ΕΦΑΡΜΟΓΕΣ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ ΑΠΟ Α.Π.Ε. ΣΤΗΝ ΕΛΛΑΔΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΓΕΣ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ ΑΠΟ Α.Π.Ε. ΣΤΗΝ ΕΛΛΑΔΑ"

Transcript

1 ΑΠΕ 12 ΕΦΑΡΜΟΓΕΣ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ ΑΠΟ Α.Π.Ε. ΣΤΗΝ ΕΛΛΑΔΑ 1. ΕΙΣΑΓΩΓΗ Η αύξηση του πληθυσμού της γης, αλλά και η βελτίωση του βιοτικού επιπέδου, έχουν οδηγήσει σε ραγδαία αύξηση της κατανάλωσης ενέργειας, με τη μεγαλύτερη αυξητική τάση να παρατηρείται στις αναπτυσσόμενες χώρες (Ινδία, Κίνα, κλπ). Οι συνεχώς αυξανόμενες καταναλωτικές ανάγκες έχουν ως αποτέλεσμα την αύξηση των εγκατεστημένων μονάδων ηλεκτροπαραγωγής που αξιοποιούν κυρίως ορυκτά καύσιμα με συμβατικές μεθόδους. Η εντατικοποίηση της χρήσης καυσίμων όπως το πετρέλαιο και ο άνθρακας οδήγησαν σε ιδιαίτερα μεγάλη περιβαλλοντική επιβάρυνση, καθώς οι τομείς της ηλεκτροπαραγωγής και των μεταφορών θεωρούνται οι πλέον επιβαρυντικοί για το περιβάλλον. Το γεγονός αυτό τονίστηκε και στα πλαίσια διεθνών συνδιασκέψεων όπως αυτές του Ρίο, του Κιότο και της Χάγης. Για το λόγο αυτό η διεθνής ερευνητική κοινότητα και η ενεργειακή βιομηχανία έχουν στρέψει το ενδιαφέρον τους αφενός σε σύγχρονες «καθαρές» τεχνολογίες παραγωγής με βελτιωμένη ενεργειακά και περιβαλλοντικά απόδοση, όπως π.χ. οι «καθαρές» τεχνολογίες άνθρακα, και αφετέρου στην αξιοποίηση των ανανεώσιμων πηγών ενέργειας (ΑΠΕ). Οι ΑΠΕ αποτελούν τις πλέον περιβαλλοντικά καθαρές τεχνολογίες παραγωγής ενέργειας και προς το παρόν η χρήση τους διαφαίνεται ότι έχει τη δυναμική να περιορίσει δραστικά τα αυξημένα περιβαλλοντικά προβλήματα. Αν και έχουν γίνει σημαντικά τεχνολογικά βήματα, η εφαρμογή των Α.Π.Ε βρίσκεται σε αρχικό ακόμη στάδιο. Η εκμετάλλευση του ήλιου, του ανέμου, του νερού, της γεωθερμίας και της βιομάζας, που αποτελούν πηγές ενέργειας φιλικές προς το περιβάλλον, μπορούν και πρέπει να γίνουν οικονομικά εκμεταλλεύσιμες ώστε να συμβάλλουν στην αειφόρο ανάπτυξη, εφόσον είναι ανανεώσιμες και ρυπαίνουν ελάχιστα ή καθόλου. Στη χώρα μας υπάρχει η δυνατότητα σημαντικής αξιοποίησης των ΑΠΕ, καθώς έχουμε σημαντική ηλιοφάνεια, υπάρχει το κατάλληλο αιολικό δυναμικό, ιδιαίτερα στα νησιά, αξιοποιήσιμο υδάτινο δυναμικό στις ορεινές περιοχές, σημαντικές ποσότητες βιομάζας σε όλη την επικράτεια που δεν αξιοποιούνται συστηματικά, και αρκετός αριθμός γεωθερμικών πεδίων των οποίων η ενεργειακή αξιοποίηση δεν είναι αντίστοιχη της δυναμικότητάς τους. Στις επόμενες ενότητες επιχειρείται σύντομη περιγραφή των μορφών ΑΠΕ που χρησιμοποιούνται σήμερα στη χώρα μας, αλλά και του επιπέδου διείσδυσής τους στο ενεργειακό μας σύστημα. 2. ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Ο ήλιος είναι η βασική πηγή ενέργειας του πλανήτη μας καθώς δίνει ζωή σε κάθε οργανισμό της βιόσφαιρας, δημιουργεί τους ανέμους, παράγει την αποθηκευμένη χημική ενέργεια σε ξύλα και ορυκτά καύσιμα, και επομένως είναι η πηγή όλης σχεδόν της ενέργειας που χρησιμοποιούμε. Ο ήλιος είναι απλανής αστέρας μέσου μεγέθους όπου, λόγω των μεγάλων θερμοκρασιών που επικρατούν (μερικών εκατομμυρίων οc), τα μόρια και άτομα των στοιχείων που τον συνθέτουν βρίσκονται σε κατάσταση νέφους θετικών και αρνητικών ιόντων ή κατάσταση πλάσματος, όπως ονομάστηκε. Σε αυτές τις θερμοκρασίες οι ταχύτατα κινούμενοι πυρήνες υδρογόνου συσσωματώνονται, υπερνικώντας τις μεταξύ τους απωστικές ηλεκτρομαγνητικές δυνάμεις και δημιουργούν

2 ΑΠΕ 13 πυρήνες του στοιχείου ηλίου. Η πυρηνική αυτή σύντηξη είναι ισχυρά εξώθερμη και οι παραγόμενες τεράστιες ποσότητες ενέργειας ακτινοβολούνται προς όλες τις κατευθύνσεις στο διάστημα. Η γη συλλαμβάνει το ένα δισεκατομμυριοστό της εκπεμπόμενης ηλιακής ακτινοβολίας, που όμως αντιστοιχεί σε τεράστια ενεργειακή ποσότητα αν αναλογιστούμε ότι η ηλιακή ενέργεια που φτάνει στη γη σε μία εβδομάδα είναι περίπου ίση με τη συνολικά αποθηκευμένη ενέργεια όλων των καυσίμων του πλανήτη. Η ηλιακή ακτινοβολία αξιοποιείται για την παραγωγή ηλεκτρισμού με δύο τρόπους θερμικές και φωτοβολταϊκές εφαρμογές. Η θερμική αξιοποίηση περιλαμβάνει συλλογή της ηλιακής ενέργειας για να παραχθεί θερμότητα κυρίως για θέρμανση νερού και μετατροπή του σε ατμό για την κίνηση ατμοστροβίλων. Στη δεύτερη εφαρμογή τα φωτοβολταϊκά συστήματα μετατρέπουν άμεσα την ηλιακή ακτινοβολία σε ηλεκτρισμό με τη χρήση φωτοβολταϊκών κυψελών ή συστοιχιών τους. Η συγκεκριμένη τεχνολογία εμφανίστηκε στις αρχές της δεκαετίας του 1970 στα διαστημικά προγράμματα των ΗΠΑ. Η εξέλιξή της επέτρεψε τη μείωση του κόστους στην παραγωγή ηλεκτρισμού από $300 σε $4 ανά Watt. Λόγω της σχετικά χαμηλής απόδοσής τους και του συνεπαγόμενου υψηλού συνολικού κόστους, τα φωτοβολταϊκά συστήματα βρίσκουν κυρίως εφαρμογή ως μονάδες μικρής δυναμικότητας σε αγροτικές και απομακρυσμένες περιοχές όπου η σύνδεση με το δίκτυο είναι πολύ ακριβή. Αν και όλη η γη δέχεται την ηλιακή ακτινοβολία, η ποσότητά της στην επιφάνεια κάθε τόπου εξαρτάται κυρίως από τη γεωγραφική του θέση, την εποχή και τη νεφοκάλυψη. Η έρημος π.χ. δέχεται περίπου το διπλάσιο ποσό ηλιακής ενέργειας από άλλες περιοχές. Στο μεγαλύτερο τμήμα της χώρα μας η ηλιοφάνεια διαρκεί περισσότερες από 2700 ώρες το χρόνο. Στη Δυτική Μακεδονία και την Ήπειρο εμφανίζει τις μικρότερες τιμές, κυμαινόμενη από 2200 ως 2300 ώρες, ενώ στη Ρόδο και τη νότια Κρήτη ξεπερνά τις 3100 ώρες ετησίως. Συνεπώς η Ελλάδα αποτελεί μία από τις κατεξοχήν κατάλληλες περιοχές της Ευρωπαϊκής Ένωσης (ΕΕ) για εφαρμογές εκμετάλλευσης της ηλιακής ενέργειας. ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΣΜΟΥ Η εκμετάλλευση της ηλιακής ενέργειας στην παραγωγή ηλεκτρισμού γίνεται κύρια με τη χρήση των ηλιακών φωτοβολταϊκών συστημάτων (Φ/Β), που η λειτουργία τους στηρίζεται στο φωτοβολταϊκό φαινόμενο, δηλαδή την άμεση μετατροπή της ηλεκτρομαγνητικής ακτινοβολίας σε ηλεκτρικό ρεύμα. Τα φωτοβολταϊκά κύτταρα κατασκευάζονται από ημιαγώγιμα υλικά, όπως το πυρίτιο που είναι το συνηθέστερο. Όταν το ηλιακό φως προσπίπτει στο φωτοβολταϊκό κύτταρο, μέρος της ακτινοβολίας διεγείρει ηλεκτρόνια τα οποία μπορούν να κινούνται σχετικά ελεύθερα μέσα στον ημιαγωγό. Η εφαρμογή ηλεκτρικού πεδίου υποχρεώνει τα ελεύθερα ηλεκτρόνια να κινηθούν προς συγκεκριμένη κατεύθυνση, παράγοντας ηλεκτρικό ρεύμα του οποίου η ισχύς καθορίζεται από τη ροή των ηλεκτρονίων και την εφαρμοζόμενη τάση στο φωτοβολταϊκό κύτταρο. Για να αυξηθεί η ροή των ελεύθερων ηλεκτρονίων προστίθενται στο καθαρό κρυσταλλικό πυρίτιο προσμίξεις, όπως ο φώσφορος και το βόριο. Κάθε άτομο πυριτίου έχει 14 ηλεκτρόνια κατανεμημένα σε τρεις διαφορετικές στοιβάδες. Οι δύο πρώτες είναι συμπληρωμένες με 2 και 8 άτομα αντίστοιχα. Η εξωτερική στοιβάδα περιλαμβάνει τα υπολειπόμενα 4 ηλεκτρόνια που συμμετέχουν σε δεσμούς με τα γειτονικά άτομα πυριτίου σχηματίζοντας την κρυσταλλική πυραμιδική δομή του καθαρού πυριτίου. Το καθαρό κρυσταλλικό πυρίτιο είναι κακός αγωγός του ηλεκτρισμού καθώς δεν υπάρχουν ελεύθερα κινούμενα ηλεκτρόνια όπως στην περίπτωση του μεταλλικού πλέγματος. Όταν διοχετεύεται ενέργεια στο κρυσταλλικό πυρίτιο, κάποια ηλεκτρόνια διεγείρονται, σπάζουν τους δεσμούς τους και απομακρύνονται προς γειτονικά τους άτομα δημιουργώντας διαθέσιμες θετικά φορτισμένες «οπές» στη δομή του υλικού.

3 ΑΠΕ 14 Οι θέσεις αυτές καταλαμβάνονται από ηλεκτρόνια γειτονικών ατόμων και με τον τρόπο αυτό δημιουργείται ροή ηλεκτρονίων μέσα στο υλικό. Ο αριθμός όμως των ηλεκτρονίων που μπορούν να κινηθούν είναι σημαντικά περιορισμένος για να χρησιμεύσει στην παραγωγή ηλεκτρισμού. Για το λόγο αυτό εισάγονται ετεροάτομα στην κρυσταλλική δομή, όπως π.χ. φωσφόρου. Η εξωτερική στοιβάδα του φωσφόρου έχει 5 ηλεκτρόνια εκ των οποίων τα 4 συμμετέχουν σε δεσμούς με τα γειτονικά άτομα πυριτίου, ενώ το πέμπτο συγκρατείται ηλεκτροστατικά από τα πρωτόνια του πυρήνα. Το συγκεκριμένο ηλεκτρόνιο απαιτεί σημαντικά χαμηλότερη ενέργεια ενεργοποίησης για να κινηθεί στο κρυσταλλικό πλέγμα. Σαν αποτέλεσμα τα περισσότερα από αυτά τα ηλεκτρόνια ελευθερώνονται και γίνονται φορείς ηλεκτρικού ρεύματος που είναι πολύ περισσότεροι από αυτούς του κρυσταλλικού πυριτίου. Η πρόσμιξη του κρυσταλλικού πυριτίου με άτομα φωσφόρου δημιουργεί ημιαγωγό τύπου Ν. Όταν προστίθεται στο κρυσταλλικό πυρίτιο βόριο προκύπτουν ημιαγωγοί τύπου Ρ. Το βόριο έχει στην εξωτερική του στοιβάδα 3 ηλεκτρόνια που συμμετέχουν σε δεσμούς με άτομα πυριτίου. Επειδή σε κάθε άτομο απαιτούνται 8 ηλεκτρόνια για τη συμπλήρωση της εξωτερικής τους στοιβάδας, στην εξωτερική στοιβάδα του βορίου υπάρχουν διαθέσιμες 2 ελεύθερες θέσεις ηλεκτρονίων, δημιουργώντας αντίστοιχες θετικά φορτισμένες «οπές» στη δομή του υλικού. Η κατάληψη των οπών από ηλεκτρόνια γειτονικών ατόμων δίνει την εικόνα διάδοσής τους στο υλικό ή μεταφοράς θετικών φορτίων στην κρυσταλλική δομή του ημιαγωγού. Φέρνοντας σε επαφή τους ημιαγωγούς τύπου Ν και Ρ σχηματίζεται ηλεκτρικό πεδίο. Τα ηλεκτρόνια του πυριτίου τύπου Ν κινούνται προς τις κενές θέσεις του πυριτίου τύπου Ρ για να τις καλύψουν. Στην ένωση των δύο υλικών επιτυγχάνεται ισορροπία και δημιουργείται ηλεκτρικό πεδίο ανάμεσα στις δύο πλευρές. Το ηλεκτρικό πεδίο λειτουργεί σαν ηλεκτρόδιο, επιτρέποντας τα ηλεκτρόνια να περάσουν από το πυρίτιο Ρ στο Ν αλλά όχι αντίστροφα. Όταν φωτόνια της ηλιακής ακτινοβολίας, κατάλληλου μήκους κύματος, προσπίπτουν σε ένα φωτοβολταϊκό κύτταρο διεγείρουν ηλεκτρόνια και τα ελευθερώνουν δημιουργώντας παράλληλα αντίστοιχες οπές. Κάθε φωτόνιο με αρκετή ενέργεια θα ελευθερώσει ένα ηλεκτρόνιο και θα δημιουργήσει μια οπή. Αν αυτό συμβεί κοντά στο ηλεκτρικό πεδίο ή αν ένα ελεύθερο ηλεκτρόνιο και μια οπή βρεθούν κοντά στην ένωση Ρ-Ν ημιαγωγών, το πεδίο θα εξαναγκάσει το ηλεκτρόνιο να πάει στον ημιαγωγό Ν και θα οδηγήσει την οπή στο πυρίτιο Ρ. Αυτό προκαλεί μεγαλύτερη ανισορροπία στην ηλεκτρική ουδετερότητα και αν χρησιμοποιηθεί μία εξωτερική αγώγιμη οδός τα ηλεκτρόνια θα περάσουν μέσα από αυτή για να πάνε στην αρχική τους θέση από όπου το ηλεκτρικό πεδίο τα απομάκρυνε. Η ροή αυτή των ηλεκτρονίων δημιουργεί το ρεύμα, και το ηλεκτρικό πεδίο δημιουργεί την τάση του ρεύματος. Το μέγιστο θεωρητικό ποσό ενέργειας που μπορεί να απορροφήσει ένα φωτοβολταϊκό κύτταρο είναι περίπου το 25% της ενέργειας που δέχεται, αλλά το πιο συνηθισμένο ποσοστό είναι λιγότερο από 15%. Καθώς η ηλιακή ηλεκτρομαγνητική ακτινοβολία δεν είναι μονοχρωματική, αποτελείται από φάσμα

