ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ. Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός"

Transcript

1 1 ΣΕΝΑΡΙΟ ΓΙΑ ΤΗ Ι ΑΣΚΑΛΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αηµ(βx+θ)+γ Συγγραφείς : Γεώργιος Μαντζώλας, µαθηµατικός Κύπρος Κυπρίδηµος, µαθηµατικός 1 Ταυτότητα του σεναρίου Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Επί µέρους θέµατα. (1) Η συνάρτηση f(x) = ηµx (απλή υπενθύµιση) (2) Η συνάρτηση f(x) = ηµx+γ (3) Η συνάρτηση f(x) = αηµx (4) Η συνάρτηση f(x) = ηµβx (5) Η συνάρτηση f(x) = ηµ(x+θ) (6) Η συνάρτηση f(x) = ηµβ(x+θ) (7) Η συνάρτηση f(x) = ηµ(βx+θ) (8) Η συνάρτηση f(x) = αηµ(βx+θ) (9) Η συνάρτηση f(x) = αηµ(βx+θ)+γ (10) Εύρεση του τύπου της συνάρτησης από τη γραφική της παράσταση (11) Από τα πραγµατικά αριθµητικά δεδοµένα (ζεύγη) που εκφράζουν ένα πραγµατικό γεγονός θα οδηγηθούµε στη συνάρτηση που εκφράζει προσεγγυστικά τη σχέση µεταξύ τους, µέσω γραφικής παράστασης. (Με χρήση του λογισµικού Function Probe ). Bασική ιδέα. Η βασική ιδέα είναι να χρησιµοποιηθεί ένα λογισµικό, µε το οποίο να µπορέσουν να αναδειχθούν µε γρήγορο απλό και σαφή τρόπο, οι διαφορετικοί ρόλοι των παραµέτρων α, β, γ και θ στη συνάρτηση f(x) = αηµ(βx+θ)+γ. Ως τέτοιο επελέγη το λογισµικό The Geometer s Sketchpad. Για την εξάσκηση των µαθητών στην εύρεση του τύπου της συνάρτησης από µια προσεγγιστική γραφική παράσταση επελέγη το λογισµικό Function Probe. Για την κατασκευή πίνακα τιµών συνάρτησης χρησιµοποιείται το Excel. 2 Σκοπός του σεναρίου Σκοπός του σεναρίου είναι να συνειδητοποιήσουν οι µαθητές ότι οι παραµετρικές συναρτήσεις και γενικότερα οι συναρτήσεις δεν είναι κάτι

