέρει ο Αριστοτέλης στα Φυσικά [Φυσική Ακρόασις VI, 239b-240b], στα οποία µας παρουσιάζει µέσω ενός µοντέλου Δροµέα - Αγώνα τη φύση της Συνέχειας και του Απείρου. Σχολιάστε το διάλογο: 9

10 «-Μπορώ να τραβήξω κάνοντας αυτή τη δουλειά ώσπου να πέσω κάτω αναίσθητος. Στους αιώνες των αιώνων. Θα κοντεύω να φτάσω στο Ένα. Αλλά ποτέ δε θα φτάσω ακριβώς πάνω του. -Και όµως δεν έχεις παρά να συνεχίσεις επ άπειρον.» Ποιο ήταν το πρώτο «Πειραχτήρι» των µαθηµατικών που µέσω της διαδικασίας που περιγράφεται στη σελίδα 187, µας παρουσίασε το Άπειρο; Πόσο σηµαντική είναι η έννοια του Απείρου στα µαθηµατικά; Τι σχέση έχουν οι δύο εικόνες µε τα προηγούµενα; «Αέναος Κίνηση», 1961 «Ανεβαίνοντας και Κατεβαίνοντας», Λιθογραφία 1960 M.C.Escher Ποια καλλιτεχνικά ρεύµατα επηρεάστηκαν από τα µαθηµατικά; Στη Φύση, τι ισχύει; Υπάρχει το αντίστοιχο φαινόµενο της Μοιρασιάς της Τσίχλας; ( Ατοµική Θεωρία της Ύλης-Ατοµική Θεωρία του Ηλεκτρισµού) 10η Νύχτα 10

11 Αν µπορούσαµε να δούµε µια νιφάδα χιονιού στο µικροσκόπιο, τι σχήµα θα είχε; Για τον Robert είναι εξάγωνα µέσα σε εξάγωνα, µέσα σε άλλα εξάγωνα Ας µην βιαζόµαστε όµως: το Πειραχτήρι έχει ετοιµάσει για το µαθητή του τον αριθµό φ και τα πλατωνικά στερεά. Αν πάµε στην Αρχαία Ελλάδα, στα µαθηµατικά των Πυθαγορείων θα συναντήσουµε τη χρυσή τοµή, η οποία εάν έχουµε δύο µήκη α, x: Α x α Γ Β Τότε x 2 = α (α-x) και. Ο αριθµός φ θα λέγαµε ότι είναι ένας µαγικός αριθµός που συναντάται στη φύση, στην αρχιτεκτονική, στη ζωγραφική ακόµα και στο ανθρώπινο σώµα Τι κοινό έχουν ένα κανονικό πεντάγωνο, ο Παρθενώνας, ένα σχέδιο του Leonardo da Vinci, ο πίνακας The Sacrament of the Last Supper του Salvador Dali ( ), ένα κοχύλι, µια πεταλούδα, το ανθρώπινο σώµα [http://www.goldenmuseum.com/index_engl.html] Θυµηθείτε τους αριθµούς Fibonacci. Π ως συνδέονται µε τον µαγικό αριθµό φ; Ο «αναθεµατισµένος, παλαβιάρης» αριθµός φ είναι ένας αριθµός µε πολύ ισχυρή προσωπικότητα, όπως θα είδατε. Υπάρχουν άλλοι τέτοιοι αριθµοί; Πώς και γιατί δηµιουργήθηκαν; (π, e,i) Στη σελίδα 212, η δραστηριότητα που 11