4 ΑΠΕ 15 διαφορετικών μηκών κυμάτων, άρα και από φωτόνια διαφορετικών επιπέδων ενέργειας. Τα φωτόνια χαμηλού ενεργειακού περιεχομένου δεν μπορούν να διεγείρουν ηλεκτρόνια του ημιαγωγού και απλώς διέρχονται μέσα από το φωτοβολταϊκό κύτταρο. Μόνο τα φωτόνια που μεταφέρουν μεγαλύτερη ή ίση ενέργεια από ένα συγκεκριμένο ποσό που εξαρτάται από το υλικό που είναι κατασκευασμένο το κύτταρο μπορούν να ελευθερώσουν ηλεκτρόνια. Η τεχνολογία των ημιαγώγιμων υλικών επέτρεψε την αξιοποίηση της ηλιακής ακτινοβολίας στην παραγωγή ηλεκτρισμού, καθώς ενδεχόμενη χρήση αγώγιμων υλικών, όπως τα μέταλλα, θα οδηγούσε μεν σε μεγαλύτερη ροή ηλεκτρονίων αλλά θα παρουσίαζε πολύ χαμηλή τάση πεδίου. Η μέγιστη πραγματική απόδοση των φωτοβολταϊκών στοιχείων, ανάλογα με το υλικό κατασκευής τους, κυμαίνεται από 7% (ηλιακά στοιχεία άμορφου πυριτίου) έως 12-15% (ηλιακά στοιχεία μονοκρυσταλλικού πυριτίου). (Μαλαμής Β, 1999). Καθώς η παραγόμενη με τον τρόπο αυτό ενέργεια μπορεί να αποθηκευτεί σε ηλεκτρικούς συσσωρευτές, δίνεται η δυνατότητα αξιοποίησης μιας καθαρής, ανανεώσιμης ενέργειας στην κάλυψη αναγκών λειτουργίας επιστημονικών συσκευών (όπως οι δορυφόροι), για την κίνηση ελαφρών αυτοκινήτων (ηλιακά αυτοκίνητα), για τη λειτουργία απομονωμένων εγκαταστάσεων (π.χ. φάρων), και για την κάλυψη έστω και μέρους των ενεργειακών αναγκών κατοικιών, όπως φωτισμός, τηλεπικοινωνίες, ψύξη και ηχητική κάλυψη. Τα πλεονεκτήματα από τη χρήση των φωτοβολταϊκών είναι : Μηδενική ρύπανση Αθόρυβη λειτουργία Αξιοπιστία και μεγάλη διάρκεια ζωής Απεξάρτηση από τροφοδοσία καυσίμων Δυνατότητα επέκτασης Μηδενικό κόστος παραγωγής ενέργειας ελάχιστη συντήρηση και τα αντίστοιχα μειονεκτήματα είναι: Υψηλό κόστος κατασκευής Προβλήματα αποθήκευσης ενέργειας Σημειώνεται ότι τα φωτοβολταϊκά στοιχεία παράγουν συνεχές ρεύμα που απαιτείται να μετατραπεί σε εναλλασσόμενο 220 V. Τυχόν περίσσεια του παραγόμενου ρεύματος αποτελεί εμπορεύσιμο αγαθό σύμφωνα με την ισχύουσα νομοθεσία. Με τα σημερινά οικονομικά και τεχνολογικά δεδομένα, η χρήση αυτών των συστημάτων δεν είναι ιδιαίτερα διαδεδομένη. Πιστεύεται όμως ότι η τεχνολογική εξέλιξη σύντομα θα κάνει εφικτή την εφαρμογή των φωτοβολταϊκών συστημάτων σε μονάδες μεγάλης δυναμικότητας με ανταγωνιστικό κόστος.

5 ΑΠΕ 16 ΠΡΟΫΠΟΘΕΣΕΙΣ ΚΤΙΡΙΩΝ ΓΙΑ ΤΗΝ ΕΓΚΑΤΑΣΤΑΣΗ ΦΩΤΟΒΟΛΤΑΪΚΩΝ Οι βασικές προϋποθέσεις που πρέπει να καλύπτουν τα κτίρια για την εφαρμογή φωτοβολταϊκών συστημάτων είναι (α) να υπάρχει επαρκής ελεύθερος και ασκίαστος χώρος, (β) νότιος προσανατολισμός, (γ) σωστή κλίση ( γεωγραφικό πλάτος του τόπου ± 10 ) και (δ) κατάλληλος χώρος για εγκατεστημένα ηλεκτρονικά συστήματα και μπαταρίες. Ως ενδεικτικά παραδείγματα εφαρμογών αναφέρονται το ηλιακό σχολείο στα Γούδουρα Κρήτης, οι εγκαταστάσεις φωτοβολταϊκών του ΚΠΕ Καστοριάς (πιλοτική εγκατάσταση ενσωμάτωσης στη στέγη του ΚΠΕ) και του "Αρκτούρου" στον Αετό Φλώρινας. 3. ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Η αιολική ενέργεια δημιουργείται έμμεσα από την ηλιακή ακτινοβολία, καθώς η ανομοιόμορφη θέρμανση της επιφάνειας της γης προκαλεί τη μετακίνηση μεγάλων αέριων μαζών από τη μια περιοχή στην άλλη, δημιουργώντας έτσι τους ανέμους. Αν υπήρχε η τεχνολογική δυνατότητα να καταστεί εκμεταλλεύσιμο το συνολικό αιολικό δυναμικό της γης, εκτιμάται ότι η παραγόμενη σε ένα χρόνο ηλεκτρική ενέργεια θα ήταν υπερδιπλάσια από τις ανάγκες της ανθρωπότητας στο ίδιο χρονικό διάστημα. Υπολογίζεται ότι στο 25% της επιφάνειας της γης και σε ύψος 10 m πάνω από το έδαφος επικρατούν άνεμοι μέσης ετήσιας ταχύτητας που ξεπερνά τα 5.1 m/sec. Σύμφωνα με τα σημερινά δεδομένα, όταν η μέση ετήσια ταχύτητα του ανέμου ξεπερνά αυτήν την τιμή το αιολικό δυναμικό ενός τόπου θεωρείται ενεργειακά εκμεταλλεύσιμο και οι απαιτούμενες εγκαταστάσεις μπορούν να καταστούν οικονομικά βιώσιμες. Άλλωστε, το κόστος κατασκευής των ανεμογεννητριών έχει μειωθεί σημαντικά και μπορεί να θεωρηθεί ότι η αιολική ενέργεια διανύει την πρώτη περίοδο ωριμότητάς την, καθώς είναι πλέον ανταγωνιστική των συμβατικών μορφών ενέργειας (ΚΑΠΕ, 1998). Η χώρα διαθέτει εξαιρετικά πλούσιο αιολικό δυναμικό και η αξιοποίησή του μπορεί να συμβάλλει σημαντικά στην αειφόρο ανάπτυξή της. Το πρώτο αιολικό πάρκο εγκαταστάθηκε από τη ΔΕΗ το 1982 στην Κύθνο. Μέχρι σήμερα έχουν κατασκευασθεί στην Άνδρο, στην Εύβοια, στη Λήμνο, Λέσβο, Χίο, Σάμο και στην Κρήτη εγκαταστάσεις ηλεκτροπαραγωγής πάνω από 30 ΜW. Ως ιδιαίτερα σημαντικό θεωρείται το αυξημένο ενδιαφέρον του ιδιωτικού τομέα στην εκμετάλλευση της αιολικής ενέργειας, ειδικά σε περιοχές υψηλού αιολικού δυναμικού (Νησιά Αιγαίου, Νότια Εύβοια, Ανατολική Πελοπόννησος, Θράκη). Με την απελευθέρωση της αγοράς ηλεκτρικής ενέργειας δεκάδες αιτήσεις για μονάδες παραγωγής από ιδιώτες έχουν υποβληθεί στη Ρυθμιστική Αρχή Ενέργειας, με συνέπεια η συνολική εγκατεστημένη δυναμικότητα των αιολικών πάρκων να εκτιμάται σε πάνω από 1200 MW έως το τέλος του 2007 (ΥΠΑΝ, 2005). Σημαντικό εμπόδιο στην ακόμη μεγαλύτερη ανάπτυξη αποτελεί η ανεπάρκεια της υποδομής του δικτύου μεταφοράς ηλεκτρικής ενέργειας το οποίο κατασκευάστηκε πολύ πριν αναδυθεί η ανανεώσιμη ενέργεια ως βιώσιμη εναλλακτική λύση. Έτσι, στις ηπειρωτικές περιοχές υψηλού φυσικού δυναμικού, οι δυνατότητες επενδύσεων αιολικής ενέργειας έχουν περιοριστεί από τις δυνατότητες διείσδυσης στο ηλεκτρικό δίκτυο και παρόμοιοι περιορισμοί υφίστανται και στα νησιά εμποδίζοντας την περαιτέρω διείσδυση της συγκεκριμένης ΑΠΕ. Σήμερα η εκμετάλλευση της αιολικής ενέργειας γίνεται σχεδόν αποκλειστικά με ανεμογεννήτριες οι οποίες κατατάσσονται σε δύο βασικές κατηγορίες: τις ανεμογεννήτριες οριζοντίου άξονα, όπου ο δρομέας είναι τύπου έλικας και ο άξονας μπορεί να περιστρέφεται συνεχώς παράλληλα προς τον άνεμο τις ανεμογεννήτριες καθέτου άξονα ο οποίος παραμένει σταθερός

6 ΑΠΕ 17 Στην παγκόσμια αγορά έχουν επικρατήσει οι ανεμογεννήτριες οριζόντιου άξονα σε ποσοστό περίπου 90%. Η ισχύς τους ξεπερνά τα 700 kw και είναι δυνατή η απευθείας σύνδεσή τους στο ηλεκτρικό δίκτυο, καθιστώντας μία συστοιχία ανεμογεννητριών (αιολικό πάρκο) ως αυτόνομη μονάδα ηλεκτροπαραγωγής. Κατά την λειτουργία τους, ο άνεμος περιστρέφει τα πτερύγια της φτερωτής της ανεμογεννήτριας τα οποία είναι συνδεδεμένα στον περιστρεφόμενο οριζόντιο άξονα. Ο άξονας οδηγείται σε ένα κιβώτιο μετάδοσης της κίνησης όπου αυξάνεται η ταχύτητα περιστροφής. Η κίνηση μεταφέρεται μέσω άξονα μεγάλης ταχύτητας περιστροφής σε μια γεννήτρια παραγωγής ηλεκτρικού ρεύματος. Για να αποφευχθεί η φθορά του στροβίλου στις περιπτώσεις πολύ μεγάλων ταχυτήτων του ανέμου, η όλη διάταξη περιλαμβάνει ένα μειωτήρα (φρένο) που περιορίζει την υπερβολική αύξηση περιστροφής των πτερυγίων. Η ταχύτητα του ανέμου πρέπει να υπερβαίνει τους 15 kph για να είναι δυνατή η ηλεκτροπαραγωγή από μία συνήθη ανεμογεννήτρια. Η ονομαστική τους ισχύς κυμαίνεται από kw. Η παραγόμενη τάση είναι της τάξης των V και απαιτείται μετασχηματιστής για τη μεταφορά του ρεύματος στο δίκτυο. Η συστηματική εκμετάλλευση του αιολικού δυναμικού της χώρας μας θα συμβάλλει: στην αύξηση της παραγόμενης ηλεκτρικής ενέργειας με ταυτόχρονη μείωση των εισαγόμενων πρωτογενών πηγών ενέργειας, γεγονός που συνεπάγεται συναλλαγματικά οφέλη σε σημαντικό περιορισμό της ρύπανσης του περιβάλλοντος, αφού έχει υπολογισθεί ότι η παραγωγή ηλεκτρισμού μίας μόνο ανεμογεννήτριας δυναμικότητας 550 kw σε ένα χρόνο υποκαθιστά την ενέργεια που παράγεται από την καύση 2700

7 ΑΠΕ 18 βαρελιών πετρελαίου, οδηγώντας σε μείωση του εκπεμπόμενου CO2 κατά 735 περίπου τόνους ετησίως στη δημιουργία πολλών νέων θέσεων εργασίας. Τα ενδεχόμενα εμπόδια για την αξιοποίηση της αιολικής ενέργειας είναι ο θόρυβος από τη λειτουργία των ανεμογεννητριών, οι ούτως ή άλλως σπάνιες ηλεκτρομαγνητικές παρεμβολές στο ραδιόφωνο, την τηλεόραση και τις τηλεπικοινωνίες, που επιλύονται όμως με την ανάπτυξη της τεχνολογίας, καθώς επίσης και πιθανά προβλήματα αισθητικής. 4. ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Ως γεωθερμική ενέργεια χαρακτηρίζεται η ενέργεια που προέρχεται από το εσωτερικό της γης, μεταφέρεται στην επιφάνεια με αγωγή θερμότητας και με την είσοδο στο φλοιό της γης λειωμένου μάγματος από τα βαθύτερα στρώματά της, και γίνεται αντιληπτή με τη μορφή θερμού νερού ή ατμού. Το γεωθερμικό δυναμικό κάθε περιοχής σχετίζεται με τις γεωλογικές και γεωτεκτονικές συνθήκες της. Αποτελεί ήπια και σχετικά ανανεώσιμη ενεργειακή πηγή που με τα σημερινά τεχνολογικά δεδομένα μπορεί να καλύψει σημαντικές ενεργειακές ανάγκες. Η κύρια κατάταξη των γεωθερμικών πεδίων γίνεται με βάση τη θερμοκρασία τους. Πεδία χαμηλής ή μέσης θερμοκρασίας ( C) αξιοποιούνται στη μεταφορά θερμότητας σε οικισμούς, θερμοκήπια, αλλά και μικρές βιομηχανικές μονάδες. Πεδία υψηλής θερμοκρασίας (άνω των 150 C) είναι δυνατόν να χρησιμοποιηθούν στην παραγωγή ηλεκτρισμού. Οι γεωθερμικές μονάδες παραγωγής ηλεκτρικού ρεύματος είναι ιδιαίτερα οικονομικές και η λειτουργία τους έχει μικρή περιβαλλοντική επίδραση. Παράγουν μόνο το 1/6 του CO2 από ό,τι θα παρήγαγε μια μονάδα ίσης δυναμικότητας που λειτουργεί με φυσικό αέριο, ενώ το κόστος της παραγόμενης ενέργειας κυμαίνεται περίπου μεταξύ $0.015/kW και $0.35/kW. Σε παγκόσμια κλίμακα η συνολική δυναμικότητα των γεωθερμικών μονάδων ηλεκτροπαραγωγής ξεπερνά τα 8000 MWe και η αντίστοιχη θερμική τα 4000 MWtη. Σύμφωνα με την Ελληνική νομοθεσία, κάθε ρευστό που προέρχεται από το εσωτερικό της γης και έχει θερμοκρασία πάνω από 25 C χαρακτηρίζεται ως «γεωθερμικό ρευστό». Εφόσον σε μία περιοχή αναβλύζει θερμό νερό ή ατμός, πρέπει να υπάρχει κάποιος υπόγειος ταμιευτήρας του οποίου το νερό έχει διεισδύσει σε βαθύτερα στρώματα του φλοιού της γης και θερμαινόμενο ανέρχεται στην επιφάνεια δημιουργώντας το «γεωθερμικό κοίτασμα». Τα γεωθερμικά ρευστά είτε συλλέγονται καθώς εξέρχονται με φυσικό τρόπο στην επιφάνεια της γης είτε αντλούνται με γεώτρηση από γεωθερμικά κοιτάσματα που βρίσκονται σε βάθος από μερικές εκατοντάδες μέχρι 3000 μέτρα κάτω από την επιφάνεια της γης. Μετά την ενεργειακή αξιοποίηση μέρους της αισθητής θερμότητάς τους, πρέπει να επανεγχύονται στο υπέδαφος μέσω γεώτρησης. Με τον τρόπο αυτό ενισχύεται η μακροβιότητα του ταμιευτήρα και αποφεύγεται η θερμική ρύπανση του περιβάλλοντος (Δρής, 1996). Υπάρχουν δύο κύριοι τρόποι εκμετάλλευσης της γεωθερμικής ενέργειας: Ο πρώτος συνίσταται στη χρήση της θερμότητας των γεωθερμικών ρευστών για την παραγωγή ηλεκτρισμού και τη θέρμανση νερού και χώρων. Για το σκοπό αυτό χρησιμοποιούνται διεργασίες τόσο ανοικτού όσο και κλειστού κυκλώματος. Στην πρώτη περίπτωση το γεωθερμικό ρευστό εκτονώνεται σε δοχείο διαχωρισμού