2 2 στατικό και ξεκοµµένο από την πραγµατικότητα, αλλά κάτι ζωντανό, που µπορεί να αναπαριστά και γεγονότα της καθηµερινής ζωής. 3 Στόχοι του σεναρίου ιδακτικοί στόχοι. Οι µαθητές, µε το πέρας της διδασκαλίας, πρέπει (1) Να µπορούν να αναγνωρίζουν συναρτήσεις της µορφής f(x)=αηµ(βx+θ)+γ καθώς και ειδικές περιπτώσεις αυτής. Να κατανοήσουν το ρόλο των συντελεστών. Να προβλέπουν τη γραφική της παράσταση και να εξάγουν συµπεράσµατα από αυτήν, όπως πεδίο ορισµού, σύνολο τιµών, µονοτονία, ακρότατα, περιοδικότητα, συµµετρικότητα. (2) Να είναι σε θέση να οδηγούνται από τη γραφική παράσταση στον τύπο της συνάρτησης. (3) Να µπορούν να οδηγούνται από δεδοµένα (µετρήσεις) ενός πραγµατικού φαινοµένου στη γραφική παράσταση και στη συνέχεια στη συνάρτηση που εκφράζει το φαινόµενο. Κοινωνικο-πολιτισµικοί στόχοι. Οι µαθητές πρέπει να συνηθίσουν να δουλεύουν σε οµάδες και να αλληλοβοηθούνται κατά τη διαδικασία ανακάλυψης της γνώσης, κατανοώντας ο ένας τις αδυναµίες του άλλου. Επί µέρους στόχοι. Οι µαθητές πρέπει να εξοικειωθούν µε τη χρήση των ΤΠΕ στη µαθησιακή διαδικασία και µε τις νέες µεθόδους ανακάλυψης και οικοδόµησης της γνώσης. 4 Σκεπτικό του σεναρίου Καινοτοµίες. Με το σενάριο αυτό επιχειρείται µια ερευνητική προσέγγιση της ηµιτονοειδούς συνάρτησης από µέρους του µαθητή, ο οποίος καλείται να διερευνήσει, να ανακαλύψει και να επιβεβαιώσει τη συµπεριφορά της συνάρτησης για πολλές διαφορετικές τιµές των παραµέτρων της. Πολύτιµους βοηθούς σε αυτό έχει τους δυναµικούς πίνακες τιµών του Excel και τις δυναµικές γραφικές παραστάσεις του Sketchpad και του Function Probe. Η γνώση οικοδοµείται βήµα βήµα µε τα προσεχτικά σχεδιασµένα βήµατα εξέλιξης της όλης διαδικασίας. Προστιθέµενη αξία. Η χρήση των προαναφερθέντων λογισµικών προσφέρει πολλαπλά οφέλη στη µαθησιακή διαδικασία, σε σχέση µε τους παραδοσιακούς τρόπους διδασκαλίας (πίνακας - κιµωλία και χαρτί - µολύβι). Ο πίνακας τιµών επιτρέπει στο µαθητή να δει άµεσα την τιµή της συνάρτησης για όποια πραγµατική τιµή του x επιθυµεί, όσο ακραία και αν είναι αυτή, να κάνει προβλέψεις, τις οποίες να επαληθεύσει ή να διαψεύσει σε συνεργασία και µε τους άλλους µαθητές της οµάδας. Η γρήγορη και ακριβής κατασκευή της γραφικής παράστασης του επιτρέπει να πειραµατισθεί για διάφορους συνδυασµούς των παραµέτρων. Γνωστικά- διδακτικά προβλήµατα. Για να έχουµε τα µέγιστα αποτελέσµατα στη διδασκαλία της παραγράφου µε τον συγκεκριµένο τρόπο πρέπει: (1) Οι µαθητές να είναι εξοικειωµένοι µε τα λογισµικά που θα χρησιµοποιηθούν. (2) Να υπάρχει ο απαιτούµενος αριθµός Η/Υ.