12 προτείνει ο συγγραφέας. Ποια είναι η σηµασία των κανονικών στερεών στην Ακαδηµία του Πλάτωνα; Προτεινόµενη Βιβλιογραφία 1. Denis Guedj: Το Θεώρηµα του Παπαγάλου, Μετάφραση: Τεύκρος Μηχαηλίδης, Εκδόσεις Πόλις, Αθήνα B.L.Van der Waerden: Η Αφύπνιση της Επιστήµης: Πανεπιστηµιακές Εκδόσεις Κρήτης. 3. P.J. Davis- R.Hersh: Η Μαθηµατική Εµπειρία, Εκδόσεις Τροχαλία 4. Donald M. Davis:Η Φύση και η Δύναµη των µαθηµατικών, Πανεπιστηµιακές Εκδόσεις Κρήτης 11η Νύχτα Στην προτελευταία νύχτα, ο Robert δείχνει πιο ώριµος. Το Πειραχτήρι όλες αυτές τις βραδιές προσπαθεί να εντυπωσιάσει τον µικρό, αποκαλύπτοντας κόλπα και ιστορίες φηµισµένες στα µαθηµατικά. Αλλά ο Robert διερωτάται το «Γιατί;», γιατί συµβαίνουν όλα αυτά; [ ] «εγώ ένα έχω να πω: µου έδειξες ένα σωρό πράγµατα αλλά δε µου απέδειξες τίποτα». Πράγµατι, η ύπαρξη της απόδειξης είναι αυτή που δοµεί όλο το µαθηµατικό στερέωµα. Για την απόδειξη και τη σηµασία της προτείνονται οι δραστηριότητες στο 2 ο µέρος της παρουσίασης µας. 12

13 12η Νύχτα Όπως σε κάθε ιστορία µυστήριου υπάρχει ένα αποκαλυπτικό τέλος, έτσι το µάλλον σουρεαλιστικό τέλος της Οδύσσειας του Robert τελειώνει µε ένα έξω-γαλαξιακό ταξίδι στη χώρα όπου βασιλεύουν οι αστέρες των µαθηµατικών. Αιγύπτιοι, Έλληνες, Άραβες, Εγγλέζοι, Τούρκοι, Κινέζοι, Ινδοί, Αµερικάνοι και κάθε λογής εθνικοτήτων µαθηµατικοί από όλο τον κόσµο που ανακάλυψαν µαθηµατικές έννοιες για όλο τον κόσµο. Ο Robert, µυηµένος πλέον στο χώρο των µαθηµατικών, έχει τη τύχη να τους βλέπει από κοντά και να αφουγκράζεται την µαθηµατική τους διάνοια. Συναντάµε το φανταστικό αριθµό i στη Φυσική; [Παρά το παραπλανητικό τους όνοµα, οι φανταστικοί αριθµοί είναι όχι µόνο υπαρκτοί αλλά και πολύ χρήσιµοι, µε εφαρµογή στον ηλεκτρισµό, στην επεξεργασία σηµάτων και σε πολλές άλλες εφαρµογές. Η πολική µορφή των µιγαδικών αριθµών τους καθιστά ιδανικούς για την αναπαράσταση περιστρεφόµενων διανυσµάτων και φάσεων και συνεπώς χρησιµοποιούνται ευρύτατα στην ηλεκτρονική (για την αναπαράσταση εναλλασσόµενων ρευµάτων), στην κυµατική και γενικά στη µελέτη των περιοδικών φαινοµένων] [http://el.wikipedia.org]. Ποια Πειραχτήρια συναντάει στο Παράδεισο των Αριθµών; Ποιες είναι αυτές οι έξι-εφτά γυναίκες Πειραχτήρια που συνάντησε ο Robert και για ποιο λόγο είναι γνωστές; «Τα Μαθηµατικά, ήταν αντρική υπόθεση». Συµφωνείτε ή διαφωνείτε; Γράψτε το δικό σας τέλος για το βιβλίο. 13

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας

ΙΣΤΟΡΙΕΣ ΑΓΝΩΣΤΩΝ - ΣΚΙΑΘΟΣ, 7-11 ΙΟΥΛΙΟΥ 2008 Εργαστήρι Λεσχών Ανάγνωσης Μαθηµατικής Λογοτεχνίας ΥΠΟΘΕΣΗ ΡΙΜΑΝ (Η ΕΜΜΟΝΗ ΜΕ ΤΟΥΣ ΠΡΩΤΟΥΣ ΑΡΙΘΜΟΥΣ) του John Derbyshire (Εκδόσεις Τραυλός) Η ΜΟΥΣΙΚΗ ΤΩΝ ΠΡΩΤΩΝ ΑΡΙΘΜΩΝ του Marcus du Sautoy (Εκδόσεις Τραυλός) Γενικά Υπόθεση Ρίµαν Όλες οι µη τετριµµένες