8 ΑΠΕ 19 ατμού-υγρού και ο παραγόμενος ατμός οδηγείται σε στρόβιλο για την παραγωγή ηλεκτρισμού, ενώ το θερμό υγρό σε εναλλάκτη θερμότητας. Στην περίπτωση της διεργασίας κλειστού κυκλώματος το γεωθερμικό ρευστό οδηγείται σε εναλλάκτη θερμότητας προσδίδοντας θερμική ενέργεια σε κατάλληλο ρευστό το οποίο ατμοποιείται και οδηγείται στον στρόβιλο. Την απαιτούμενη παραγόμενη θερμότητα του κυκλώματος την αποδίδει σε συμπυκνωτή προτού διέλθει εκ νέου από τον εναλλάκτη του γεωθερμικού ρευστού. Κατά τον δεύτερο γίνεται εκμετάλλευση των θερμών μαζών του υπεδάφους ή υπόγειων υδάτων για την κίνηση αντλιών θερμότητας (γεωθερμικές αντλίες) για εφαρμογές θέρμανσης και ψύξης. Οι γεωθερμικές αντλίες θεωρούνται ως από τις πλέον αποδοτικές ενεργητικές τεχνολογίες για τη θέρμανση και ψύξη χώρων. Χρησιμοποιούν τη φυσική θερμοκρασία του υπεδάφους εκμεταλλευόμενες το γεγονός ότι η τελευταία δεν ποικίλλει σημαντικά στη διάρκεια ενός έτους. Κατά τη χειμερινή περίοδο λαμβάνει χώρα μεταφορά θερμότητας από τη γη στο κτίριο μέσω κλειστού κυκλώματος νερού, ενώ κατά τη θερινή περίοδο αντιστρέφεται η διαδικασία. Θεωρούνται πιο αποτελεσματικές από τα κοινά κλιματιστικά καθώς απλώς μεταφέρουν τη θερμότητα αντί να καταναλώνουν ενέργεια για να τη δημιουργήσουν. Στο σημείο αυτό θα πρέπει να τονιστεί ότι η εκμετάλλευση των γεωθερμικών πεδίων επιβάλλεται να γίνεται με ορθολογιστικό τρόπο. Η ενέργεια που προέρχεται από ένα γεωθερμικό πεδίο θεωρείται ανανεώσιμη εφόσον ο ρυθμός άντλησης της θερμότητας δεν υπερβαίνει το ρυθμό επαναφόρτισης του κοιτάσματος. Στην περίπτωση μονάδων ηλεκτροπαραγωγής μπορεί να χρειαστούν αρκετές εκατοντάδες χρόνια για να επαναφορτιστεί ένα πεδίο που αποφορτίστηκε πλήρως. Τα περιφερειακά συστήματα θέρμανσης μπορεί να απαιτήσουν χρόνια για να επαναφορτιστούν, ενώ οι γεωθερμικές αντλίες μόνο περίπου 30 χρόνια. Παρόλα αυτά ο ισχυρισμός ότι η γεωθερμική ενέργεια δεν είναι πραγματικά ανανεώσιμη δεν ευσταθεί καθώς το συνολικό γεωθερμικό δυναμικό είναι πάρα πολύ μεγάλο σε σχέση με τις καταναλωτικές ανάγκες του ανθρώπου και η γεωθερμική ενέργεια είναι πρακτικά ανανεώσιμη. Η Ελλάδα διαθέτει μεγάλο αριθμό επιβεβαιωμένων γεωθερμικών πεδίων που είναι διάσπαρτα σε ολόκληρη σχεδόν την επικράτεια, όπως στη Νίσυρο, την Ικαρία, τη Μήλο, τη Σαντορίνη, τη Λέσβο, τη Ν. Κεσσάνη Ξάνθης, τη Νιγρίτα Σερρών, τον Λαγκαδά Θεσ/κης και τα Ελαιοχώρια Χαλκιδικής. Το απολήψιμο δυναμικό των δύο πλήρως ερευνημένων γεωθερμικών πεδίων υψηλής ενθαλπίας για ηλεκτροπαραγωγικούς σκοπούς ανέρχεται σε 170 MWe ενώ το συνολικό δυναμικό εκτιμάται σε περισσότερα από 500 MWe (ΥΠΑΝ, 2005). Σήμερα, η κυριότερη ενεργειακή χρήση της γεωθερμικής ενέργειας στην Ελλάδα είναι η θέρμανση θερμοκηπίων. Η συστηματικότερη αξιοποίηση της γεωθερμίας πρέπει να περιλαμβάνει και άλλες εφαρμογές όπως η τηλεθέρμανση, η θερμική

9 ΑΠΕ 20 αφαλάτωση του νερού και η παραγωγή ηλεκτρισμού. Η συστηματική εκμετάλλευση των γεωθερμικών μπορεί να αποφέρει στη χώρα μας σημαντικά οφέλη: Εξοικονόμηση συναλλάγματος, με τη μείωση των εισαγωγών πετρελαίου Εξοικονόμηση φυσικών πόρων, κυρίως με την ελάττωση της κατανάλωσης των εγχώριων αποθεμάτων λιγνίτη Καθαρότερο περιβάλλον, καθώς παράγονται πολύ μικρότερες εκπομπές CO2 και ελάχιστες έως μηδενικές οξειδίων του αζώτου και του θείου Παρόλα αυτά, η εκμετάλλευση της γεωθερμίας συναντά αντιδράσεις σε τοπικό επίπεδο καθώς ενδέχεται να προκύψουν: Προβλήματα από την απόρριψη των γεωθερμικών ρευστών στο περιβάλλον της περιοχής ή δύσοσμα αέρια (π.χ. υδρόθειο). Αντιμετωπίζονται με την επανέγχυση των γεωθερμικών ρευστών στον ταμιευτήρα μέσω γεώτρησης και με τη χρήση κατάλληλου εξοπλισμού δέσμευσης των παραγόμενων αερίων. Προβλήματα διάβρωσης και δημιουργίας αποθέσεων, κυρίως στις σωληνώσεις μεταφοράς των ρευστών. Μπορεί να αντιμετωπιστούν τόσο με την προσθήκη στα γεωθερμικά ρευστά κατάλληλων χημικών διαλυτοποίησης των αλάτων όσο και με τη χρήση καταλληλότερων υλικών. 5. ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Η μετατροπή της ενέργειας των υδατοπτώσεων με τη χρήση υδροηλεκτρικών έργων (υδατοταμιευτήρας, φράγμα, κλειστός αγωγός πτώσεως, υδροστρόβιλος, ηλεκτρογεννήτρια, διώρυγα φυγής) παράγει την υδροηλεκτρική ενέργεια. Οι υδροηλεκτρικές μονάδες εκμεταλλεύονται τη φυσική διαδικασία του κύκλου του νερού. Κάθε μέρα ο πλανήτης μας αποβάλλει μια μικρή ποσότητα νερού καθώς η υπεριώδης ακτινοβολία διασπά τα μόρια του νερού σε ιόντα. Ταυτόχρονα νέες ποσότητες νερού εμφανίζονται λόγω της ηφαιστειακής δραστηριότητας, έτσι ώστε η συνολική ποσότητα του νερού να διατηρείται περίπου σταθερή. Η λειτουργία των υδροηλεκτρικών μονάδων βασίζεται στην κίνηση του νερού λόγω διαφοράς μανομετρικού ύψους μεταξύ των σημείων εισόδου και εξόδου. Για το σκοπό αυτό κατασκευάζεται ένα φράγμα που συγκρατεί την απαιτούμενη ποσότητα νερού στον δημιουργούμενο ταμιευτήρα. Κατά τη διέλευσή του από τον αγωγό πτώσεως κινεί έναν στρόβιλο ο οποίος θέτει σε λειτουργία τη γεννήτρια. Μία τουρμπίνα που είναι εγκατεστημένη σε μεγάλη μονάδα μπορεί να ζυγίζει μέχρι 172 τόνους και να περιστρέφεται με 90 rpm. Η ποσότητα του ηλεκτρισμού που παράγεται καθορίζεται από αρκετούς παράγοντες. Δύο από τους σημαντικότερους είναι ο όγκος του νερού που ρέει και η διαφορά μανομετρικού ύψους μεταξύ της ελεύθερης επιφάνειας του ταμιευτήρα και του στροβίλου. Η ποσότητα ηλεκτρισμού που παράγεται είναι ανάλογη των δύο αυτών μεγεθών. Συνεπώς, ο παραγόμενος ηλεκτρισμός εξαρτάται από την ποσότητα του νερού του ταμιευτήρα. Για το λόγο αυτόν μόνο σε περιοχές με σημαντικές βροχοπτώσεις, πλούσιες πηγές και κατάλληλη γεωλογική διαμόρφωση είναι δυνατόν να κατασκευαστούν υδροηλεκτρικά έργα. Συνήθως η

10 ΑΠΕ 21 ενέργεια που τελικώς παράγεται, χρησιμοποιείται μόνο συμπληρωματικά ως προς άλλες συμβατικές πηγές ενέργειας, καλύπτοντας φορτία αιχμής. Στη χώρα μας η υδροηλεκτρική ενέργεια ικανοποιεί περίπου το 9% των ενεργειακών μας αναγκών σε ηλεκτρισμό. Τα υδροηλεκτρικά έργα ταξινομούνται σε μεγάλης και μικρής κλίμακας. Τα μικρής κλίμακας υδροηλεκτρικά έργα διαφέρουν σημαντικά από της μεγάλης κλίμακας σε ότι αφορά τις επιπτώσεις τους στο περιβάλλον. Οι μεγάλης κλίμακας υδροηλεκτρικές μονάδες απαιτούν τη δημιουργία φραγμάτων και τεράστιων δεξαμενών με σημαντικές επιπτώσεις στο περιβάλλον. Η κατασκευή φραγμάτων περιορίζει τη μετακίνηση των ψαριών, της άγριας ζωής και επηρεάζει ολόκληρο το οικοσύστημα καθώς μεταβάλλει ριζικά τη μορφολογία της περιοχής. Αντίθετα, τα μικρής κλίμακας υδροηλεκτρικά εγκαθίστανται δίπλα σε ποτάμια ή κανάλια και η λειτουργία τους παρουσιάζει πολύ μικρότερη περιβαλλοντική όχληση. Για το λόγο αυτό, οι υδροηλεκτρικές μονάδες μικρότερης δυναμικότητας των 30 MW χαρακτηρίζονται ως μικρής κλίμακας υδροηλεκτρικά έργα και συμπεριλαμβάνονται μεταξύ των εγκαταστάσεων παραγωγής ενέργειας από ανανεώσιμες πηγές. Κατά τη λειτουργία τους, μέρος της ροής ενός ποταμού οδηγείται σε στρόβιλο για την παραγωγή μηχανικής ενέργειας και συνακόλουθα ηλεκτρικής μέσω της γεννήτριας. Η χρησιμοποιούμενη ποσότητα νερού κατόπιν επιστρέφει στο φυσικό ταμιευτήρα ακολουθώντας τη φυσική της ροή. Τα κύρια πλεονεκτήματα της υδροηλεκτρικής ενέργειας που προέρχεται από μονάδες μικρής και μεγάλης κλίμακας είναι : Οι υδροηλεκτρικοί σταθμοί είναι δυνατό να τεθούν σε λειτουργία αμέσως μόλις απαιτηθεί, σε αντίθεση με τους θερμικούς σταθμούς που απαιτούν σημαντικό χρόνο προετοιμασίας Είναι μία «καθαρή» και ανανεώσιμη πηγή ενέργειας, με τα προαναφερθέντα συνακόλουθα οφέλη (εξοικονόμηση συναλλάγματος, φυσικών πόρων, προστασία περιβάλλοντος) Μέσω των υδατοταμιευτήρων δίνεται η δυνατότητα να ικανοποιηθούν και άλλες ανάγκες, όπως ύδρευση, άρδευση, ανάσχεση χειμάρρων, δημιουργία υγροτόπων, περιοχών αναψυχής και αθλητισμού Ως μειονεκτήματα αναφέρονται μόνο αποτελέσματα που σχετίζονται με τη δημιουργία έργων μεγάλης κλίμακας, όπως: Το μεγάλο κόστος κατασκευής φραγμάτων και εγκατάστασης εξοπλισμού, καθώς και ο συνήθως μεγάλος χρόνος που απαιτείται για την αποπεράτωση του έργου Η έντονη περιβαλλοντική αλλοίωση της περιοχής του έργου (συμπεριλαμβανομένων της γεωμορφολογίας, της πανίδας και της χλωρίδας), καθώς και η ενδεχόμενη μετακίνηση πληθυσμών, η υποβάθμιση περιοχών, οι απαιτούμενες αλλαγές χρήσης γης. Επιπλέον, σε περιοχές δημιουργίας μεγάλων έργων παρατηρήθηκαν αλλαγές του μικροκλίματος, αλλά και αύξηση της σεισμικής επικινδυνότητας τους. Για τους λόγους αυτούς, η διεθνής πρακτική σήμερα προσανατολίζεται στην κατασκευή έργων μικρότερης κλίμακας, όπως η δημιουργία μικρότερων φραγμάτων, οι συστοιχίες μικρών υδροηλεκτρικών έργων και οι μονάδες μικρής κλίμακας. 6. ΕΝΕΡΓΕΙΑ ΒΙΟΜΑΖΑΣ Με τον όρο βιομάζα ορίζεται το σύνολο της ύλης που έχει οργανική (βιολογική) προέλευση, εξαιρώντας τα ορυκτά καύσιμα. Με βάση τον ορισμό αυτό, περιλαμβάνεται οποιοδήποτε υλικό