3 3 (3) Η συνάρτηση f(x) = ηµx να έχει διδαχθεί µε παρόµοια µέθοδο. (4) Να έχει κατανοηθεί από τους µαθητές η έννοια του ακτινίου και η εµφάνιση υποδιαιρέσεων και πολλαπλασίων του π στον άξονα των τετµηµένων. Θεωρητικό πλαίσιο. Αποµάκρυνση από το παραδοσιακό δασκαλοκεντρικό συµπεριφοριστικό µοντέλο µάθησης, όπου ο καθηγητής απαγγέλλει κανόνες και αποδείξεις και ο µαθητής καλείται απλά να «πεισθεί» γι αυτά και να τα αποστηθίσει. Υιοθέτηση σύγχρονων κοινωνικών ανακαλυπτικών και εποικοδοµηστικών προσεγγίσεων, όπου ο καθηγητής σχεδιάζει, παρακολουθεί και συντονίζει τις δραστηριότητες, τις οποίες πραγµατοποιούν οι µαθητές εργαζόµενοι και συνεργαζόµενοι σε µικρές οµάδες,. Έτσι οι µαθητές, «ψαχουλεύοντας», ανακαλύπτουν και οικοδοµούν την απαραίτητη γνώση. 5 Πλαίσιο εφαρµογής Σε ποιους απευθύνεται. Το σενάριο απευθύνεται σε µαθητές της Β Λυκείου. Χρόνος υλοποίησης. Για την υλοποίηση του σεναρίου απαιτούνται τρεις διδακτικές ώρες. Χώρος υλοποίησης. Οι µαθητές θα εργαστούν στο εργαστήριο των ηλεκτρονικών υπολογιστών. Προαπαιτούµενες γνώσεις των µαθητών. Οι µαθητές πρέπει να γνωρίζουν στοιχειωδώς το χειρισµό των εκπαιδευτικών λογισµικών που θα χρησιµοποιηθούν, ώστε να µπορούν να πειραµατίζονται µε τις συναρτήσεις αλλάζοντας τις παραµέτρους και παρακολουθώντας τις µεταβολές στη γραφική παράσταση της συνάρτησης. Στο ζήτηµα του µαθηµατικού υποβάθρου πρέπει να κατέχουν την έννοια της συνάρτησης, να ερµηνεύουν τη γραφική της παράσταση, να αναγνωρίζουν µονοτονίες (αύξουσα, φθίνουσα), ακρότατα (µέγιστα, ελάχιστα) και συµµετρίες (άρτια, περιττή). Ειδικότερα θα πρέπει να γνωρίζουν πολύ καλά ό,τι αφορά τη συνάρτηση f(x) = ηµx και να είναι εξοικειωµένοι µε την έννοια του ακτινίου. Απαιτούµενα βοηθητικά υλικά και εργαλεία. Είναι απαραίτητο να υπάρχουν εγκαταστηµένα στους Η/Υ τα λογισµικά που θα χρησιµοποιηθούν. Θα µοιραστούν φύλλα εργασίας στον κάθε µαθητή, ο οποίος θα συµπληρώνει πάνω σ αυτά τα αποτελέσµατα του πειραµατισµού και της έρευνάς του πάνω στα µοντέλα που έχει κατασκευάσει. Κοινωνική ενορχήστρωση της τάξης. Οι µαθητές θα εργαστούν σε οµάδες των δύο ή τριών ατόµων. Τα µέλη της οµάδας συνεργάζονται και αλληλοβοηθούνται για την πραγµατοποίηση των δραστηριοτήτων που προβλέπονται από το σενάριο. Ο διδάσκων θέτει τα όρια σε ότι αφορά τον διδακτικό θόρυβο, παρακολουθεί διακριτικά την εξέλιξη της διαδικασίας, εντοπίζει δυσκολίες και προβλήµατα που ανακύπτουν και καθοδηγεί, παροτρύνει, ενθαρρύνει και διευκολύνει όπου χρειάζεται. 6 Αναλυτική περιγραφή του σεναρίου ραστηριότητα 1 η (1) ιανέµεται στους µαθητές το Φύλλο Εργασίας 1.doc και τους ζητείται να απαντήσουν στις ερωτήσεις που περιέχει. (Επανάληψη της συνάρτησης f(x)=ηµx).