Διαβάστε περισσότερα

ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html

ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ. - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html ΓΙΑ ΔΙΚΗ ΜΑΣ ΕΝΗΜΕΡΩΣΗ + ΠΡΟΣΘΕΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Α. ΑΡΧΑΙΑ ΕΛΛΑΔΑ Για Θαλή: - http://pratt.edu/~arch543p/readings/mathematics_and_philosophy.html - http://www.anselm.edu/homepage/dbanach/thales.htm -http://www-groups.dcs.stand.ac.uk/~history/birthplacemaps/places/miletus.html

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Το Πειραχτήρι των Αριθµών. (Hans Magnus Enzensberger)

Το Πειραχτήρι των Αριθµών. (Hans Magnus Enzensberger) Το Πειραχτήρι των Αριθµών (Hans Magnus Enzensberger) Μιχαηλίδης Ανδρέας Λέρη Βαρβάρα Ιούλιος 2006 1 Ένα πειραχτήρι σκέτο Δαιµόνιο! Είναι εκπληκτικό να αναλογιστεί κανείς, πώς ένα πλάσµα συνήθως συνδεόµενο

Διαβάστε περισσότερα

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet.

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Λέσχη Ανάγνωσης Γενικού Λυκείου Σαντορίνης Σχολικό έτος 2011-2012 Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Γιάννης Παπόγλου Το σμαραγδένιο στέμμα Σύµφωνα µε ένα παλιό µου ρητό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ Το μάθημα της Θεατρικής Αγωγής θα διδάσκεται από φέτος στην Ε και Στ Δημοτικού. Πρόκειται για μάθημα βιωματικού χαρακτήρα, με κύριο

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Δραστηριότητα για µαθητές Γυµνασίου

Δραστηριότητα για µαθητές Γυµνασίου Δραστηριότητα για µαθητές Γυµνασίου Παρουσίαση: Τεύκρος Μιχαηλίδης ΘΑΛΗΣ+ΦΙΛΟΙ Επικοινωνία info@thalesandfriends.org Ιστοσελίδα www.thalesandfriends.org Το τρίγωνο του Sierpinski Α Β Γ ΘΑΛΗΣ+ΦΙΛΟΙ 2 Στο

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Σόφη Θεοδωρίδου: "Αν δε συμπάσχεις με τους ήρωές σου, δεν είναι αληθινοί"

Σόφη Θεοδωρίδου: Αν δε συμπάσχεις με τους ήρωές σου, δεν είναι αληθινοί Σόφη Θεοδωρίδου: "Αν δε συμπάσχεις με τους ήρωές σου, δεν είναι αληθινοί" Το clickatlife επιλέγει ρήσεις από έντεκα συγγραφείς της παγκόσμιας κλασσικής λογοτεχνίας για να ανοίξει διάλογο με σύγχρονους

Διαβάστε περισσότερα

Σχέδιο Μαθήματος Νο3 «SimSafety» Σενάριο Παιχνιδιού: «Κλοπή» (Theft)

Σχέδιο Μαθήματος Νο3 «SimSafety» Σενάριο Παιχνιδιού: «Κλοπή» (Theft) Σχέδιο Μαθήματος Νο3 «SimSafety» Σενάριο Παιχνιδιού: «Κλοπή» (Theft) 1. Μάθημα (κατά το οποίο μπορεί να διδαχτεί η συγκεκριμένη δραστηριότητα): Αγγλικά, Πληροφορική, Ευέλικτη ζώνη στην πρωτοβάθμια εκπαίδευση

Διαβάστε περισσότερα

1η δράση. κών, των εικαστικών, της δραµατικής τέχνης και της πληροφορικής.