11 ΑΠΕ 22 προέρχεται άμεσα ή έμμεσα από φυτική ή ζωική ύλη, όπως φυτικές ύλες από φυσικά οικοσυστήματα ή από ενεργειακές καλλιέργειες, καθώς και τα υπολείμματα της εκμετάλλευσής τους, τα υποπροϊόντα της δασικής, γεωργικής, κτηνοτροφικής και αλιευτικής παραγωγής, αλλά και το βιολογικής προέλευσης μέρος των αστικών λυμάτων και απορριμμάτων. Η ενέργεια βιομάζας δημιουργείται με τη μετατροπή της ηλιακής ενέργειας σε χημική μέσω της φωτοσύνθεσης και αποταμιεύεται στις οργανικές δομές των ιστών των ζώντων οργανισμών. Η ενεργειακή αξιοποίηση της βιομάζας περιλαμβάνει τεχνολογίες: θερμικής επεξεργασίας της βιομάζας, η οποία παρέχει τη δυνατότητα o είτε άμεσης εκμετάλλευσης του θερμικού περιεχομένου της σε μονάδες καύσης ή συνδυασμένης καύσης με ορυκτά καύσιμα o είτε έμμεσης εκμετάλλευσης σε εγκαταστάσεις πυρόλυσης ή εξαερίωσης όπου παράγεται αέριο προϊόν που μετά τον καθαρισμό του αποτελεί άριστη καύσιμη ύλη για την παραγωγή ηλεκτρισμού και θερμότητας βιοαποικοδόμησης της βιομάζας μέσω της οποίας παράγεται καύσιμο βιοαέριο φυσικής και χημικής επεξεργασίας της που οδηγεί στην παραγωγή υγρών βιοκαυσίμων, όπως το βιοντήζελ που μπορεί να τροφοδοτήσει κινητήρες εσωτερικής καύσης. Από την παρούσα θέση, αξίζει να τονιστεί ότι η καύση της βιομάζας και των προϊόντων της που προέρχονται από θερμική ή βιολογική κατεργασία, χωρίς να έχουν υποστεί περαιτέρω επεξεργασία, δεν συνεισφέρει στο φαινόμενο του θερμοκηπίου. Καθώς οι ποσότητες CO2 που παράγονται κατά την καύση της θεωρείται ότι έχουν ήδη δεσμευτεί για τη δημιουργία της, η βιομάζα παρουσιάζει μηδενικό ισοζύγιο CO2 και θεωρείται «ουδέτερο» καύσιμο ως προς το διοξείδιο του άνθρακα. Κατά το 2004, η εκμετάλλευση της βιομάζας συνεισέφερε περισσότερο από το 9% της συνολικής παγκόσμιας παραγωγής ενέργειας από ενεργειακές πρώτες ύλες, ενώ η παραγωγή υγρών βιοκαυσίμων (αιθανόλης και βιοντήζελ) ξεπέρασε τα 33 bl, ποσό που αντιστοιχεί σε περίπου 3% της ποσότητας βενζίνης που καταναλώθηκε τη συγκεκριμένη χρονιά (Martinot, 2005). Στην Ελλάδα η βιομάζα αποτέλεσε για πολλά χρόνια την κυριώτερη μορφή ΑΠΕ που συμμετείχε στο ενεργειακό σύστημα της χώρας. Παρόλα αυτά η εκμετάλλευσή της δεν είναι συστηματική ακόμη και σήμερα. Συνεισέφερε στην παραγόμενη ενέργεια κυρίως με τη μορφή ξυλείας που καταναλώνεται άμεσα στον οικιακό τομέα για την παραγωγή θερμότητας. Κατά το 2002, το 74% της προερχόμενης από βιομάζα ενέργειας παρήχθη σε εστίες μαγειρέματος και θέρμανσης νερού και χώρων. Το υπόλοιπο 26% αντιστοιχεί κυρίως σε καύση παραπροϊόντων δασικής εκμετάλλευσης, υπολειμμάτων αγροτικής παραγωγής και την αξιοποίηση του παραγόμενου βιοαερίου στους χώρους ταφής απορριμμάτων και επεξεργασίας αστικών λυμάτων. Συνολικά,

12 ΑΠΕ 23 καταγράφηκαν 2730 μονάδες που χρησιμοποιούσαν βιομάζα κατά το Στις περισσότερες περιπτώσεις, κάλυπταν τις θερμικές τους ανάγκες με τη λειτουργία μικρών μονάδων καύσης που χαρακτηριζόταν από ιδιαίτερα χαμηλή ενεργειακή και περιβαλλοντική απόδοση. Η αξιοποιούμενη σήμερα ποσότητα βιομάζας αποτελεί ένα μικρό ποσοστό του διαθέσιμου δυναμικού της χώρας. Δυστυχώς, δεν έχει ολοκληρωθεί ακόμη μία εκτεταμένη και ακριβής καταγραφή του τεχνολογικά και οικονομικά απολήψιμου δυναμικού. Τα διαθέσιμα δεδομένα που αφορούν τη βιομάζα είναι ενδεικτικά, αλλά πολλά υποσχόμενα. Τα βιομηχανικά εκμεταλλεύσιμα αποθέματα περιλαμβάνουν κυρίως αγροτικά και δασικά υπολείμματα, προϊόντα ενεργειακών καλλιεργειών και στερεά αστικά απορρίμματα. Συνολικά, περισσότεροι από 12 Mt δασικών και αγροτικών παραπροϊόντων είναι διαθέσιμα για παραγωγή ενέργειας, αντιστοιχώντας σε πάνω από 4.5 Mtoe. Περιλαμβάνουν υπολείμματα υλοτομίας και επεξεργασίας ξύλου, άχυρο, στελέχη βαμβακιού και καπνού, πυρηνόξυλο, παραπροϊόντα από καλλιέργειες καλαμποκιού, ηλίανθων, κ.ά (ΚΑΠΕ & ΙΤΕΣΚ, 2003). Η απελευθέρωση της ενεργειακής αγοράς και η θέσπιση περισσότερων κινήτρων για νέες εγκαταστάσεις ΑΠΕ πιστεύεται ότι θα ενισχύσουν το ενδιαφέρον των επενδυτών και για την αξιοποίηση της βιομάζας. Η εκμετάλλευση της συγκεκριμένης ΑΠΕ στην ηλεκτροπαραγωγή με τρόπο συστηματικό μπορεί να προσφέρει: μεγαλύτερη διαφοροποίηση των χρησιμοποιούμενων πρώτων υλών μείωση της εξάρτησης από εισαγόμενες ενεργειακές πρώτες ύλες καθαρότερη παραγωγή ενέργειας ουσιαστική συμβολή στην υλοποίηση της αποκεντρωμένης παραγωγής, γεγονός που αποτελεί και στόχο της ΕΕ, καθώς ευνοείται η δημιουργία μικρών μονάδων ηλεκτροπαραγωγής κοντά σε διαθέσιμες ποσότητες βιομάζας την εισαγωγή νέων «καθαρών» τεχνολογιών καύσης στερεών καυσίμων στο ενεργειακό σύστημα της χώρας, ιδιαίτερα με την υλοποίηση μονάδων συνδυασμένης καύσης άνθρακα βιομάζας αύξηση των μονάδων συμπαραγωγής θερμότητας και ηλεκτρισμού, καθώς η χρήση της βιομάζας (όπως και της γεωθερμίας) ευνοεί τεχνικοοικονομικά τη δημιουργία τους την ενεργειακή αξιοποίηση των παραγόμενων απορριμμάτων και τη συνολικά καλύτερη διαχείρισή τους, των οποίων η διάθεση αποτελεί ήδη σημαντικό πρόβλημα στα μεγάλα αστικά κέντρα Στα μειονεκτήματα της παραγωγής ενέργειας από βιομάζα περιλαμβάνονται: το κόστος συλλογής και επεξεργασίας των υλικών, γεγονός που αντιμετωπίζεται με τη δημιουργία μονάδων πλησίον των παραγόμενων υλών καθώς και το μικρό ενεργειακό περιεχόμενο σε σχέση με ίση μάζα ορυκτού καυσίμου, το οποίο θα μπορούσε να αντισταθμιστεί από τα περιβαλλοντικά οφέλη της καύσης βιομάζας. 7. ΣΥΜΜΕΤΟΧΗ ΤΩΝ ΑΠΕ ΣΤΗΝ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ Η Οδηγία 2001/77/EΚ "Για την προαγωγή της ηλεκτρικής ενέργειας που παράγεται από ανανεώσιμες πηγές στην εσωτερική αγορά ηλεκτρικής ενέργειας" προβλέπει στο παράρτημα της για την Ελλάδα ενδεικτικό στόχο κάλυψης από ΑΠΕ, περιλαμβανομένων των μεγάλων υδροηλεκτρικών έργων, σε ποσοστό της ακαθάριστης κατανάλωσης ενέργειας κατά το έτος 2010 ίσο με 20,1%. Ο στόχος αυτός είναι συμβατός και με τις διεθνείς δεσμεύσεις της χώρας που απορρέουν από το πρωτόκολλο του Κιότο που υπογράφτηκε το Δεκέμβριο του 1997 στη σύμβαση

13 ΑΠΕ 24 πλαίσιο των Ηνωμένων Εθνών για την αλλαγή του κλίματος. Το πρωτόκολλο του Κιότο προβλέπει για την Ελλάδα συγκράτηση του ποσοστού αύξησης κατά το έτος 2010 του CO2 και άλλων αερίων που επιτείνουν το φαινόμενο του θερμοκηπίου κατά 25% σε σχέση με το έτος βάση Οι πλέον πρόσφατες εκτιμήσεις για την ακαθάριστη κατανάλωση ηλεκτρικής ενέργειας κατά το έτος 2010, την προσδιορίζουν σε ύψος 68 TWh. Κατά συνέπεια υφίσταται ανάγκη παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ (συμπεριλαμβανομένων των μεγάλων υδροηλεκτρικών) της τάξης των 13.7 TWh κατά τo Προκειμένου να εκτιμηθεί ένα ρεαλιστικό σενάριο απαιτήσεων σε εγκατεστημένη ισχύ ΑΠΕ για την επίτευξη του ανωτέρω στόχου, γίνονται οι ακόλουθες υποθέσεις: Η κατανομή του μεριδίου συνεισφοράς των διαφόρων τεχνολογιών ΑΠΕ δεν θα διαφοροποιηθεί σημαντικά μέσα στην επόμενη πενταετία. Η υπόθεση αυτή θεωρείται ως ρεαλιστική δεδομένου ότι δεν αναμένονται ραγδαίες τεχνολογικές εξελίξεις που θα οδηγούσαν σε σημαντικές ανακατατάξεις στην οικονομική βιωσιμότητα των τεχνολογιών. Η μέση ενεργειακή παραγωγή ανά εγκατεστημένη μονάδα ισχύος (συντελεστής φόρτισης ή ισοδύναμες ώρες λειτουργίας) θα μειωθεί λόγω της αναγκαίας ανάπτυξης έργων σε περιοχές με υποδεέστερο δυναμικό ΑΠΕ. Με βάση τα ανωτέρω, οι απαιτήσεις σε εγκατεστημένη ισχύ ΑΠΕ για το 2010 προκειμένου να επιτευχθεί ο στόχος παρουσιάζονται στον ακόλουθο πίνακα (ΥΠΑΝ, 2005): Είδος εγκατάστασης Απαιτήσεις σε Εγκατεστημένη ισχύ το 2010 σε MW Παραγωγή ενέργειας το 2010 σε TWh Αιολικά πάρκα Μικρά υδροηλεκτρικά Μεγάλα υδροηλεκτρικά Βιομάζα Γεωθερμία Φωτοβολταϊκά Σύνολο ΣΤΑΤΙΣΤΙΚΑ ΔΕΔΟΜΕΝΑ ΗΛΕΚΤΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΤΟΥΣ 2005 Ποσοστιαία συμμετοχή ανά τύπο ΑΠΕ το 2010 Η κατανάλωση ηλεκτρικής ενέργειας κατά το 2005 υπολογίζεται σε 57.8 TWh, η οποία προήλθε από μονάδες εγκατεστημένης ισχύος της τάξης των12500 MW για μονάδες της ΔΕΗ και 1400 MW από αυτοπαραγωγούς και παραγωγούς συμβατικής και ανανεώσιμης ενέργειας. Η κυριώτερη μορφή καυσίμου εξακολουθεί να είναι ο εγχώριος λιγνίτης που με παραγωγή περίπου 70 Mt καλύπτει το 55.9% του συνόλου των αναγκών παραγωγής. Το πετρέλαιο χρησιμοποιείται κυρίως στις νησιωτικές εγκαταστάσεις του μη διασυνδεδεμένου συστήματος με την ηπειρωτική χώρα. Οι εγκαταστάσεις ΑΠΕ περιλαμβάνουν τις συνδεδεμένες μονάδες που αποτελούν τα αιολικά πάρκα, τα μικρά υδροηλεκτρικά έργα, οι μονάδες αξιοποίησης βιομάζας και τα φωτοβολταϊκά συστήματα. Στο ακόλουθο σχήμα παρουσιάζεται η συμμετοχή των διαφόρων μονάδων ηλεκτροπαραγωγής στην καταναλωθείσα ηλεκτρική ενέργεια κατά το 2005.