4 4 (2) Ο διδάσκων, µε κατάλληλες ερωτήσεις, προσπαθεί να βοηθήσει τους µαθητές να αποκρυσταλλώσουν σωστή άποψη για το ακτίνιο και τον αριθµό π. Για παράδειγµα µπορεί να ρωτήσει ποιο είναι περίπου το ηµίτονο του 6, του 3, του 1. Πολλοί µαθητές θα υπολογίσουν το ηµ6π, ηµ3π, και ηµπ, διότι ταυτίζουν το π µε τη µονάδα µέτρησης. (3) Η απάντηση στα ερωτήµατα θα πρέπει να δοθεί κυρίως από το διάγραµµα της συνάρτησης για να συνηθίσουν οι µαθητές να διαβάζουν γραφικές παραστάσεις. ραστηριότητα 2 η (1) Πίνακας τιµών. Ζητείται από τους µαθητές α) Να ανοίξουν ένα νέο Βιβλίο Εργασίας του Excel. β) Να συµπληρώσουν τα κελιά Α1, B1, C1, D1, E1, και F1 µε τις επικεφαλίδες των στηλών, και τη στήλη Α µε τις τιµές του χ, όπως φαίνεται στο φύλλο1 του αρχείου asinx.xls. Ο διδάσκων µπορεί, αν θέλει, να συµπληρώσει και µε άλλες δικές του τιµές. γ) Συµπληρώστε τα κελιά B2, C2, D2, E2, F2 µε τους κατάλληλους τύπους, ώστε να υπολογίζονται αυτόµατα οι τιµές των συναρτήσεων των επικεφαλίδων. (2) Καθοδηγούµενη ανακάλυψη. Ο διδάσκων κάνει τις εξής διερευνητικές ερωτήσεις: α) Εντοπίσατε κάποια διαφορά ανάµεσα στην κατασκευή των τύπων στα κελιά C2, D2 και στην κατασκευή των τύπων στα κελιά E2, F2; Αν ναι, ποια είναι αυτή και πώς ερµηνεύεται; (Σηµ. Εδώ θέλουµε να ξεδιαλύνουµε ότι η σχέση ανάµεσα στο ηµ2χ και στο ηµχ δεν είναι γραµµική, ενώ στο 3ηµχ και στο ηµχ είναι γραµµική). β) Τα αποτελέσµατα είναι τα αναµενόµενα; γ) Αντιγράψτε τους τύπους και στα υπόλοιπα κελιά του πίνακα (µέχρι και το F43). δ) Με προσεκτική παρατήρηση των αποτελεσµάτων προσπαθήστε να υποψιαστείτε τη µορφή των γραφικών παραστάσεων των συναρτήσεων. (Τέλος 1 ης διδακτικής ώρας) ραστηριότητα 3 η (1) Ο διδάσκων δίνει στους µαθητές το Φύλλο Εργασίας 2.doc και τους δίνει χρόνο πέντε λεπτών για να απαντήσουν σε όσο περισσότερες ερωτήσεις µπορούν, χρησιµοποιώντας και την εµπειρία τους από την προηγούµενη δραστηριότητα. εν αναµένονται θεαµατικά αποτελέσµατα, αλλά είναι µια εισαγωγή γι αυτό που πρόκειται να ακολουθήσει. Αξιολογεί τα αποτελέσµατα και δίνει οδηγία στους µαθητές να ανοίξουν το αρχείο SIN_WX_K3.gsp. (2) Τους εξηγεί για λίγο το ρόλο των sliders (δίνουν τιµές στις παραµέτρους της συνάρτησης f(x) = αηµ(βχ+θ)+γ). Τους αφήνει να εξερευνήσουν µόνοι τους για λίγο το καινούριο εργαλείο και κάνουν τη σύµβαση ότι ανά πάσα στιγµή οι προκύπτουσες αυτόµατα γραφικές παραστάσεις είναι οι σωστές, δηλαδή εκείνες που αντιστοιχούν στην εκάστοτε συνάρτηση µε τους συγκεκριµένους συντελεστές κάθε φορά.