1η δράση. κών, των εικαστικών, της δραµατικής τέχνης και της πληροφορικής. ΡΑΣΕΙΣ ΦΙΛΑΝΑΓΝΩΣΙΑΣ Η ιστορία του Κοµπιουτερούλη µπορεί να χρησιµοποιηθεί ως ερέθισµα για την εξοικείωση των παιδιών της προσχολικής και της πρώτης σχολικής ηλικίας µε τον ηλεκτρονικό υπολογιστή. Οι δράσεις

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

Οι αριθμοί σελίδων με έντονη γραφή δείχνουν τα κύρια κεφάλαια που σχετίζονται με το θέμα. ΣΧΕΣΗ ΜΕ ΜΑΘΗΜΑ

Οι αριθμοί σελίδων με έντονη γραφή δείχνουν τα κύρια κεφάλαια που σχετίζονται με το θέμα. ΣΧΕΣΗ ΜΕ ΜΑΘΗΜΑ Τί σε απασχολεί; Διάβασε τον κατάλογο που δίνουμε παρακάτω και, όταν συναντήσεις κάποιο θέμα που απασχολεί κι εσένα, πήγαινε στις σελίδες που αναφέρονται εκεί. Διάβασε τα κεφάλαια, που θα βρεις σ εκείνες

Διαβάστε περισσότερα

ΣΥΝ ΚΙΝΗΣΙΣ- ΒΙΩΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ, ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΕΣ ΔΡΑΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΑ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΥΝ ΚΙΝΗΣΙΣ- ΒΙΩΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ, ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΕΣ ΔΡΑΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΑ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Επικοινωνία ΣυνΚίνησις 2155304973, 6973933877 info@sinkinisis.com www.sinkinisis.com ΣΥΝ ΚΙΝΗΣΙΣ- ΒΙΩΜΑΤΙΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ, ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΕΣ ΔΡΑΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΑ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

Το ψέμα είναι ένας εύκολος τρόπος να αποφύγεις την πραγματικότητα : συνέντευξη του Άγγελου Αγγέλου και της Έμης Σίνη στο elniplex

Το ψέμα είναι ένας εύκολος τρόπος να αποφύγεις την πραγματικότητα : συνέντευξη του Άγγελου Αγγέλου και της Έμης Σίνη στο elniplex Το ψέμα είναι ένας εύκολος τρόπος να αποφύγεις την πραγματικότητα : συνέντευξη του Άγγελου Αγγέλου και της Έμης Σίνη στο elniplex Η Έμη Σίνη μεγάλωσε στη Ρόδο, σπούδασε πολιτικός μηχανικός στο Μετσόβιο

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

11.00-12.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε χιονάνθρωπους από κάλτσα! 12.00-13.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε στολίδια από καπάκι!

11.00-12.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε χιονάνθρωπους από κάλτσα! 12.00-13.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε στολίδια από καπάκι! Πρόγραμμα παιδικών εκδηλώσεων Σάββατο 20 Δεκεμβρίου 11.00-12.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε χιονάνθρωπους από κάλτσα! 12.00-13.00 Χριστουγεννιάτικο εργαστήρι: Φτιάχνουμε στολίδια από καπάκι!

Διαβάστε περισσότερα

Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ

Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ Τα βιβλία θα τα βρείτε στο βιβλιοπωλείο: Βιβλία γνώσεων και δραστηριοτήτων ΣΦΡΑΓΙΔΑ ΒΙΒΛΙΟΠΩΛΕΙΟΥ Συντονισμός χεριού-ματιού Βοηθούν στην ανάπτυξη των κινητικών δεξιοτήτων του παιδιού. Παίζω με τους κύβους

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Για τα παιδιά (αλλά και για τους γονείς)...