14 ΑΠΕ 25 Η κατά έτος προστιθέμενη ισχύς των εγκαταστάσεων ΑΠΕ παρουσιάζεται σε επόμενο διάγραμμα, όπου οι τιμές για τα έτη 2005 και 2006 στηρίζονται σε αξιόπιστες προβλέψεις που έγιναν κατά τον Οκτώβριο του 2005 από το ΥΠΑΝ, με βάση την παρακολούθηση της πορείας υλοποίησης κάθε έργου ΑΠΕ, και αφορούν ισχύ έργων τα οποία θα λειτουργούν ή θα έχουν εγκατασταθεί και θα τελούν σε δοκιμαστική λειτουργία. ΑΠΕ 3.1% Υδροηλεκτρικά 9.1% Εισαγωγέςεξαγωγές 5.5% Φυσικού αερίου 12.9% Πετρελαϊκές 13.5% Λιγνιτικές 55.9% Συμμετοχή μονάδων ηλεκτροπαραγωγής στην ετήσια κατανάλωση κατά το 2005 Εγκατεστημένα MW Αιολικά μυησ Βιομάζα Ηλιακά Αθροιστικά εγκαθιστώμενη ισχύς μονάδων ΑΠΕ

15 ΑΠΕ 26 Στο διάγραμμα φαίνεται η σαφής και εντυπωσιακή επιτάχυνση της ανάπτυξης της αγοράς ΑΠΕ κατά τη διετία η οποία τεκμηριώνεται από την αναλυτική παρακολούθηση της πορείας ανάπτυξης κάθε έργου ξεχωριστά. Η εικόνα αυτή οφείλεται: Στην ολοκλήρωση κατά την τρέχουσα περίοδο πολλών αδειοδοτικών και αναπτυξιακών προσπαθειών ιδιωτών επενδυτών που είχαν επιβραδυνθεί κατά την περίοδο λόγω κυρίως των θεσμικών αναδιαρθρώσεων του ηλεκτρικού τομέα που είχαν δρομολογηθεί στις αρχές της δεκαετίας του 2000 (δημιουργία Ρυθμιστικής Αρχής Ενέργειας κλπ.) Στην ωρίμανση και εμπέδωση των διοικητικών και θεσμικών παρεμβάσεων της διετίας , οι οποίες σαφώς απλοποίησαν των επενδυτικό περιβάλλον σε σχέση με την προηγούμενη περίοδο και ήραν πολλά διοικητικά εμπόδια. Παράλληλα, παρουσιάζεται η ανάγκη καθορισμού ευνοϊκότερου καθεστώτος ενίσχυσης επενδύσεων αξιοποίησης της βιομάζας, αλλά κυρίως για την εγκατάσταση νέων φωτοβολταϊκών συστημάτων. Ο τελευταίος τομέας εμφανίζει πολύ σημαντική καθυστέρηση. Τα πλέον επικαιροποιημένα στοιχεία (ΥΠΑΝ, 2005) εγκατεστημένης ισχύος μονάδων ΑΠΕ σε MW ανά περιφέρεια δίνονται στον ακόλουθο πίνακα. Η συνολική δυναμικότητα των σταθμών ηλεκτροπαραγωγής με χρήση ΑΠΕ που θα έχουν εγκατασταθεί και θα λειτουργούν ή θα είναι έτοιμα προς λειτουργία μέχρι το τέλος του 2005 ή το αργότερο τον Ιανουάριο του 2006 αντιστοιχεί σε 2.2 TWh και θα προέρχεται κατά 77,4% από αιολικά πάρκα, 13,6% μικρά υδροηλεκτρικά έργα και 9,0% από λοιπές μορφές ανανεώσιμης ενέργειας (βιοαερίο, βιομάζα, φωτοβολταϊκά). Περιφέρεια Αιολικά Μικρά υδροηλεκτρικά Ανατολικής Μακεδονίας και Θράκης Αττικής Βορείου Αιγαίου Δυτικής Ελλάδος Κεντρικής Μακεδονίας Ηπείρου Ιονίων Νήσων Θεσσαλίας Κρήτης Νοτίου Αιγαίου Πελοποννήσου Στερεάς Ελλάδος Σύνολο Πέραν των ανωτέρω, έχουν εγκριθεί έως το τέλος του 2005 επιπλέον άδειες εγκατάστασης για σταθμούς ΑΠΕ συνολικής ισχύος 590 MW, από τα οποία 505 MW αφορούν αιολικά πάρκα, 62 MW μικρά υδροηλεκτρικά έργα και 22 MW σταθμούς βιομάζας. Πρόκειται για ώριμα έργα σε όλη την Ελλάδα, χωρίς προβλήματα σύνδεσης με το δίκτυο και λυμένα τα ζητήματα περιβαλλοντικής αδειοδότησης, με συνέπεια να εκτιμάται ότι θα έχουν υλοποιηθεί μέχρι το τέλος του Αντίθετα, σε περιοχές όπως η Νότια Εύβοια, η Νοτιοανατολική Πελοπόννησος και η Ανατολική Μακεδονία Θράκη η ανάπτυξη νέων έργων ΑΠΕ καθυστερεί αναμένοντας την ολοκλήρωση των Φωτοβολταϊκά Βιομάζα ΣΥΝΟΛΟ

16 ΑΠΕ 27 δρομολογημένων έργων ενίσχυσης του δικτύου μεταφοράς. Το αυξημένο επενδυτικό ενδιαφέρον στις περιοχές αυτές αποτυπώνεται στον παρακάτω πίνακα όπου παρουσιάζεται η ισχύς των αδειών παραγωγής που έχουν εκδοθεί (χωρίς άδεια εγκατάστασης) για την ηπειρωτική χώρα και σε περιοχές εκτός αυτών όπου έχει δρομολογηθεί ενίσχυση των δικτύων. Τεχνολογία ΑΠΕ Ισχύς (MW) Αιολικά πάρκα 2190 Μικρά υδροηλεκτρικά 290 Βιομάζα 7 Γεωθερμία 8 Φωτοβολταϊκά 1.31 Σύνολο 2496 Με βάση τα ανωτέρω στοιχεία και υποθέτοντας ότι η τάση εγκατάστασης νέων ΑΠΕ που επικρατεί κατά την τελευταία διετία θα συνεχιστεί ή θα εμφανίσει μεγαλύτερη αύξηση (λόγω δρομολογημένων θεσμικών παρεμβάσεων) κατά την τριετία , εκτιμάται ότι έως το 2010 θα έχουν εγκατασταθεί στις συγκεκριμένες περιοχές της χώρας επιπλέον MW αιολικών πάρκων, MW μικρών υδροηλεκτρικών μονάδων και περίπου 40 MW λοιπών έργων ΑΠΕ. Συνολικά, εκτιμάται ως πολύ πιθανή η εγκατάσταση 780 MW σταθμών ΑΠΕ που αντιστοιχούν στο 31% των έργων που σήμερα διαθέτουν άδεια παραγωγής Μεγάλα υδροηλεκτρικά έργα Η ΔΕΗ λειτουργεί 15 μεγάλα υδροηλεκτρικά έργα με συνολική εγκατεστημένη ισχύ MW και ετήσια διαθέσιμη παραγωγή 4.16 TWh, θεωρώντας μέσες συνθήκες υδραυλικότητας και συντηρητικό σενάριο διαχείρισης νερών. Κατά το 2005 η παραγωγή έφτασε περίπου τις 5.3 ΤWh (περιλαμβανόμενης και παραγωγής 0.8 ΤWh προερχόμενης από αντλησιοταμίευση) ενώ και κατά το 2003 το μέγεθος αυτό ήταν ελαφρά μεγαλύτερο των 5 TWh. Tα έργα που έχουν προγραμματιστεί από τη ΔΕΗ για εμπορική λειτουργία έως το 2010 έχουν συνολική ενεργειακή απολαβή 1.58 ΤWh. Παράλληλα, βρίσκεται σε προκαταρκτική φάση υλοποίησης από ιδιωτική εταιρεία το υδροηλεκτρικό έργου Αγίου Νικολάου στον ποταμό Άραχθό στη βορειοδυτική Ελλάδα, με εγκατεστημένη ισχύ 93 MW και ετήσια παραγωγική ικανότητα 320 GWh. Επίσης, έχει χορηγηθεί σε ιδιώτη μία ακόμα άδεια παραγωγής μεγάλου υδροηλεκτρικού έργου ισχύος 60 MW στη θέση Αυλάκι στον ποταμό Αχελώο στην Κεντρική Ελλάδα. Με βάση συντηρητικές εκτιμήσεις, από τα προγραμματισμένα 775 MW υδροηλεκτρικών έργων θα έχουν ολοκληρωθεί μονάδες συνολικής ισχύος 307 MW Υβριδικά συστήματα Στην Ικαρία βρίσκεται σε φάση δημοπράτησης από τη ΔΕΗ υβριδικό σχήμα αποτελούμενο από τυπική υδροηλεκτρική μονάδα συζευγμένη με δύο αντλησιοταμιευτήρες ισχύος 3.8 MW και βοηθούμενο από αιολικό πάρκο 2.4 MW, με συνολική ικανότητα παραγωγής περίπου 14 GWh/έτος. Το έργο έχει ενταχθεί για παροχή δημόσιας ενίσχυσης στο Γ Κοινοτικό Πλαίσιο Στήριξης. Η αναθέρμανση του επενδυτικού ενδιαφέροντος για συγκεκριμένα έργα, ειδικά στο μη διασυνδεδεμένο σύστημα, μπορεί να επιτευχθεί με την επιτάχυνση της ολοκλήρωσης της απελευθέρωσης της αγοράς ηλεκτρισμού και τη θεσμοθέτηση ευνοϊκότερων κινήτρων για νέες επενδύσεις.

17 ΑΠΕ ΣΕΝΑΡΙΑ ΥΛΟΠΟΙΗΣΗΣ ΕΡΓΩΝ ΑΠΕ ΕΩΣ ΤΟ 2010 Στην «3η Εθνική Έκθεση για το Επίπεδο Διείσδυσης της Ανανεώσιμης Ενέργειας το Έτος 2010 (Άρθρο 3 της Οδηγίας 2001/77/EΚ)» που έδωσε στη δημοσιότητα το ΥΠΑΝ το Οκτώβριο του 2005, αναπτύσσονται 3 εναλλακτικά σενάρια των δυνατοτήτων διείσδυσης των ΑΠΕ (συμπεριλαμβανομένων και των μεγάλων υδροηλεκτρικών έργων) στο Ελληνικό σύστημα ηλεκτροπαραγωγής κατά το έτος 2010, τα οποία και παρουσιάζονται στις επόμενες ενότητες Βασικό σενάριο Το βασικό σενάριο στηρίζεται στην ολοκλήρωση των προγραμματισμένων έργων ενίσχυσης του δικτύου, λαμβάνει υπόψη το οικονομικό δυναμικό των ΑΠΕ και το επενδυτικό ενδιαφέρον, και προσεγγίζει με ρεαλιστικό τρόπο τη δυναμικότητα των νέων εγκαταστάσεων. Συνοπτικά οι προϋποθέσεις επίτευξης του συγκεκριμένου σεναρίου, το οποίο προσεγγίζει ικανοποιητικά το στόχο για το 2010, είναι οι ακόλουθες: Θα προχωρήσει απρόσκοπτα η υλοποίηση των επενδύσεων που έχουν λάβει άδεια εγκατάστασης. Η υπόθεση αυτή είναι ρεαλιστική δεδομένου ότι τα έργα αυτά είναι ώριμα, έχουν ολοκληρώσει την αδειοδοτική διαδικασία, έχουν εξασφαλισμένη πρόσβαση στο δίκτυο και άρα είναι χρηματοδοτήσιμα. Θα ολοκληρωθούν τα εκτεταμένα έργα ενίσχυσης των δικτύων στις περιοχές της Ανατολικής Μακεδονίας Θράκης, της Νοτιοανατολικής Πελοποννήσου και της Εύβοιας. Η υπόθεση είναι επίσης ρεαλιστική δεδομένης της προόδου των έργων αυτών. Θα συνεχιστεί και θα βελτιωθεί η τάση υλοποίησης επενδύσεων ΑΠΕ της τελευταίας διετίας, σε περιοχές πέραν από αυτές όπου εκτελούνται τα έργα ενίσχυσης των δικτύων. Οι εκτιμήσεις του βασικού σεναρίου παρουσιάζονται στον κατωτέρω πίνακα. Είδος ΑΠΕ Εγκατεστημένη Ισχύς σε ΜW (αρχές 2006) Πρόσθετες Άδειες Εγκατάστασ ης σε ισχύ (MW) Πρόσθετα ΑΠΕ λόγω δρομολογ η-μένων παρεμβάσ εων (MW) Πρόσθετα ΑΠΕ στη λοιπή Ελλάδα (MW) Εκτιμώμε νο σύνολο ισχύος 2010 σε MW Εκτιμώμε νη Παραγωγ ή ενέργειας 2010 σε δις kwh Ποσοστό συμμετοχή ς ανά τύπο ΑΠΕ το 2010 (για στόχο 13,67 δις kwh) Αιολικά Μικρά ΥΗ Μεγάλα ΥΗ Βιομάζα Γεωθερμία Φ/Β Σύνολο Συντηρητικό σενάριο

18 ΑΠΕ 29 Είδος ΑΠΕ Οι τρεις προϋποθέσεις του βασικού σεναρίου σηματοδοτούν ταυτόχρονα και τους κινδύνους που μπορεί να προκαλέσουν εκτροπή από την πορεία προσέγγισης του στόχου που εκφράζεται από αυτό και στους οποίους έχει εστιάσει την προσοχή της η Ελληνική Πολιτεία. Ενδεικτικά αναφέρεται ότι εάν: περιοριστεί στο 85% το ποσοστό υλοποίησης των έργων που διαθέτουν ήδη άδεια εγκατάστασης δεν εγκατασταθούν όπως προβλέπεται πρόσθετα αιολικά πάρκα στη νότια Εύβοια και τα νησιά περιοριστεί στο 65% του προσδοκώμενου ο ρυθμός ανάπτυξης στη υπόλοιπη Ελλάδα (δηλ. εγκατασταθεί τελικά το 20% των έργων που σήμερα διαθέτουν άδεια παραγωγής) τότε το ποσοστό συμμετοχής της ανανεώσιμης ενέργειας στην ακαθάριστη ηλεκτρική κατανάλωση θα προσεγγίσει το 15% όπως φαίνεται στον ακόλουθο πίνακα. Υπενθυμίζεται επίσης ότι έχει εκτιμηθεί πως η μέση ενεργειακή παραγωγή ανά εγκατεστημένη μονάδα ισχύος (συντελεστής φόρτισης ή ισοδύναμες ώρες λειτουργίας) θα μειωθεί ελαφρά λόγω της αναγκαίας ανάπτυξης έργων σε περιοχές με υποδεέστερο δυναμικό ΑΠΕ. Εγκατεστη -μένη Ισχύς σε ΜW (αρχές 2006) Πρόσθετες Άδειες Εγκατάστα σης σε ισχύ (MW) Πρόσθετα ΑΠΕ λόγω δρομολογ η-μένων παρεμβάσ εων (MW) Πρόσθετα ΑΠΕ στη λοιπή Ελλάδα (MW) Εκτιμώμε νο σύνολο ισχύος 2010 σε MW Εκτιμώμε νη Παραγωγ ή ενέργειας 2010 σε δις kwh Ποσοστό συμμετοχή ς ανά τύπο ΑΠΕ το 2010 (για στόχο 13,67 δις kwh) Αιολικά Μικρά ΥΗ Μεγάλα ΥΗ Βιομάζα Γεωθερμία Φ/Β Σύνολο Αισιόδοξο σενάριο Με βάση τις εκτιμήσεις του βασικού σεναρίου γίνεται σαφές ότι η επίτευξη του στόχου 20,1% απαιτεί πρόσθετα μέτρα και πολιτικές. Με βάση την παραδοχή αυτή, οι πρόσθετες δράσεις που έχουν αναληφθεί ή θα αναληφθούν στο άμεσο μέλλον μπορεί να διακριθούν σε θεσμικά μέτρα πολιτικής και σε τεχνολογικές-εμπορικές παρεμβάσεις. Όσον αφορά τα θεσμικά μέτρα πολιτικής, εξετάζονται ή δρομολογούνται τα ακόλουθα: Προώθηση και ενίσχυση των υβριδικών συστημάτων στα νησιά, που θα οδηγήσει στην αυξημένη διείσδυση ΑΠΕ σε περιοχές με πλούσιο αιολικό δυναμικό το οποίο δεν αξιοποιείται σήμερα. Προοπτική ανάπτυξης της αγοράς φωτοβολταϊκών μέσω εξεταζόμενων ρυθμίσεων ενίσχυσης. Εισαγωγή της δυνατότητας χρήσης της παράκτιας ζώνης και της θάλασσας για εγκατάσταση ΑΠΕ ώστε να είναι εφικτή η δημιουργία θαλάσσιων αιολικών πάρκων που σήμερα απαγορεύεται με βάση το άρθρο 14 του Ν. 2971/2001 "Αιγιαλός, παραλία και άλλες διατάξεις" (ΦΕΚ Α' 285). Το γεγονός αυτό θα