5 5 (3) Τους ζητά σταδιακά να παρατηρήσουν τις γραφικές παραστάσεις, που προκύπτουν για τις συγκεκριµένες τιµές των παραµέτρων που φαίνονται στον πίνακα και να κατανοήσουν το ρόλο της κάθε παραµέτρου. Μπορούν να πειραµατισθούν όσο θέλουν και µε τιµές της δικής τους προτίµησης. α β θ γ , π/ π/ π 0 3 0,5 -π π , , π/ π/3-2 (4) Τους ζητά να κλείσουν το αρχείο, να πάρουν ξανά το Φύλλο Εργασίας 2.doc και να ξαναπροσπαθήσουν να απαντήσουν στα ερωτήµατά του. Ο διδάσκων αξιολογεί την πρόοδο των µαθητών. Τους ζητά να ξανανοίξουν το αρχείο SIN_WX_K3.gsp και να διορθώσουν µόνοι τους τις απαντήσεις. Τους ζητά να ακούσει τις απαντήσεις τους στην άσκηση 12. Προφανώς θα ακούσει περισσότερες της µιας απάντησης. Τους ζητά να εξηγήσουν το γιατί. Γίνεται το ίδιο και για τις ερωτήσεις 13, 14 και 15. (5) Τους ζητά να κατασκευάσουν τις γραφικές παραστάσεις των συναρτήσεων f(x) = ηµ(π/2 x) και g(x) = συνx. Φυσικά ακολουθεί η διαπίστωση ότι ταυτίζονται. Στη συνέχεια τους ζητά να κατασκευάσουν τις γραφικές παραστάσεις των συναρτήσεων f(x) = ηµ(x/2 + 3π/2), g(x) = ηµ[1/2(x + 3π)] και h(x) = -συν(x/2), που επίσης ταυτίζονται. (6) Ο διδάσκων απαντά σε τυχόν απορίες, κάνει µια σύντοµη ανακεφαλαίωση και οι µαθητές κλείνουν το αρχείο. (Τέλος 2 ης διδακτικής ώρας)

6 6 ραστηριότητα 4 Ο διδάσκων χρησιµοποιεί από το διαδίκτυο τον πίνακα µε τα στατιστικά δεδοµένα για τις αφίξεις τουριστών στην Κύπρο ανά µήνα του 2007 και σε συνεργασία µε τους µαθητές και µε τη χρήση του λογισµικού Function Probe βρίσκει προσεγγιστικά τη συνάρτηση που εκφράζει τα στοιχεία αυτά. Προτρέπει τους µαθητές να πράξουν το ίδιο µε άλλο παράδειγµα (εργασία για το σπίτι). 7 Επέκταση της δραστηριότητας Οι µαθητές παρακινούνται να ψάξουν και για άλλα φαινόµενα που να εκφράζονται µε παρόµοια συνάρτηση. (Π.χ. οι µέσες θερµοκρασίες ανά µήνα του 2007 στο Βόλο. Είτε γίνει αναφορά από τους µαθητές στη γνωστή από τη Φυσική συνάρτηση της αρµονικής ταλάντωσης ψ = ηµ(ωt + φ), είτε όχι, ο διδάσκων αναφέρεται σ αυτήν και τη συσχετίζει µε την υπό µελέτη συνάρτηση. Βιβλιογραφία 1. Ανδρεαδάκης, Σ. κ.ά. (1996). Άλγεβρα Β Λυκείου. Αθήνα: ΟΕ Β. 2. Βλαχάβας, Ι. κ.ά. (2004). Οι τεχνολογίες Πληροφορίας και Επικοινωνιών στην ελληνική εκπαίδευση: Απολογισµός και προοπτικές. Θεσσαλονίκη: ΑΠΘ. 3. Κυνηγός, Χ. ηµαράκη, E. (2002), Νοητικά εργαλεία και πληροφοριακά µέσα: Παιδαγωγικά αξιοποιήσιµες εφαρµογές των νέων τεχνολογιών στη γενική παιδεία, στο Νοητικά εργαλεία και πληροφοριακά µέσα: Παιδαγωγική αξιοποίηση της σύγχρονης τεχνολογίας για τη µετεξέλιξη της εκπαιδευτικής πρακτικής, επιµ. Χ. Κυνηγός Ε. ηµαράκη, (Καστανιώτη, Αθήνα), σ Μικρόπουλος, Τ. Α. Ο υπολογιστής ως γνωστικό εργαλείο. Αθήνα: Ελληνικά Γράµµατα. 5. Σολοµωνίδου, Χριστίνα (2006). Νέες τάσεις στην εκπαιδευτική τεχνολογία: Εποικοδοµητισµός και σύγχρονα περιβάλλοντα µάθησης. Αθήνα: Μεταίχµιο. 6. Χρυσαφίδης, Κ. (1994). Βιωµατική επικοινωνιακή διδασκαλία: Η εισαγωγή της µεθόδου Project στο σχολείο. Αθήνα: Gutenberg. 7. Εγχειρίδια χρήσης των λογισµικών Excel, The Geometer s Sketchpad και Function Probe.