Για τα παιδιά (αλλά και για τους γονείς)... Eισαγωγικό σημείωμα: «Οι κατ οίκον εργασίες στη διδασκαλία των μαθηματικών» Οι εργασίες «για το σπίτι» ή όπως λέγονται στις παιδαγωγικές επιστήμες οι κατ οίκον εργασίες αποτελούν αναπόσπαστο κομμάτι της

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ Η ΟΜΑΔΑ μας ανέλαβε το θέμα της σχέσης των Μαθηματικών με τη ΖΩΓΡΑΦΙΚΗ!!! ΠΑΡΟΥΣΙΑΣΗ-ΕΠΙΜΕΛΕΙΑ: ΓΟΥΛΑ ΕΙΡΗΝΗ, ΡΑΛΛΙΟΥ ΕΥΑΝΘΙΑ, ΤΣΙΜΗΤΡΑ ΑΓΓΕΛΙΚΗ. ΙΣΤΟΡΙΚΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

707_THEFINALBOOK_Layout 1 5/12/2012 8:44 πμ Page 1. Σοφία Σταμπολίτη. Καρκινικές Φράσεις. ...ένα παιχνίδι λέξεων...

707_THEFINALBOOK_Layout 1 5/12/2012 8:44 πμ Page 1. Σοφία Σταμπολίτη. Καρκινικές Φράσεις. ...ένα παιχνίδι λέξεων... 707_THEFINALBOOK_Layout 1 5/12/2012 8:44 πμ Page 1 Σοφία Σταμπολίτη 707 Καρκινικές Φράσεις...ένα παιχνίδι λέξεων... 707_THEFINALBOOK_Layout 1 5/12/2012 8:44 πμ Page 2 707 Καρκινικές Φράσεις 2012 Σοφία

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΚΕΙΜΕΝΟ O εικοστός αιώνας δικαίως χαρακτηρίζεται

Διαβάστε περισσότερα

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë ΚΕΦΑΛΑΙΟ 1 ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë Tα βασικά σημεία του μαθήματος Η Γη είναι ένα ουράνιο σώμα, που κινείται συνεχώς στο διάστημα. Το σχήμα της είναι γεωειδές, δηλαδή είναι ελαφρά συμπιεσμένο στις κορυφές

Διαβάστε περισσότερα

Σοφία Παράσχου. «Το χάνουμε!»

Σοφία Παράσχου. «Το χάνουμε!» 1 Σειρά Σπουργιτάκια Εκδόσεις Πατάκη «Το χάνουμε!» Σοφία Παράσχου Εικονογράφηση: Βαγγέλης Ελευθερίου Σελ. 52 Δραστηριότητες για Α & Β τάξη Συγγραφέας: Η Σοφία Παράσχου γεννήθηκε στην Κάρπαθο και ζει στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

η φιλοσοφία Gestalt, η προσέγγιση PSP, το Playback Θέατρο: τοπία αυτοσχεδιασμού

η φιλοσοφία Gestalt, η προσέγγιση PSP, το Playback Θέατρο: τοπία αυτοσχεδιασμού 1 η φιλοσοφία Gestalt, η προσέγγιση PSP, το Playback Θέατρο: τοπία αυτοσχεδιασμού Το βιβλίο αυτό, του ψυχοθεραπευτή Gestalt Πέτρου Θεοδώρου, κυκλοφορεί από τις εκδόσεις ΒΙΒΛΙΟΦΟΡΟΣ και σε Ελληνική και

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Τίτλος και σύντομη περιγραφή των εκδηλώσεων της καλοκαιρινής εκστρατείας 2015. 1. Εδώ δεν είναι βιβλιοθήκη είναι πικνίκ στη χώρα των θαυμάτων

Τίτλος και σύντομη περιγραφή των εκδηλώσεων της καλοκαιρινής εκστρατείας 2015. 1. Εδώ δεν είναι βιβλιοθήκη είναι πικνίκ στη χώρα των θαυμάτων ΕΔΩ ΔΕΝ ΕΙΝΑΙ ΒΙΒΛΙΟΘΗΚΗ Τίτλος και σύντομη περιγραφή των εκδηλώσεων της καλοκαιρινής εκστρατείας 2015 1. Εδώ δεν είναι βιβλιοθήκη είναι πικνίκ στη χώρα των θαυμάτων Για μια εβδομάδα τα παιδιά θα μεταφερθούν