19 ΑΠΕ 30 επιτρέψει τη διερεύνηση νέων περιοχών από επενδυτές που σήμερα δεν είναι εφικτή λόγω της ανωτέρω απαγόρευσης. Όσον αφορά τις τεχνολογικές-εμπορικές παρεμβάσεις: Έχει αποφασισθεί και προωθείται η διασύνδεση των Βορειοανατολικών Κυκλάδων με το διασυνδεδεμένο σύστημα. Η μελέτη σκοπιμότητας εκπονήθηκε από κοινή ομάδα στελεχών της ΡΑΕ, ΔΕΗ και ΔΕΣΜΗΕ με την εποπτεία του Υπουργείου Ανάπτυξης, ολοκληρώθηκε το Μάιο του 2005 και προβλέπει τη σύνδεση της Σύρου με το Λαύριο μέσω υποθαλάσσιου καλωδίου υψηλής τάσης συνεχούς ή εναλλασσόμενου ρεύματος και την ανάπτυξη του υπόλοιπου δικτύου υψηλής τάσης μέσω υποθαλάσσιων καλωδίων, μόνο ώστε να μην υπάρχουν γραμμές μεταφοράς πάνω στα νησιά, γεγονός που γενικά προκαλεί αντιδράσεις. Σήμερα η διαδικασία υλοποίησης του εν λόγω πολύπλοκου έργου βρίσκεται στο στάδιο εξεύρεσης κατάλληλων γηπέδων για την ανέγερση των νέων υποσταθμών 150/20 kv και την προσγειάλωση των υποβρύχιων καλωδίων. Η σύνδεση των νησιών αυτών θα επιτρέψει τη διοχέτευση σημαντικής ποσότητας αιολικής ενέργειας και γεωθερμικής ενέργειας υψηλής ενθαλπίας στο διασυνδεδεμένο σύστημα που σήμερα δεν μπορεί να απορροφηθεί παρά μόνο σε πολύ μικρό ποσοστό τοπικά αφού πρόκειται για αυτόνομα ασθενή δίκτυα (weak grids). Εκτιμάται ότι μέχρι το 2010 μπορεί να έχει υλοποιηθεί μέρος του έργου. Αξιοποίηση του επενδυτικού ενδιαφέροντος για εγκατάσταση μεγάλων έργων ΑΠΕ σε απομονωμένες περιοχές με παράλληλη ανάπτυξη έργων σύνδεσης με τον κορμό του διασυνδεδεμένου συστήματος, με επιβάρυνση των επενδυτών, όπως προβλέπεται από το άρθρο 2 του Ν. 2941/2001. Γενικά, σχετικά πρόσφατα έχει εμφανιστεί επενδυτικό ενδιαφέρον για τέτοιου είδους μεγάλα έργα τα οποία φαίνεται ότι εκλαμβάνονται από τους υποψηφίους επενδυτές ως μη εμφανίζοντα τα προβλήματα τοπικής αποδοχής που έχουν παρουσιαστεί στις λοιπές περιοχές της Ελλάδας, αφού πρόκειται για απομονωμένες περιοχές, ενώ φαίνεται ότι τους προσφέρουν σχετική ασφάλεια στο χρονοδιάγραμμα υλοποίησης αφού δεν εξαρτούν την ανάπτυξη των έργων σύνδεσης από τον Κύριο του Συστήματος. Ένταση των προσπαθειών για υλοποίηση περισσότερων από τα υπό ανάπτυξη μεγάλα υδροηλεκτρικά έργα. Με βάση το αισιόδοξο σενάριο, όλα τα ανωτέρω πρόσθετα μέτρα θα λειτουργήσουν αποτελεσματικά, οπότε θα είναι δυνατή η επίτευξη του στόχου, όπως παρουσιάζεται στον παρακάτω πίνακα. Κάτι τέτοιο προϋποθέτει την εγκατάσταση μέχρι το 2010 περίπου MW πρόσθετων εγκαταστάσεων ΑΠΕ. Εκτιμάται ότι ο συντελεστής φόρτισης των 250 MW των αιολικών πάρκων, λόγω των ιδιαίτερων χαρακτηριστικών των περιοχών όπου θα αναπτυχθούν, θα είναι 30%. Εκτιμώμενο Πρόσθετα Αισιόδοξο Αισιόδοξη Ποσοστό σύνολο ΑΠΕ λόγω σενάριο για εκτίμηση συμμετοχής Είδος ΑΠΕ ισχύος πρόσθετων το Παραγωγή ανά τύπο Βασικού μέτρων Εκτιμώμενο ενέργειας ΑΠΕ το σεναρίου μέχρι το Σύνολο 2010 σε δις 2010 (MW) 2010 (MW) 2010 σε MW kwh Αιολικά Μικρά ΥΗ Μεγάλα ΥΗ Βιομάζα Γεωθερμία Φ/Β Σύνολο

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ ΚΑΡΑΔΗΜΗΤΡΙΟΥΧΡΙΣΤΟΣ ΝΙΚΟΛΑΣΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣΚΑΝΕΛΛΟΣ ΘΑΝΑΣΗΣΔΙΒΑΡΗΣ ΚΩΣΤΑΝΤΙΝΟΣΠΑΠΑΧΡΗΣΤΟΥ ΑΛΕΞΑΝΔΡΟΣΣΤΙΓΚΑ ΠΑΠΑΓΕΩΡΓΙΟΥΠΑΝΑΓΙΩΤΗΣ ΖΗΝΤΡΟΥΣΩΤΗΡΙΑ ΝΙΚΗΦΟΡΟΣΓΑΛΑΚΟΣ ΣΟΦΙΑΚΑΖΑΤΖΙΔΟΥ ΣΠΥΡΟΠΟΥΛΟΥΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

Οι ανανεώσιμες πηγές ενέργειας στην Ελλάδα και προοπτικές ανάπτυξης.

Οι ανανεώσιμες πηγές ενέργειας στην Ελλάδα και προοπτικές ανάπτυξης. Οι ανανεώσιμες πηγές ενέργειας στην Ελλάδα και προοπτικές ανάπτυξης. Κώστας ΚΩΝΣΤΑΝΤΙΝΟΥ Δρ. Μηχανόλογος Μηχανικός, Τεχνικός Υπεύθυνος Περιφερειακού Ενεργειακού Κέντρου Κ. Μακεδονίας. Επιμέλεια σύνταξης:

Διαβάστε περισσότερα

Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα

Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα Σηµερινή Κατάσταση των ΑΠΕ στην Ελλάδα Χ. ηµουλιάς Λέκτορας Α.Π.Θ. Κατανάλωση και παραγωγή ΗΕ σήµερα Κατανάλωση ενέργειας: : 57.8 TWh (δισ. kwh) Εγκατεστηµένη ισχύς: : 12.500 MW ( ΕΗ( ΕΗ) 1.400 ΜW (άλλοι)

Διαβάστε περισσότερα

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού ρ. Ηλίας Κούτσικος, Φυσικός - Γεωφυσικός Πάρεδρος Παιδαγωγικού Ινστιτούτου ιδάσκων Πανεπιστηµίου Αθηνών Ε ι σ α γ ω γ ή...

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα 1: ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ I Εισαγωγή Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω ΙΩΑΝΝΙΔΟΥ ΠΕΤΡΟΥΛΑ /04/2013 ΓΑΛΟΥΖΗΣ ΧΑΡΑΛΑΜΠΟΣ Εισαγωγή Σκοπός αυτής της παρουσίασης είναι μία συνοπτική περιγραφή της

Διαβάστε περισσότερα

Ο ρόλος της βιομάζας για την ανάπτυξη της Ελληνικής οικονομίας

Ο ρόλος της βιομάζας για την ανάπτυξη της Ελληνικής οικονομίας 4η Ενότητα: «Βιοκαύσιμα 2ης Γενιάς» Ο ρόλος της βιομάζας για την ανάπτυξη της Ελληνικής οικονομίας Αντώνης Γερασίμου Πρόεδρος Δ.Σ. Ελληνικής Εταιρείας Βιοµάζας ΕΛ.Ε.Α.ΒΙΟΜ ΒΙΟΜΑΖΑ Η αδικημένη μορφή ΑΠΕ

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων - Νερό και Ενέργεια

Διαχείριση Υδατικών Πόρων - Νερό και Ενέργεια ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ Επιστήμη & Τεχνολογία Υδατικών Πόρων Διαχείριση Υδατικών Πόρων - Παρουσίαση: Αλέξανδρος Θ. Γκιόκας Πολ. Μηχανικός ΕΜΠ e-mail: al.gkiokas@gmail.com Διάρθρωση ρ παρουσίασης

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 1: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Κατανόηση βασικών αρχών παραγωγής ενέργειας από ανανεώσιμες πηγές με ιδιαίτερη έμφαση σε αυτές που έχουν

Διαβάστε περισσότερα

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Εισαγωγή στις ήπιες μορφές ενέργειας Χρήσεις ήπιων μορφών ενέργειας Ηλιακή

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3 Ανανεώσιμες πηγές ενέργειας Project Τμήμα Α 3 Ενότητες εργασίας Η εργασία αναφέρετε στις ΑΠΕ και μη ανανεώσιμες πήγες ενέργειας. Στην 1ενότητα θα μιλήσουμε αναλυτικά τόσο για τις ΑΠΕ όσο και για τις μη

Διαβάστε περισσότερα

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Για περισσότερες πληροφορίες απευθυνθείτε στα site: ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ ΥΔΡΟΗΛΕΚΤΡΙΚΟΙ ΣΤΑΘΜΟΙ ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑ

Διαβάστε περισσότερα

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Βερολίνο, Μάρτιος 2010 Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία Στόχοι της κυβερνητικής πολιτικής Μείωση των εκπομπών ρύπων έως το 2020

Διαβάστε περισσότερα

ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ

ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ Δημήτρης Κουσκουρίδης Διπλ. Ηλεκτρολόγος Μηχανικός Α.Π.Θ. & Διπλ. Πολιτικός Μηχανικός Δ.Π.Θ. Ενεργειακός Σύμβουλος Θεματικές Ενότητες Α. Ενεργειακό ισοζύγιο στην Ελλάδα

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ Τι είναι οι Ανανεώσιμες Πηγές Ενέργειας; Ως Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) ορίζονται οι ενεργειακές πηγές, οι οποίες

Διαβάστε περισσότερα

Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας

Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τεχνική Προστασίας Περιβάλλοντος Αρχές Αειφορίας Ενότητα 8: Αειφορία στην Παραγωγή Ενέργειας Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας

Εισαγωγή στην Ενεργειακή Τεχνολογία Ι. Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μάθημα 4: Σημερινό Πλαίσιο Λειτουργίας Αγοράς Ηλεκτρικής Ενέργειας Μεταβολές στο πλαίσιο λειτουργίας των ΣΗΕ (δεκαετία 1990) Κύριοι λόγοι: Απελευθέρωση αγοράς ΗΕ. Δίκτυα φυσικού αερίου. Φαινόμενο θερμοκηπίου

Διαβάστε περισσότερα

ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ

ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ ΟΙ ΕΝΕΡΓΕΙΑΚΟΙ ΠΟΡΟΙ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΙ Η ΔΙΑΧΕΙΡΗΣΗ ΤΟΥΣ Κατηγορίες ενεργειακών πόρων: 1. Συμβατικές ή μη ανανεώσιμες πηγές ενέργειας 2. Ανανεώσιμες πηγές ενέργειας (ΑΠΕ) Μορφές των ΑΠΕ Αιολική Ενέργεια:

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ 1 ο ΕΠΑΛ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-13 ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΘΕΟΔΩΡΟΣ ΓΚΑΝΑΤΣΟΣ ΦΥΣΙΚΟΣ-ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ: 1.

Διαβάστε περισσότερα

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Ομιλητές: Ι. Νικολετάτος Σ. Τεντζεράκης, Ε. Τζέν ΚΑΠΕ ΑΠΕ και Περιβάλλον Είναι κοινά αποδεκτό ότι οι ΑΠΕ προκαλούν συγκριτικά τη μικρότερη δυνατή περιβαλλοντική

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών Παγκόσμια ενεργειακή κατάσταση Συνολική παγκόσμια κατανάλωση ενέργειας 2009: 135.000 ΤWh (Ελλάδα

Διαβάστε περισσότερα

Πράσινο & Κοινωνικό Επιχειρείν

Πράσινο & Κοινωνικό Επιχειρείν Πράσινο & Κοινωνικό Επιχειρείν 1 Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Eίναι οι ενεργειακές πηγές (ο ήλιος, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον Το ενδιαφέρον

Διαβάστε περισσότερα

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Θέμα της εργασίας είναι Η αξιοποίηση βιομάζας για την παραγωγή ηλεκτρικής ενέργειας. Πρόκειται

Διαβάστε περισσότερα

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/)

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Το ελληνικό κράτος το 1994 με τον Ν.2244 (ΦΕΚ.Α 168) κάνει το πρώτο βήμα για τη παραγωγή ηλεκτρικής ενέργειας από τρίτους εκτός της

Διαβάστε περισσότερα

Εθνικός ενεργειακός σχεδιασμός. Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος

Εθνικός ενεργειακός σχεδιασμός. Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος Εθνικός ενεργειακός σχεδιασμός Συνοπτικά αποτελέσματα εξέλιξης εγχώριου ενεργειακού συστήματος μείωση εκπομπών αερίων θερμοκηπίου και περιβαλλοντικοί στόχοι αύξηση συμμετοχής ΑΠΕ στην κατανάλωση ενέργειας

Διαβάστε περισσότερα

Η αγροτική Βιομάζα και οι δυνατότητες αξιοποίησής της στην Ελλάδα. Αντώνης Γερασίμου Πρόεδρος Ελληνικής Εταιρίας Ανάπτυξης Βιομάζας

Η αγροτική Βιομάζα και οι δυνατότητες αξιοποίησής της στην Ελλάδα. Αντώνης Γερασίμου Πρόεδρος Ελληνικής Εταιρίας Ανάπτυξης Βιομάζας Η αγροτική Βιομάζα και οι δυνατότητες αξιοποίησής της στην Ελλάδα Αντώνης Γερασίμου Πρόεδρος Ελληνικής Εταιρίας Ανάπτυξης Βιομάζας 1 Η ΕΛΕΑΒΙΟΜ και ο ρόλος της Η Ελληνική Εταιρία (Σύνδεσμος) Ανάπτυξης

Διαβάστε περισσότερα

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1.1. ΕΙΣΑΓΩΓΗ Η ενέργεια είναι κύρια ιδιότητα της ύλης που εκδηλώνεται με διάφορες μορφές (κίνηση, θερμότητα, ηλεκτρισμός, φως, κλπ.) και γίνεται αντιληπτή (α) όταν μεταφέρεται

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ

ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΑΞΗ Ε TMHMA 2 ΟΜΑΔΑ:PC2 Πέτρος & Μάριος Γεωθερμία Αποθέσεις αλάτων από την επιφανειακή απορροή της θερμής πηγής (Θέρμες Ξάνθης). Τι είναι η γεωθερμική ενέργεια Είναι μια ανανεώσιμη

Διαβάστε περισσότερα

Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα

Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα Ευστράτιος Θωμόπουλος Δρ Ηλεκτρολόγος Μηχανικός Χρήστος Πρωτογερόπουλος Δρ Μηχανολόγος Μηχανικός Εισαγωγή Η ηλιακή

Διαβάστε περισσότερα

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό Ενεργειακή Μορφή Θερμότητα Φως Ηλεκτρισμός Ραδιοκύματα Μηχανική Ήχος Τι είναι; Ενέργεια κινούμενων σωματιδίων (άτομα, μόρια) υγρής, αέριας ή στερεάς ύλης Ακτινοβολούμενη ενέργεια με μορφή φωτονίων Ενέργεια