7 Φύλλο Εργασίας 1 7 Ονοµατεπώνυµο: Ερωτήσεις 1. Σε ποια συνάρτηση ανήκει η γραφική παράσταση που βλέπετε; 2. Να συµπληρώσετε τον πίνακα x -2π -3π/2 -π -π/2 0 π/2 π 3π/2 2π ηµx 3. Η συνάρτηση f(x)=ηµ(x) a. Έχει πεδίο ορισµού b. Έχει σύνολο τιµών c. Παρουσιάζει µέγιστο το για x = d. Παρουσιάζει ελάχιστο το για x = e. Είναι περιοδική µε περίοδο f. Είναι άρτια ή περιττή; g. Τι έχετε να πείτε ως προς τη µονοτονία της;

8 Φύλλο Εργασίας (2) 8 Άσκηση: Στα παρακάτω σχήµατα εµφανίζονται οι γραφικές παραστάσεις δυο συναρτήσεων. Η εµφανιζόµενη µε κόκκινη γραµµή είναι η γραφική παράσταση της συνάρτησης f(x) = ηµx. Ποια είναι η δεύτερη συνάρτηση; 1) g(x) = 2) g(x) = 3) g(x) =

9 9 4) g(x) = 5) g(x) = 6) g(x) =

10 10 7) g(x) = 8) g(x) = 9) g(x) =

11 11 10) g(x) = 11) g(x) = 12) g(x) =

12 12 13) g(x) = 14) g(x) = 15) g(x) =

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 167 ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES Καστανιώτης Δημήτρης Μαθηματικός-επιμορφωτής

Διαβάστε περισσότερα

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση

Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Η αξιοποίηση των μαθηματικών εκπαιδευτικών λογισμικών στη διδασκαλία των συναρτήσεων στην δευτεροβάθμια εκπαίδευση Αργύρη Παναγιώτα Πρότυπο Πειραματικό Λύκειο Ευαγγελικής Σμύρνης, argiry@gmail.com Περίληψη

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις

Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις ΠΕΙΡΑΜΑΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΣΤΟ INTERACTIVE PHYSICS2005 1 ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΣΕΝΑΡΙΟΥ 1.1 ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ Πειραματική διερεύνηση των φαινομένων που αφορούν αμείωτες ταλαντώσεις 1.2 ΕΜΠΛΕΚΟΜΕΝΕΣ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Νόµος του HOOK- Μέτρηση δύναµης.

Νόµος του HOOK- Μέτρηση δύναµης. Σενάριο στη Φυσική Β Γυµνασίου. ΝΟΜΟΣ ΤΟΥ ΗΟΟΚ 1. Τίτλος Νόµος του HOOK- Μέτρηση δύναµης. 2. Εµπλεκόµενες γνωστικές περιοχές Φυσική Β Γυµνασίου. Ενότητα : υνάµεις. Σε αυτό εµπλέκονται γνωστικά αντικείµενα

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ 268 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ Σ. Τσοβόλας Φυσικός, Επιμορφωτής ΤΠΕ Θ. Μαστρογιάννης Επιμορφωτής ΤΠΕ Στον πυρήνα του προγράμματος υπάρχει μια περιοχή εργασίας

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Κατασκευή δυναµικής γραµµατοσειράς

Κατασκευή δυναµικής γραµµατοσειράς Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.

Διαβάστε περισσότερα

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές >

(http://www.statistics.gr, Στατιστικά στοιχεία -> Απογραφή -> Απογραφές > Σενάριο 9. Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Γνωστική περιοχή: Στατιστική. Θέµα: Η χώρα µας όπως πολλές άλλες έχει δεχτεί τα τελευταία χρόνια µεγάλο αριθµό µεταναστών από διαφορετικές χώρες.