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΚΗ ΨΥΧΑΓΩΓΙΑ ΓΙΑ ΠΑΙΔΙΑ ΕΚΠΑΙΔΕΥΣΗ ΜΕΣΑ ΑΠΟ ΤΟ ΠΑΙΧΝΙΔΙ

ΔΗΜΙΟΥΡΓΙΚΗ ΨΥΧΑΓΩΓΙΑ ΓΙΑ ΠΑΙΔΙΑ ΕΚΠΑΙΔΕΥΣΗ ΜΕΣΑ ΑΠΟ ΤΟ ΠΑΙΧΝΙΔΙ ΑΘΗΝΑ ΤΟ ΠΟΛΥΤΕΧΝΟ ΧΩΡΟΣ ΠΑΙΔΙΚΗΣ ΚΑΛΛΙΤΕΧΝΙΚΗΣ ΑΓΩΓΗΣ Το πολύτεχνο είναι ένα καλλιτεχνικό εργαστήριο που προσφέρει εκπαιδευτικά και καλλιτεχνικά προγράμματα σε μαθητές ηλικίας 2 έως 9 ετών τα οποία είναι

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ Υποστηρίζεται η άποψη ότι η ελληνιστική περίοδος (3ος - 2ος αι. π.χ.) αποτελεί το «απόγειο» της αρχαίας ελληνικής επιστήµης. Επίσης, ορισµένοι ιστορικοί της επιστήµης εκτιµούν ότι

Διαβάστε περισσότερα

Στον κόσμο με την Thalya

Στον κόσμο με την Thalya Γρηγόρης Μπελαβίλας Στον κόσμο με την Thalya Συνέντευξη: Τσέκος Αθανάσιος Tι σάς κάνει να γράφετε μουσική? Ο βασικός λογος είναι ότι οι μουσικές που γράφω μού αρέσουν πολύ πιό πολύ από τίς μουσικές τών

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Scenario How-To ~ Επιμέλεια: Filming.gr Σελ. 1. Το σενάριο, είναι μια ιστορία, ειπωμένη σε κινηματογραφικές εικόνες.

Scenario How-To ~ Επιμέλεια: Filming.gr Σελ. 1. Το σενάριο, είναι μια ιστορία, ειπωμένη σε κινηματογραφικές εικόνες. Scenario How-To ~ Επιμέλεια: Filming.gr Σελ. 1 Σενάριο Το σενάριο, είναι μια ιστορία, ειπωμένη σε κινηματογραφικές εικόνες. Σε αντίθεση με τα αφηγηματικά ή λογοτεχνικά είδη, το σενάριο περιγράφει αυτό

Διαβάστε περισσότερα

Γιώργης Παυλόπουλος. Τι είναι ποίηση...

Γιώργης Παυλόπουλος. Τι είναι ποίηση... Γιώργης Παυλόπουλος Τι είναι ποίηση... "Αν ένα πουλί μπορούσε να πει με ακρίβεια τι τραγουδάει, γιατί τραγουδάει, και τι είναι αυτό που το κάνει να τραγουδάει, δεν θα τραγούδαγε". Κυρίες και Κύριοι Φίλες

Διαβάστε περισσότερα

ΤΑ ΕΡΓΑΛΕΙΑ ΤΟΥ ΚΛΑΔΟΥ ΛΥΚΟΠΟΥΛΩΝ ΤΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ Η ΠΡΟΟΔΟΣ ΤΟΥ ΚΛΑΔΟΥ ΛΥΚΟΠΟΥΛΩΝ Στον Προσκοπισµό οι νέοι έχουν την ευκαιρία να αποκτήσουν µια σειρά από εµπειρίες που συµβάλλουν στην φυσιολογική

Διαβάστε περισσότερα

Εάν όμως πείτε να κάνετε το πάρτι γενεθλίων στο σπίτι ή τον κήπο σας, τα πράγματα δυσκολέυουν. Πρέπει να οργανώσετε μόνοι σας ένα σωρό πράγματα.