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΑΛΛΑΚΤΙΚΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ - ΕΙΣΑΓΩΓΗ 1o Μάθημα Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΤΕΤΑΡΤΗ 11/10/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Στόχος μαθήματος Βασικές αρχές παραγωγής

Διαβάστε περισσότερα

Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας

Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας Το Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας, εκπονήθηκε στο πλαίσιο εφαρμογής της Ευρωπαϊκής Ενεργειακής Πολιτικής σε σχέση με την

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT Οι μαθήτριες : Αναγνωστοπούλου Πηνελόπη Αποστολοπούλου Εύα Βαλλιάνου Λυδία Γερονικόλα Πηνελόπη Ηλιοπούλου Ναταλία Click to edit Master subtitle style ΑΠΡΙΛΙΟΣ 2012 Η ΟΜΑΔΑ

Διαβάστε περισσότερα

Νίκος Μπουλαξής, Ειρήνη Παντέρη. Ομάδα ΜΔΝ Ρυθμιστικής Αρχής Ενέργειας

Νίκος Μπουλαξής, Ειρήνη Παντέρη. Ομάδα ΜΔΝ Ρυθμιστικής Αρχής Ενέργειας Νίκος Μπουλαξής, Ειρήνη Παντέρη Ομάδα ΜΔΝ Ρυθμιστικής Αρχής Ενέργειας Η παρουσίαση με μια ματιά Ευρωπαϊκός και εθνικός στόχος για ΑΠΕ Παρούσα κατάσταση στην Ελλάδα και ιδίως στα Μη Διασυνδεδεμένα Νησιά

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εργασία από παιδιά του Στ 2 2013-2014 Φυσικές Επιστήμες Ηλιακή Ενέργεια Ηλιακή είναι η ενέργεια που προέρχεται από τον ήλιο. Για να μπορέσουμε να την εκμεταλλευτούμε στην παραγωγή

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΝΕΡΓΕΙΑΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ Εφαρμογές Α.Π.Ε. σε Κτίρια και Οικιστικά Σύνολα Μαρία Κίκηρα, ΚΑΠΕ - Τμήμα Κτιρίων Αρχιτέκτων MSc Αναφορές: RES Dissemination, DG

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ Ο όρος βιομάζα μπορεί να δηλώσει : α) Τα υλικά ή τα υποπροϊόντα και κατάλοιπα της φυσικής, ζωικής δασικής και αλιευτικής παραγωγής

Διαβάστε περισσότερα

ΥΝΑΤΟΤΗΤΕΣ & ΕΦΑΡΜΟΓΕΣ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΑΠΕ

ΥΝΑΤΟΤΗΤΕΣ & ΕΦΑΡΜΟΓΕΣ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΑΠΕ Ε.Π.ΑΝ. ΜΕΤΡΟ 6.5 Προώθηση συστηµάτων ΑΠΕ, Συµπαραγωγής στο ενεργειακό σύστηµα της χώρας Εξοικονόµηση Ενέργειας ΥΝΑΤΟΤΗΤΕΣ & ΕΦΑΡΜΟΓΕΣ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΑΠΕ Εισηγητής: Μπέλλος Βασίλειος ιπλ. Μηχανολόγος Μηχανικός

Διαβάστε περισσότερα

Τ.Ε.Ε./Τ.Κ.Μ. ΜΟΝΙΜΗ ΕΠΙΤΡΟΠΗ ΕΝΕΡΓΕΙΑΣ

Τ.Ε.Ε./Τ.Κ.Μ. ΜΟΝΙΜΗ ΕΠΙΤΡΟΠΗ ΕΝΕΡΓΕΙΑΣ Τ.Ε.Ε./Τ.Κ.Μ. ΜΟΝΙΜΗ ΕΠΙΤΡΟΠΗ ΕΝΕΡΓΕΙΑΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ ΜΕ ΑΝΤΙΚΕΙΜΕΝΟ: ΟΙ ΠΡΟΟΠΤΙΚΕΣ ΤΩΝ ΑΠΕ ΣΤΗΝ ΕΛΛΑΔΑ ΜΕ ΒΑΣΗ ΤΟ ΝΕΟ ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ " Μέλη: Αμάραντος Παναγιώτης Δακουράς Στέργιος Νταγκούμας Αθανάσιος

Διαβάστε περισσότερα

Μακροοικονοµικά µεγέθη της πιθανής εξέλιξης της οικονοµίας Εξέλιξη διεθνών τιµών καυσίµων Εξέλιξη τιµών δικαιωµάτων εκποµπών Εξέλιξη

Μακροοικονοµικά µεγέθη της πιθανής εξέλιξης της οικονοµίας Εξέλιξη διεθνών τιµών καυσίµων Εξέλιξη τιµών δικαιωµάτων εκποµπών Εξέλιξη Ανάλυση της δυνατότητας ιείσδυσης των Τεχνολογιών ΑΠΕ και Εξοικονόµησης Ενέργειας στο Ελληνικό Ενεργειακό Σύστηµα εν όψει των στόχων της Ευρωπαϊκής Ενεργειακής Πολιτικής Ο ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ Τίγκας

Διαβάστε περισσότερα

Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ

Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ Ευρωπαϊκές προκλήσεις για χρήση τεχνολογιών ΑΠΕ Ανθή Χαραλάμπους Διευθύντρια Ενεργειακό Γραφείο Κυπρίων Πολιτών 24 Ιουνίου 2016 Ημερίδα: «Εφαρμογές της Αβαθούς Γεωθερμίας και Ηλιακής Ενέργειας στα Θερμοκήπια»

Διαβάστε περισσότερα

[ 1 ] την εφαρμογή συγκεκριμένων περιβαλλοντικών

[ 1 ] την εφαρμογή συγκεκριμένων περιβαλλοντικών [ 1 ] [ 1 ] Υδροηλεκτρικός Σταθμός Κρεμαστών - Ποταμός Αχελώος - Ταμιευτήρας >> H Περιβαλλοντική Στρατηγική της ΔΕΗ είναι ευθυγραμμισμένη με τους στόχους της ενεργειακής πολιτικής της Ελλάδας και της Ευρωπαϊκής

Διαβάστε περισσότερα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα Ηλιακή ενέργεια Είναι η ενέργεια που προέρχεται από τον ήλιο και αξιοποιείται μέσω τεχνολογιών που εκμεταλλεύονται τη θερμική και ηλεκτρομαγνητική ακτινοβολία του ήλιου με χρήση μηχανικών μέσων για τη

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Ενότητες Εργαστηρίου ΑΠΕ Ι και Ασκήσεις Ενότητα 1 - Εισαγωγή: Τεχνολογίες

Διαβάστε περισσότερα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα 1 ΕΠΑΛ Αθηνών Β` Μηχανολόγοι Ειδική Θεματική Ενότητα ΘΕΜΑ Ανανεώσιμες πήγες ενεργείας ΣΚΟΠΟΣ Η ευαισθητοποίηση των μαθητών για την χρήση ήπιων μορφών ενεργείας. Να αναγνωρίσουν τις βασικές δυνατότητες

Διαβάστε περισσότερα

V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 Κεφάλαιο 2 Ηλιακό Δυναμικό 15

V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 Κεφάλαιο 2 Ηλιακό Δυναμικό 15 V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 1.1 Εισαγωγή 1 1.2 Η φύση της ενέργειας 1 1.3 Πηγές και μορφές ενέργειας 4 1.4 Βαθμίδες της ενέργειας 8 1.5 Ιστορική αναδρομή στην εξέλιξη

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ?

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? Αντώνης Θ. Αλεξανδρίδης Καθηγητής Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ενεργειακή επανάσταση ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ

ενεργειακή επανάσταση ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ ενεργειακή επανάσταση 3 ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΑ ΑΠΟ ΤΡΙΑ ΒΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗ ΠΑΡΑΓΩΓΗ ΜΕΤΑΦΟΡΕΣ Ενεργειακή Επανάσταση Τεχνική έκθεση που δείχνει τον τρόπο με τον οποίον εξασφαλίζεται ενεργειακή επάρκεια παγκοσμίως

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος

Yδρολογικός κύκλος. Κατηγορίες ΥΗΕ. Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΕΙΣΑΓΩΓΗ Υδροδαμική (υδροηλεκτρική) ενέργεια: Η ενέργεια που προέρχεται από την πτώση του νερού από κάποιο ύψος Πηγή της ενέργειας: η βαρύτητα Καθώς πέφτει το νερό από κάποιο ύψος Η,

Διαβάστε περισσότερα

ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ

ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ ΘΕΜΑ: ΥΔΡΟΗΛΕΚΤΡΙΚΟ ΕΡΓΟΣΤΑΣΙΟ ΜΑΛΙΣΙΟΒΑΣ ΒΑΣΙΛΗΣ ΜΑΘΗΤΗΣ ΤΟΥ 2 ου ΓΥΜΝΑΣΙΟΥ ΜΕΤΑΜΟΡΦΩΣΗΣ ΤΜΗΜΑ Α2 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΣΠΑΝΤΙΔΑΚΗΣ ΑΝΤΩΝΙΟΣ ΣΧΟΛ.ΕΤΟΣ:2014-2015 1 η Ενότητα ΑΝΑΛΥΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο 1 ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ Τα φωτοβολταϊκά συστήµατα αποτελούν µια από τις εφαρµογές των Ανανεώσιµων Πηγών Ενέργειας, µε τεράστιο ενδιαφέρον για την Ελλάδα. Εκµεταλλευόµενοι το φωτοβολταϊκό φαινόµενο το

Διαβάστε περισσότερα

Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε

Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε ΚΕΝΤΡΟ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε Δρ. Γρηγόρης Οικονομίδης Υπεύθυνος Τεχνικής Yποστήριξης ΚΑΠΕ Η χρηματοδότηση Το ΠΕΝΑ υλοποιείται

Διαβάστε περισσότερα

Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο. Ιωάννης Αγαπητίδης Πρόεδρος.Σ.

Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο. Ιωάννης Αγαπητίδης Πρόεδρος.Σ. Προοπτικές των ΑΠΕ στην Ελλάδα σε µεσοπρόθεσµο επίπεδο Ιωάννης Αγαπητίδης Πρόεδρος.Σ. Πρωτογενής Παραγωγή Ενέργειας από ΑΠΕ 80000 70000 Βιοµάζα Ηλιακή Εν. Υδροηλεκτρική Ενέργεια Φωτοβολταϊκά Γεωθερµία

Διαβάστε περισσότερα

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Σπουδαστές: ΤΣΟΛΑΚΗΣ ΧΡΗΣΤΟΣ ΧΡΥΣΟΒΙΤΣΙΩΤΗ ΣΟΦΙΑ Επιβλέπων καθηγητής: ΒΕΡΝΑΔΟΣ ΠΕΤΡΟΣ

Διαβάστε περισσότερα

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης Το γεωθερμικό πεδίο της Μήλου και προοπτικές ανάπτυξης του 21 Ιουνίου, 2008 Θόδωρος. Τσετσέρης Τι είναι η Γεωθερμία; Η Γεωθερμική ενέργεια δημιουργείται από την αποθηκευμένη θερμότητα στο εσωτερικό της

Διαβάστε περισσότερα

Παγκόσμια Κατανάλωση Ενέργειας

Παγκόσμια Κατανάλωση Ενέργειας ΘΕΜΕΛΙΩΔΕΙΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Ήλιος Κίνηση και ελκτικό δυναμικό του ήλιου, της σελήνης και της γης Γεωθερμική ενέργεια εκλύεται από ψύξη του πυρήνα, χημικές αντιδράσεις και ραδιενεργό υποβάθμιση στοιχείων

Διαβάστε περισσότερα

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας Το Ενεργειακό Πρόβλημα των Κυκλάδων: Κρίσιμα Ερωτήματα και Προοπτικές Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008 Γεωθερμικές Εφαρμογές στις Κυκλάδες και Εφαρμογές Υψηλής Ενθαλπίας Μιχάλης Φυτίκας Τμήμα Γεωλογίας

Διαβάστε περισσότερα

Νερό & Ενέργεια. Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Νερό & Ενέργεια. Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ Νερό & Ενέργεια Όνομα σπουδαστών : Ανδρέας Κατσιγιάννης Μιχάλης Παπαθεοδοσίου Υπεύθυνος Καθηγητής : κ. Δημήτρης

Διαβάστε περισσότερα

πηγές ενέργειας στη Μεσόγειο»

πηγές ενέργειας στη Μεσόγειο» ENERMED Πιλοτική Εφαρμογή στην Ελλάδα Εργαλείο (Toolkit) Αξιολόγησης Επενδύσεων ΑΠΕ Εκπαιδευτικό Μέρος Ομιλητής: Χρυσοβαλάντης Κετικίδης, ΕΚΕΤΑ/ΙΔΕΠ Καστοριά, 5 Μάρτιου 2013 ENERMED «Ανανεώσιμες πηγές

Διαβάστε περισσότερα

ΕΙΣΗΓΗΣΗ Μόνιµης Επιτροπής Ενέργειας του ΤΕΕ για την Προσυνεδριακή Εκδήλωση ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΡΗΤΗ

ΕΙΣΗΓΗΣΗ Μόνιµης Επιτροπής Ενέργειας του ΤΕΕ για την Προσυνεδριακή Εκδήλωση ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΡΗΤΗ ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΕΛΛΑ ΑΣ ΕΙΣΗΓΗΣΗ Μόνιµης Επιτροπής Ενέργειας του ΤΕΕ για την Προσυνεδριακή Εκδήλωση ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΡΗΤΗ Χανιά, 22 και 23 Μαΐου 2009 1.