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ)

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ) 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 203 ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ (Ν.Τ.) ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ) Mητρογιαννοπούλου Aγγελική Δρ. Φιλοσοφικής Σχολής του Πανεπιστημίου

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΙΣΑΓΩΓΗ Θεωρώντας ότι η διδακτική σας εμπειρία είναι πολύτιμη στην έρευνά μας θα σας παρακαλούσαμε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ Μέτρα διασποράς - Συντελεστής μεταβολής ΤΑΥΤΟΤΗΤΑ ΣΕΝΑΡΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Καραγιάννης Βασίλης ΑΜ: 201118 Οικονόμου Κυριάκος AM: 201102 ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ: Στατιστική Γ Λυκείου

Διαβάστε περισσότερα

ΤΠΕ στα ηµοτικά Σχολεία. Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19

ΤΠΕ στα ηµοτικά Σχολεία. Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19 ΤΠΕ στα ηµοτικά Σχολεία Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19 Παρουσίαση ιαθεµατικό Ενιαίο Πλαίσιο Προγράµµατος Σπουδών Αναλυτικό Πρόγραµµα Σπουδών, ΕΠΠΣ-ΑΠΣ Υλικό Επιµόρφωσης

Διαβάστε περισσότερα

ΜΕΙΖΟΝ ΠΡΟΓΡΑΜΜΑ ΕΠΙΜΟΡΦΩΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ. ΕΝΤΥΠΟ ΥΠΟΒΟΛΗΣ ΚΑΛΩΝ ΠΡΑΚΤΙΚΩΝ Ι ΑΣΚΑΛΙΑΣ (Σχέδια Μαθήµατος, Εκπαιδευτικά Σενάρια)

ΜΕΙΖΟΝ ΠΡΟΓΡΑΜΜΑ ΕΠΙΜΟΡΦΩΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ. ΕΝΤΥΠΟ ΥΠΟΒΟΛΗΣ ΚΑΛΩΝ ΠΡΑΚΤΙΚΩΝ Ι ΑΣΚΑΛΙΑΣ (Σχέδια Μαθήµατος, Εκπαιδευτικά Σενάρια) ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «Μείζον Πρόγραμμα Επιμόρφωσης Εκπαιδευτικών στις 8 Π.Σ., 3 Π.Σ.Εξ., 2 Π.Σ.Εισ.» Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) ΜΕΙΖΟΝ ΠΡΟΓΡΑΜΜΑ

Διαβάστε περισσότερα

Ξεκινώντας τον Προγραµµατισµό στις τάξεις του ηµοτικού Παίζοντας µε το Scratch

Ξεκινώντας τον Προγραµµατισµό στις τάξεις του ηµοτικού Παίζοντας µε το Scratch Ξεκινώντας τον Προγραµµατισµό στις τάξεις του ηµοτικού Παίζοντας µε το Scratch Κωνσταντίνος Χαρατσής ρ. Ηλεκτρολόγος Μηχανικός ΠΕ 19 Εκπαιδευτικός Πληροφορικής Ενότητα Προγραµµατισµός στο ηµοτικό (Ε και

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης)

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Πανεπιστήµιο Αιγαίου Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης Μιχάλης Σκουµιός Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Παρατήρηση ιδασκαλίας και Μοντέλο Συγγραφής Έκθεσης

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) 1. 9 Εκπαιδευτική χρήση βασικών εργαλείων πληροφορικής, πολυµεσικών εργαλείων και του διαδικτύου

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Η ανοικτή αυτή πρακτική έχει διάρκεια 2 διδακτικών ωρών και λαμβάνει μέρος στο εργαστήριο πληροφορικής του σχολείου.