Εάν όμως πείτε να κάνετε το πάρτι γενεθλίων στο σπίτι ή τον κήπο σας, τα πράγματα δυσκολέυουν. Πρέπει να οργανώσετε μόνοι σας ένα σωρό πράγματα. Ιδέες για Γενέθλια παιδιών Πόσες φορές σπάσατε το κεφάλι σας, που να κάνετε το πάρτι γενεθλίων των παιδιών σας; Στο σπίτι, στον κήπο ή τελικά σε κάποιον παιδότοπο; Εάν επιλέξετε έναν παιδότοπο, τα πράγματα

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1

ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 ΕΙΝΑΙ Η ΑΣΤΡΟΛΟΓΙΑ ΜΙΑ ΜΕΘΟΔΟΣ ΑΥΤΟΓΝΩΣΙΑΣ; 1 Στο σημείο αυτό του οδοιπορικού γνωριμίας με τις διάφορες μεθόδους αυτογνωσίας θα συναντήσουμε την Αστρολογία και θα μιλήσουμε για αυτή. Θα ερευνήσουμε δηλαδή

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 556 3 Ο ΣΥΝΕ ΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Ματούλας Γεώργιος άσκαλος Σ Ευξινούπολης

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ)

THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) THOMAS VOGEL Το τελευταίο παραµύθι του Μιγκέλ Τόρρες ντα Σίλβα (ΜΥΘΙΣΤΟΡΗΜΑ) Μετάφραση: ΛΙΝΑ ΣΙΠΙΤΑΝΟΥ Εκδόσεις Κριτική 2003 Παρουσίαση του βιβλίου: Ευαγγελία Τατάγια ΠΕΡΙΛΗΨΗ Το µυθιστόρηµα ξετυλίγεται

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357-22378101 Φαξ: 357-22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. Ημερομηνία:

Διαβάστε περισσότερα

Γιατί πρέπει να κάνω εμβόλια;

Γιατί πρέπει να κάνω εμβόλια; Για τους μικρούς μας φίλους Γιατί πρέπει να κάνω εμβόλια; Σε ύ Είµαι το µικρόβιο. Μου αρέσει να κάνω τα µικρά παιδιά να αρρωσταίνουν. Εγώ και η οικογένειά µου βρισκόµαστε παντού στο περιβάλλον που ζεις,

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Αντουάν ντε Σαιντ-Εξυπερύ. Ο Μικρός Πρίγκιπας. Μετάφραση: Μελίνα Καρακώστα. Διασκευή: Ανδρονίκη

Αντουάν ντε Σαιντ-Εξυπερύ. Ο Μικρός Πρίγκιπας. Μετάφραση: Μελίνα Καρακώστα. Διασκευή: Ανδρονίκη Αντουάν ντε Σαιντ-Εξυπερύ Ο Μικρός Πρίγκιπας Μετάφραση: Μελίνα Καρακώστα Διασκευή: Ανδρονίκη 2 Μια φορά κι έναν καιρό ήταν ένα νεαρό αγόρι, που του άρεσε πολύ να ζωγραφίζει. Μια μέρα ζωγράφισε ένα βόα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Πώς θα υλοποιήσω ένα πρόγραµµα Αγωγής Υγείας για τη διατροφή. Νικόλαος Ευσταθίου (Μ.ed.) Υπεύθυνος Αγωγής Υγείας Α /νση Π.Ε.

Πώς θα υλοποιήσω ένα πρόγραµµα Αγωγής Υγείας για τη διατροφή. Νικόλαος Ευσταθίου (Μ.ed.) Υπεύθυνος Αγωγής Υγείας Α /νση Π.Ε. Πώς θα υλοποιήσω ένα πρόγραµµα Αγωγής Υγείας για τη διατροφή Νικόλαος Ευσταθίου (Μ.ed.) Υπεύθυνος Αγωγής Υγείας Α /νση Π.Ε. Αθηνών Βήµατα για ένα σχέδιο εργασίας Α φάση: Επιλογή και διερεύνηση του θέµατος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17 3 ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ Μαθαίνω να σχηµατίζω απλές προτάσεις................ 7 Μαθαίνω να οµορφαίνω τις προτάσεις µου.............. 17 Μαθαίνω να µεγαλώνω τις προτάσεις µου............... 25 Μαθαίνω να γράφω

Διαβάστε περισσότερα