Διαβάστε περισσότερα

Σχέδιο Δράσης Βιώσιμης Ενεργειακής Ανάπτυξης της Κρήτης (ISEAP OF CRETE)

Σχέδιο Δράσης Βιώσιμης Ενεργειακής Ανάπτυξης της Κρήτης (ISEAP OF CRETE) Σχέδιο Δράσης Βιώσιμης Ενεργειακής Ανάπτυξης της Κρήτης (ISEAP OF CRETE) ΝΟΕΜΒΡΙΟΣ 2011 ΣΧΕΔΙΟ ΔΡΑΣΗΣ ΒΙΩΣΙΜΗΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΗΣ ΚΡΗΤΗΣ (ΣΒΕΑΚ-ISEAP CRETE) Η Περιφέρεια Κρήτης και το Ενεργειακό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ 18 Φεβρουαρίου 2013 Εισήγηση του Περιφερειάρχη Νοτίου Αιγαίου Γιάννη ΜΑΧΑΙΡΙ Η Θέμα: Ενεργειακή Πολιτική Περιφέρειας Νοτίου Αιγαίου Η ενέργεια μοχλός Ανάπτυξης

Διαβάστε περισσότερα

Περιεχόµενα. Σηµερινή Κατάσταση Ο Εθνικός στόχος για 2010 / 2020 Νοµοθετικό Πλαίσιο Αδειοδοτική διαδικασία Εµπόδια στην Ανάπτυξη των ΑΠΕ

Περιεχόµενα. Σηµερινή Κατάσταση Ο Εθνικός στόχος για 2010 / 2020 Νοµοθετικό Πλαίσιο Αδειοδοτική διαδικασία Εµπόδια στην Ανάπτυξη των ΑΠΕ Ρυθµιστική Αρχή Ενέργειας BiogasIN ΚΑΠΕ Αθήνα, 07 Οκτωβρίου 2011 Ανάπτυξη της Βιοµάζας στην Ελλάδα. Υφιστάµενη Κατάσταση Προοπτικές Ιωάννης Χαραλαµπίδης Ειδικός Επιστήµονας της ΡΑΕ Αθήνα 07.10.2011 1 Περιεχόµενα

Διαβάστε περισσότερα

5 σενάρια εξέλιξης του ενεργειακού μοντέλου είναι εφικτός ο περιορισμός του λιγνίτη στο 6% της ηλεκτροπαραγωγής το 2035 και στο 0% το 2050

5 σενάρια εξέλιξης του ενεργειακού μοντέλου είναι εφικτός ο περιορισμός του λιγνίτη στο 6% της ηλεκτροπαραγωγής το 2035 και στο 0% το 2050 Η παρούσα μελέτη διερευνά τις δυνατότητες της Ελλάδας να μειώσει τις εκπομπές διοξειδίου του άνθρακα (CO 2) από τον τομέα της ηλεκτροπαραγωγής με χρονικό ορίζοντα το 2035 και το 2050. Για τον σκοπό αυτό

Διαβάστε περισσότερα

Επενδύσεις στα φωτοβολταϊκά Δρ. Σωτήρης Καπέλλος Πρόεδρος ΣΕΦ

Επενδύσεις στα φωτοβολταϊκά Δρ. Σωτήρης Καπέλλος Πρόεδρος ΣΕΦ Επενδύσεις στα φωτοβολταϊκά Δρ. Σωτήρης Καπέλλος Πρόεδρος ΣΕΦ Η πορεία μέχρι σήμερα Σήμερα βρίσκονται σε λειτουργία 56.400 φωτοβολταϊκοί σταθμοί(14.455 πάρκα και 41.945 οικιακά συστήματα) συνολικής ισχύος

Διαβάστε περισσότερα

2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η

2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η 2. ΠΑΓΚΟΣΜΙΟ ΕΝΕΡΓΕΙΑΚΟ ΙΣΟΖΥΓΙΟ Η παγκόσμια παραγωγή (= κατανάλωση + απώλειες) εκτιμάται σήμερα σε περίπου 10 Gtoe/a (10.000 Mtoe/a, 120.000.000 GWh/a ή 420 EJ/a), αν και οι εκτιμήσεις αποκλίνουν: 10.312

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Ενεργειακό Γραφείο Κυπρίων Πολιτών Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Βασικότερα τμήματα ενός Φ/Β συστήματος Τα φωτοβολταϊκά (Φ/Β) συστήματα μετατρέπουν

Διαβάστε περισσότερα

Oι σύγχρονες δυνατότητες στον τομέα της ενέργειας

Oι σύγχρονες δυνατότητες στον τομέα της ενέργειας Oι σύγχρονες δυνατότητες στον τομέα της ενέργειας Συμβατικές πηγές ενέργειας Η Ελλάδα είναι μια χώρα πλούσια σε ενεργειακές πηγές, όπως ο λιγνίτης (Πτολεμαΐδα, Μεγαλόπολη). Βρίσκεται στη 2η θέση στα λιγνιτικά

Διαβάστε περισσότερα

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ

ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΑΝΔΡΕΑΔΗ ΣΟΥΤΟΓΛΟΥ ΜΑΡΙΑΛΕΝΑ ΚΑΦΦΕ ΚΥΡΙΑΚΗ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ (ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ) Οι πηγές ενέργειας, όσον αφορά όμως τα αποθέματα ενέργειας (ενεργειακό δυναμικό), διακρίνονται σε συμβατικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ Σελίδα 13 ΚΕΦΑΛΑΙΟ 1. ΕΝΕΡΓΕΙΑ (ΓΕΝΙΚΑ) «17 1.1.Ορισμός, ιστορική αναδρομή «17 1.2. Μορφές ενέργειας «18 1.3. Θερμική ενέργεια «19 1.4. Κινητική ενέργεια «24 1.5. Δυναμική ενέργεια

Διαβάστε περισσότερα

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του αρχικού σχηματισμού της Γης και από την ραδιενεργό διάσπαση

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

«ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ»

«ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ» ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ (PROJECT) No 4 Θέμα: «ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ» Συντονιστές καθηγητές: Μ. ΒΟΥΡΔΑΛΟΣ Μ. ΣΤΑΜΑΤΙΑΔΟΥ ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ ΚΑΙ ΕΡΕΥΝΗΤΙΚΑ ΕΡΩΤΗΜΑΤΑ οργάνωση των γνώσεων των μαθητών αναφορικά

Διαβάστε περισσότερα

Μορφές ενέργειας. Κινητική ενέργεια. Δυναμική ενέργεια

Μορφές ενέργειας. Κινητική ενέργεια. Δυναμική ενέργεια Τι είναι ενέργεια Μορφές ενέργειας Κινητική ενέργεια Δυναμική ενέργεια άλλες Μορφές ενέργειας Θερμική ενέργεια Ηλεκτρική ενέργεια Χημική ενέργεια Πυρηνική ενέργεια Φωτεινή ενέργεια Ηχητική ενέργεια Νόμοι

Διαβάστε περισσότερα

WP 3: «Διοικητικά εργαλεία και ενισχύσεις σε τοπικό επίπεδο»

WP 3: «Διοικητικά εργαλεία και ενισχύσεις σε τοπικό επίπεδο» WP 3: «Διοικητικά εργαλεία και ενισχύσεις σε τοπικό επίπεδο» 1. Εθνικό πλαίσιο επενδύσεων σε Ανανεώσιμες Πηγές Ενέργειας Σκοπός του νέου νόμου για τις Ανανεώσιμες Πηγές Ενέργειας (νόμος 3468/2006 ΑΠΕ)

Διαβάστε περισσότερα

Βιομάζα - Δυνατότητες

Βιομάζα - Δυνατότητες Νίκος Πλουμής Μηχανολόγος Μηχανικός, MSc Προϊστάμενος Τμήματος Θερμοηλεκτρικών Έργων Βιομάζα - Δυνατότητες Οι δυνατότητες ανάπτυξης της βιομάζας στην Ελληνική αγορά σήμερα είναι πολύ σημαντικές: Το δυναμικό

Διαβάστε περισσότερα

Κατανάλωση νερού σε παγκόσμια κλίμακα

Κατανάλωση νερού σε παγκόσμια κλίμακα Κατανάλωση νερού σε παγκόσμια κλίμακα ΠΡΟΕΛΕΥΣΗ - ΜΟΡΦΗ ΕΡΓΟΥ ΚΑΙ ΧΡΗΣΗ ΝΕΡΟΥ ΣΤΗΝ ΕΛΛΑΔΑ Προέλευση Μορφή έργων Χρήση Επιφανειακό νερό Φράγματα (ταμιευτήρες) Λιμνοδεξαμενές (ομβροδεξαμενές) Κύρια για

Διαβάστε περισσότερα

«Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ»

«Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ» «Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ» ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΕΝΔΥΤΙΚΟ ΦΟΡΟΥΜ «Επενδύοντας στην Πράσινη Ενέργεια: Αποθήκευση-Διασυνδέσεις-Νέα Έργα ΑΠΕ» 15 Ιουλίου 2019 Ι. Χατζηβασιλειάδης,

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 1: Εισαγωγή Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Η Γεωθερμία στην Ελλάδα

Η Γεωθερμία στην Ελλάδα ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Η Γεωθερμία στην Ελλάδα Ομάδα Παρουσίασης Επιβλέπουσα Θύμιος Δημήτρης κ. Ζουντουρίδου Εριέττα Κατινάς Νίκος Αθήνα 2014 Τι είναι η γεωθερμία; Η Γεωθερμική ενέργεια

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ 21ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΘΗΝΩΝ ΤΑΞΗ Α ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ ΥΠΕΥΘYΝΟΙ ΚΑΘΗΓΗΤΕΣ: κ. ΠΑΠΑΟΙΚΟΝΟΜΟΥ, κ. ΑΝΔΡΙΤΣΟΣ ΟΜΑΔΑ : ΑΡΝΤΙ ΒΕΪΖΑΪ, ΣΑΜΠΡΙΝΟ ΜΕΜΙΚΟ, ΚΟΥΙΤΙΜ ΓΚΡΕΜΙ, ΓΙΑΝΝΗΣ ΧΙΜΠΡΟΪ ΕΤΟΣ:2011/12

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Περιβάλλον και συμπεριφορά ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Δρ Κώστας Αθανασίου Επίκουρος Καθηγητής Εργαστήριο Μη-συμβατικών Πηγών Ενέργειας Τμ. Μηχανικών Περιβάλλοντος Δημοκρίτειο Πανεπιστήμιο Θράκης Τηλ.

Διαβάστε περισσότερα

Ανάπτυξη τεχνολογιών για την Εξοικονόμηση Ενέργειας στα κτίρια

Ανάπτυξη τεχνολογιών για την Εξοικονόμηση Ενέργειας στα κτίρια ΠΡΩΤΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΑΝΑΠΤΥΞΙΑΚΕΣ ΚΑΙ ΚΟΙΝΩΝΙΚΕΣ ΠΡΟΚΛΗΣΕΙΣ ΕΙΔΙΚΟΥΣ ΣΤΟΧΟΥΣ και ΕΝΔΕΙΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΠΟΥ ΠΡΟΚΥΠΤΟΥΝ ΑΠΟ ΤΗ ΔΙΑΒΟΥΛΕΥΣΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΠΛΑΤΦΟΡΜΑΣ ΕΝΕΡΓΕΙΑΣ ΤΗΣ ΓΓΕΤ με ενσωματωμένα

Διαβάστε περισσότερα

e-newsletter Περιεχόμενα - ΚΤΙΡΙΑ ΜΗΔΕΝΙΚΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΚΑΙ ΟΙ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΥ ΜΠΟΡΟΥΝ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΟΥΝ ΓΙΑ ΤΟ ΣΚΟΠΟ ΑΥΤΟ

e-newsletter Περιεχόμενα - ΚΤΙΡΙΑ ΜΗΔΕΝΙΚΩΝ ΕΚΠΟΜΠΩΝ ΑΝΘΡΑΚΑ ΚΑΙ ΟΙ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΥ ΜΠΟΡΟΥΝ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΟΥΝ ΓΙΑ ΤΟ ΣΚΟΠΟ ΑΥΤΟ July 2017 ΜΑΙΧ +302821035020 Tεύχος 4 Ιωάννης Βουρδουμπάς, Επιστημονικός υπεύθυνος του έργου ZEROCO2 Γεώργιος Αγγελάκης, Υπεύθυνος διαχείρισης του έργου ZEROCO2 Ιστοσελίδα του έργου: www.interregeurope.eu/zeroco2

Διαβάστε περισσότερα

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης Σχεδιάζοντας τη Μετάβαση προς Ενεργειακά Αποδοτικές Πόλεις Εξοικονόμηση Ενέργειας σε επίπεδο Δήμων και Δημοτών 11 12 Ιουνίου 2015, Αθήνα Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού

Διαβάστε περισσότερα

Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία

Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία 1 ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ & EΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Βερολίνο, Μάρτιος 2010 Οι πηγές ανανεώσιμης ενέργειας στην Γερμανία Περιεχόμενα Σελίδα Στόχοι κυβερνητικής πολιτικής 2 Συμβολή ΑΠΕ στο ενεργειακό

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΕΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΩΣ ΤΟ 2050 (WETO-H2)

ΠΡΟΟΠΤΙΚΕΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΩΣ ΤΟ 2050 (WETO-H2) ΠΡΟΟΠΤΙΚΕΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΩΣ ΤΟ 2050 (WETO-H2) ΒΑΣΙΚΑ ΜΗΝΥΜΑΤΑ Στο πλαίσιο της µελέτης WETO-H2 εκπονήθηκε σενάριο προβλέψεων και προβολών αναφοράς για το παγκόσµιο σύστηµα ενέργειας

Διαβάστε περισσότερα

ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ - ΝΟΜΟΣ

ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ - ΝΟΜΟΣ ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ - ΝΟΜΟΣ 2244/94 : Ρύθµιση θεµάτων Ηλεκτροπαραγωγής από Ανανεώσιµες Πηγές Ενέργειας, από Συµβατικά Καύσιµα και άλλες διατάξεις Oί ανανεώσιµες πηγές ενέργειας (ΑΠΕ) - αιολική, ηλιακή, γεωθερµία,

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 6: Βιομάζα Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Η Κατάσταση των ΑΠΕ στην Κρήτη: Δυνατότητες Περιφερειακής Καινοτομίας

Η Κατάσταση των ΑΠΕ στην Κρήτη: Δυνατότητες Περιφερειακής Καινοτομίας 1 Ο Διεθνές Συνέδριο «BIOSOL 2011» Εσπερίδα: «ΑΠΕ: Συνεργασία Έρευνας και Βιομηχανίας» Χανιά 16/9/2011 Η Κατάσταση των ΑΠΕ στην Κρήτη: Δυνατότητες Περιφερειακής Καινοτομίας Δρ. Ν. Ζωγραφάκης Περιφέρεια

Διαβάστε περισσότερα

Κατηγορίες έργων επίδειξης καινοτόμων ΑΠΕ (με κατώτατα όρια

Κατηγορίες έργων επίδειξης καινοτόμων ΑΠΕ (με κατώτατα όρια Ευρωπαϊκή Επιτροπή - Πρόγραμμα NER 300 Κατηγορίες έργων επίδειξης καινοτόμων ΑΠΕ (με κατώτατα όρια δυναμικότητας): Βιοενέργεια υποκατηγορίες έργων: μετατροπή λιγνοκυτταρίνης σε ενδιάμεσους φορείς βιοενέργειας

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΝΙΤΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Εισαγωγή Άνθρωπος και ενέργεια Σχεδόν ταυτόχρονα με την εμφάνιση του ανθρώπου στη γη,

Διαβάστε περισσότερα

Το σήμερα και το αύριο της αξιοποίησης βιομάζας στην ελληνική πραγματικότητα. Αντώνιος Ε. Γερασίμου Πρόεδρος ΕΛΕΑΒΙΟΜ

Το σήμερα και το αύριο της αξιοποίησης βιομάζας στην ελληνική πραγματικότητα. Αντώνιος Ε. Γερασίμου Πρόεδρος ΕΛΕΑΒΙΟΜ Το σήμερα και το αύριο της αξιοποίησης βιομάζας στην ελληνική πραγματικότητα Αντώνιος Ε. Γερασίμου Πρόεδρος ΕΛΕΑΒΙΟΜ 1 2 Η ΕΛΕΑΒΙΟΜ ΚΑΙ Ο ΡΟΛΟΣ ΤΗΣ Η Ελληνική Εταιρεία Ανάπτυξης Βιομάζας (ΕΛΕΑΒΙΟΜ) είναι

Διαβάστε περισσότερα

H Επίδραση της Γεωγραφικής Διασποράς των Αιολικών στην Παροχή Εγγυημένης Ισχύος στο Ελληνικό Σύστημα Ηλεκτροπαραγωγής

H Επίδραση της Γεωγραφικής Διασποράς των Αιολικών στην Παροχή Εγγυημένης Ισχύος στο Ελληνικό Σύστημα Ηλεκτροπαραγωγής H Επίδραση της Γεωγραφικής Διασποράς των Αιολικών στην Παροχή Εγγυημένης Ισχύος στο Ελληνικό Σύστημα Ηλεκτροπαραγωγής Κάραλης Γιώργος, Δρ Περιβολάρης Γιάννης, Δρ Ράδος Κώστας, Αν. Καθ. Εισηγητής: Κάραλης

Διαβάστε περισσότερα