Η ανοικτή αυτή πρακτική έχει διάρκεια 2 διδακτικών ωρών και λαμβάνει μέρος στο εργαστήριο πληροφορικής του σχολείου. ΣΧΟΛΕΙΟ Η συγκεκριμένη εκπαιδευτική πρακτική υλοποιήθηκε από τους μαθητές της Ε τάξης δημοτικού κατά την διάρκεια των παρεμβάσεων «εφαρμογής στην τάξη» της 6ης περιόδου επιμόρφωσης Β επιπέδου ΤΠΕ, αξιοποιώντας

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Προπαίδεια - Πίνακας Πολλαπλασιασμού του 6 ΕΠΙΜΟΡΦOYMENH: ΠΗΛΕΙΔΟΥ ΚΩΝΣΤΑΝΤΙΝΑ

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH

ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH ΕΝΟΤΗΤΑ ΣΕΝΑΡΙΟΥ 9 ΔΟΜΕΣΕΠΙΛΟΓΗΣΣΤΟ SCRATCH ΙΣΑΒΕΛΛΑ ΚΟΤΙΝΗ ΣΟΦΙΑ ΤΖΕΛΕΠΗ ΣΧ. ΣΥΜΒΟΥΛΟΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ikotini@sch.gr stzelepi@sch.gr Περιεχόμενα Σεναρίου 2 1. ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ 2. ΕΚΤΙΜΩΜΕΝΗ ΔΙΑΡΚΕΙΑ

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα

Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Μελέτη του πληθυσµού των µεταναστών στην Ελλάδα Συγγραφέας: Γιώργος Ψυχάρης, ΕΕΤ, ΦΠΨ Αθηνών Γνωστική περιοχή των µαθηµατικών: Στατιστική Σε σχέση µε το εκπαιδευτικό λογισµικό που προτείνει: ιαχείριση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας

Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Η διδασκαλία της Ελληνικής ως δεύτερης /ξένης γλώσσας Εισαγωγικά Μαρία Παπαλεοντίου, Φιλόλογος Π.Ι.Κ. Προβληματιζόμαστε... Τι εννοούμε με τον όρο Τεχνολογίες Πληροφορίας και Επικοινωνίας (Τ.Π.Ε.) και τι

Διαβάστε περισσότερα

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο.

Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο. ΣΧΟΛΕΙΟ Στα πλαίσια της ευέλικτης ζώνης, με θέμα την διατροφή, οι μαθητές με την χρήση των Τ.Π.Ε, εξερευνούν, πειραματίζονται και δοκιμάζουν τις γνώσεις τους σε μια σειρά από ψηφιακές δραστηριότητες. Οι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Οι κλασματικές μονάδες και οι απλοί κλασματικοί αριθμοί ΕΠΙΜΟΡΦOYMENH:

Διαβάστε περισσότερα

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα

Διαβάστε περισσότερα

Μελέτη της συνάρτησης y = α x^2 + βx + γ

Μελέτη της συνάρτησης y = α x^2 + βx + γ Μελέτη της συνάρτησης y = α x^2 + βx + γ Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΕΥΡΙΠΙΔΗΣ ΒΡΑΧΝΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο:

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: Τμήμα: ευτεροβάθμιας Ευβοίας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Χώρος υλοποίησης: 3 ο ημοτικό Σχολείο Χαλκίδας Υπεύθυνος: Σιέκρη Φρειδερίκη Τηλέφωνο

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΔΑΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ «Ποιος έφαγε την τούρτα;» Αθήνα Μάρτιος 2008 1. ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ 1.1.

Διαβάστε περισσότερα

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά» «Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο: Η Ευρωπαϊκή Ένωση σε αριθμούς!

Εκπαιδευτικό Σενάριο: Η Ευρωπαϊκή Ένωση σε αριθμούς! Εκπαιδευτικό Σενάριο: Η Ευρωπαϊκή Ένωση σε αριθμούς! Γιάννης Λεύκος lefkos@sch.gr Περίληψη Ένα εκπαιδευτικό σενάριο, για τη γνωριμία της Ευρωπαϊκής Ένωσης. Μέσα από αριθμητικά δεδομένα και στατιστικές,

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα