# ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form. 1. Ordinals Definition 1.1. A set x is called transitive iff y x z y : z x. Definition 1.2. A set α is called an ordinal iff α transitive and all β α are transitive. Write α Ord. Lemma 1.3. If α is an ordinal and β α, then β is an ordinal. Proof. β is transitive, since it is in α. Let γ β. By transitivity of α, γ α. Hence γ is transitive. Thus β is an ordinal. Definition 1.4. If a is a set, define a + 1 = a {a}. Remark 1.5. is an ordinal. Write 0 =. If α is an ordinal, so is α + 1. Definition 1.6. If α and β are ordinals, say α < β iff α β. Lemma 1.7. For all ordinals α, α < α + 1. Proof. α {α}, so α α {α} = α + 1. Notation 1.8. From now on, α, β, γ, δ, ε, ζ, η denote ordinals. Theorem 1.9. The ordinals are linearly ordered i.e. i. α : α α (strictness). ii. α β γ : α < β β < γ α < γ (transitivity). iii. α β : α < β β < α α = β (linearity). Proof. i. follows from (Found). ii. follows from transitivity of the ordinals. iii. : Assume this fails. By (Found), choose a minimal α such that some β is neither smaller, larger or equal to α. Choose the minimal such β. Show towards a contradiction that α = β: 1

2 2 JULIAN J. SCHLÖDER Let γ α. By minimality of α, γ < β β < γ β = γ. If β = γ, β < α. If β < γ then by ii. β < α. Thus γ < β, i.e. γ β. Hence α β. Let γ β. By minimality of β, γ < α α < γ α = γ. If α = γ, α < β. If α < γ then by ii α < β. Thus γ < α, i.e. γ α. Hence β α. Lemma If α 0 is an ordinal, 0 < α, i.e. 0 is the smallest ordinal. Proof. Since α 0, by linearity α < 0 or 0 < α, but α < 0 would mean α. Definition An ordinal α is called a successor iff there is a β with α = β + 1. Write α Suc. An ordinal α is called a limit if it is no successor. Write α Lim. Remark By definition, every ordinal is either or a successor or a limit. Lemma For all ordinals α, β: If β < α+1, then β < α β = α, i.e. β α. Proof. Let β < α + 1, i.e. β α {α}. By definition of, β α or β {α}, i.e. β α β = α. Lemma For all ordinals α, β: If β < α, then β + 1 α. Proof. Suppose this fails for some α, β. Then by linearity, β + 1 > α, hence by the previous lemma α β. Hence by transitivity β < α β, contradicting strictness. Lemma For all α, there is no β with α < β < α + 1. Proof. Assume there are such α and β. Then, since β < α + 1, β α, but since α < β, by linearity α < α, contradicting strictness. Lemma For all α, β, if there is no γ with α < γ < β, then β = α + 1. Proof. Suppose β α + 1. Since α < β, α + 1 β, so α + 1 < β. Then α + 1 is some such γ. Lemma The operation +1 : Ord Ord is injective. Proof. Let α β be ordinals. Wlog α < β. Then by the previous lemmas, α + 1 β < β + 1, i.e α + 1 β + 1. Lemma α Lim iff β < α : β + 1 < α and α 0.

3 ORDINAL ARITHMETIC 3 Proof. Let α Lim, β < α. By linearity, β + 1 < α α < β + 1 β + 1 = α. The last case is excluded by definition of limits. So suppose α < β + 1. Then α = β α < β. Since β < α, α = β implies α < α, contradicting strictness. By linearity, α < β implies β < β, contradicting strictness. Thus β + 1 < α. Now suppose α 0 and β < α : β + 1 < α. Assume α Suc. Then there is β such that α = β + 1. Then β < β + 1 = α, thus β < α, i.e. β + 1 < α. Then α = β + 1 < α, contradicting strictness. Hence α is a limit. Theorem 1.19 (Ordinal Induction). Let ϕ be a property of ordinals. Suppose the following holds: i. ϕ( ) (base step). ii. α : ϕ(α) ϕ(α + 1) (successor step). iii. α Lim : ( β < α : ϕ(β)) ϕ(α) (limit step). Then ϕ(α) holds for all ordinals α. Proof. Suppose i, ii and iii hold. Assume there is some α such that ϕ(α). By (Found), take the smallest such α. Suppose α =. This contradicts i. Suppose α Suc. Then there is β such that α = β + 1, since β < β + 1, β < α and hence by minimality of α, ϕ(β). By ii, ϕ(α). Suppose α Lim. By minimality of α, all β < α satisfy ϕ(β). Thus by iii, ϕ(α). Hence there can t be any such α. Definition Let ω be the (inclusion-)smallest set that contains 0 and is closed under +1, i.e. x ω : x + 1 ω. More formally, ω = {w 0 w v w : v + 1 w}. Remark ω is a set by the Axiom of Infinity. Theorem ω is an ordinal. Proof. Consider ω Ord. This set contains 0 and is closed under +1, as ordinals are closed under +1. So ω must by definition be a subset of ω Ord, i.e. ω contains only ordinals. Hence it suffices to show that ω is transitive. Consider ω = {x x ω y x : y ω}. Clearly, 0 ω. Let x ω and show that x + 1 ω. By definition, x + 1 ω. Let y x + 1, i.e. y = x y x. If y = x, y ω. If y x then y ω by definition of ω. Hence x + 1 ω. Thus ω contains 0 and is closed under +1, i.e. ω ω. But ω ω by defintion, hence ω = ω, i.e. ω is transitive.

4 4 JULIAN J. SCHLÖDER Theorem ω is a limit, in particular, it is the smallest limit ordinal. Proof. ω 0, since 0 ω. Let α < ω. Then α + 1 < ω by definition. Assume γ < ω is a limit ordinal. Since γ, 0 γ. Also, as a limit, γ is closed under +1. Hence γ contradicts the minimality of ω. 2. Ordinal Arithmetic Definition 2.1. Define an ordinal 1 := = { }. Lemma ω. Proof. 0 ω and ω is closed under +1. Definition 2.3. Let α, β be ordinals. Define ordinal addition recursively: i. α + 0 = α. ii. If β Suc, β = γ + 1, define α + β = (α + γ) + 1. iii. If β Lim, define α + β = γ<β (α + γ). Remark 2.4. By this definition, the sum α + 1 of an ordinal α and the ordinal 1 = {0} is the same as α + 1 = α {α}. Definition 2.5. Let α, β be ordinals. recursively: Define ordinal multiplication i. α 0 = 0. ii. If β Suc, β = γ + 1, define α β = (α γ) + α. iii. If β Lim, define α β = γ<β (α γ). Definition 2.6. Let α, β be ordinals. Define ordinal exponentiation recursively: i. α 0 = 1. ii. If β Suc, β = γ + 1, define α β = (α γ ) α. iii. If β Lim and α > 0, define α β = γ<β (αγ ). If α = 0, define α β = 0. Lemma 2.7. If A is a set of ordinals, A is an ordinal. Proof. Let A be a set of ordinals, define a = A. Let x y a, then there is an α A such that x y α, so x α hence x a. Thus, a is transitive. Let z a. There is α A such that z α, hence z is transitive. Thus a is transitive and every element of a is transitive, i.e. a is an ordinal.

5 ORDINAL ARITHMETIC 5 Remark 2.8. By induction and this lemma, the definitions of +, and exponentiation above are well-defined, i.e. if α, β are ordinals, α + β, α β and α β are again ordinals. Definition 2.9. Let A be a set of ordinals. The supremum of A is definied as: sup A = min{α β A : β α}. Lemma Let A be a set of ordinals, then sup A = A. Proof. Since sup A is again an ordinal, it is just the set of all ordinals smaller than it. Hence by linearity, sup A = {α β A : α < β}. Which equals A by definition. Lemma Let A be a set of ordinals. If sup A is a successor, then sup A A. Proof. Assume sup A = α + 1 / A, then for all β A, β < α + 1, i.e. β α. Then sup A = α < α + 1 = sup A. Lemma Let A be a set of ordinals, B A such that α A β B : α β. Then sup A = sup B. Proof. Show {γ α A : γ α} = {γ β B : γ β}. Then the minima of these sets, and hence the suprema of A and B, are equal. Suppose γ α for all α A. Then, since B A, γ α for all β B. Suppose γ β for all β B. Let α A, then there is some β B with β α, hence γ β α. Thus γ α for all α A. Lemma If γ is a limit, γ = sup γ = α<γ α = sup α<γ α = γ. Proof. We ve shown a more general form of the first equality, the second and third are just a different ways of writing the same set. Assume γ sup α<γ α, i.e. γ < sup α<γ α or sup α<γ α < γ by linearity. In the first case, there is α < γ such that γ < α, i.e. γ < γ contradicting strictness. In the second case, (sup α<γ α) + 1 < γ, since γ is a limit. But then, by definition of sup, (sup α<γ α) + 1 sup α<γ α while sup α<γ α < (sup α<γ α) + 1, again contradicting strictness. Lemma For all α, 0 + α = α. Proof. By induction on α. Since = 0, the base step is trivial. Suppose α = β + 1 and 0 + β = β. Then 0 + α = 0 + (β + 1) = (0 + β) + 1 = β + 1 = α. Suppose α Lim and for all β < α, 0 + β = β. Then 0 + α = β<α (0 + β) = β<α β = α. Lemma For all α, 1 α = α 1 = α.

6 6 JULIAN J. SCHLÖDER Proof. α 1 = α (0 + 1) = (α 0) + α = α. Prove 1 α = α by induction on α. Since 1 0 = 0, the base step holds. Suppose α = β +1 and 1 β = β. Then 1 α = (1 β)+1 = β +1 = α. Suppose α is a limit and for all β < α, 1 β = β. Then 1 α = β<α (1 β) = β<α β = α. Lemma For all α, α 1 = α. Proof. α 1 = α 0+1 = α 0 α = 1 α = α. Lemma For all α, 1 α = 1. Proof. If α = 0, 1 α = 1 by definition. If α = β + 1, 1 β+1 = 1 β 1 = 1. If α is a limit, 1 α = sup β<α 1 β = sup β<α 1 = 1. Lemma Let α be an ordinal. If α > 0, 0 α = 0. Otherwise 0 α = 1. Proof. 0 0 = 1 by definition, so let α > 0. If α = β + 1, 0 α = 0 β 0 = 0. If α is a limit, 0 α = 0 by defnition. Theorem 2.19 (Subtraction). For all β α there is some γ α with β + γ = α. Proof. By induction on α. α = 0 is trivial. Suppose α = δ + 1 and β α. If β = α, set γ = 0. So suppose β < α, i.e. β δ. Find γ β with β + γ = δ. Set γ = γ + 1, then β + γ = β + (γ + 1) = (β + γ ) + 1 = δ + 1 = α. If α is a limit and β < α then for all δ < α, β δ, find γ δ such that β + γ δ = δ. If δ < β, set γ δ = 0. Set γ = sup β<δ<α γ δ. If γ is a successor, then there is some δ with γ = γ δ. But δ + 1 < α and as in the successor case, γ δ+1 = γ δ + 1 > γ δ = γ, so this can t be the supremum. Also, γ 0, since if it were, for all β < δ < γ, β = δ, i.e. there are no such δ. This implies β + 1 = α, but α is no successor. So, γ is a limit. In particular for all δ < α, γ δ < γ: If there were any δ < γ with γ δ = γ, then since γ 0, β < δ. Then again γ δ+1 = γ δ + 1 > γ δ = γ, contradicting that γ is the supremum. Hence, β + γ = sup ε<γ (β + ε) = sup γδ <γ(β + γ δ ) = sup γδ <γ δ = sup δ<α δ = α. Theorem ω is closed under +, and exponentiation, i.e. n, m ω : n + m ω n m ω n m ω. Proof. By induction on m. Since ω does not contain any limits, we may omit the limit step.

7 ORDINAL ARITHMETIC 7 First consider addition. If m = 0 then n + m = m ω. Suppose m = k + 1. n + m = (n + k) + 1. By induction n + k ω and since ω is closed under +1, (n + k) + 1 ω. Now consider multiplication. If m = 0, n 0 = 0 ω. Suppose m = k + 1. n m = (n k) + n. By induction n k ω and since ω is closed under +, (n k) + n ω. Finally consider exponentiation. If m = 0, n 0 = 1 ω. Suppose m = k + 1. n m = n k n. By induction, n k ω and since ω is closed under, n k n ω Comparisons of Addition. 3. Monotonicity Laws Lemma 3.1. If α and β are ordinals, and α β, then α + 1 β + 1. Proof. Assume α β and α + 1 > β + 1. By transitivity it suffices to now derive a contradiction. Since β + 1 < α + 1, β + 1 = α β + 1 < α. If β + 1 = α, β + 1 β, but β < β + 1. If β + 1 < α, by transitivity β + 1 β, but β < β + 1. Lemma 3.2. If α and β are ordinals, then α α + β. Proof. By induction on β: If β = 0, α = α + β. If β = γ + 1 and α α + γ, then α + β = (α + γ) + 1 α + 1 α. If β Lim and for all γ < β, α α+γ, then: α+β = γ<β (α+γ) = sup γ<β (α + γ) sup γ<β α = α. Lemma 3.3. If α and β are ordinals, then β α + β. Proof. By induction on β: β = 0 is trivial, since 0 is the smallest ordinal. If β = γ + 1 and γ α + γ, then α + β = (α + γ) + 1 γ + 1 = β. If β Lim and for all γ < β, γ α+γ, then: α+β = γ<β (α+γ) = sup γ<β (α + γ) sup γ<β γ = β. Lemma 3.4. If γ is a limit, then for all α: α + γ is a limit. Proof. γ 0, so α + γ γ > 0, i.e. α + γ 0. So let x α + γ. Show that x + 1 < α + γ. x α + γ = β<γ (α + β), i.e. there is β < γ such that x α + β. By a previous lemma, x + 1 α + β. If x + 1 α + β, x + 1 < α + γ. So suppose α + β = x + 1. Since γ is a limit, β + 1 < γ and by definition α + (β + 1) = (α + β) + 1, and x + 1 (α + β) + 1, hence x + 1 α + γ. Lemma 3.5. Suppose γ is a limit, α, β are ordinals and β < γ. then α + β < α + γ.

8 8 JULIAN J. SCHLÖDER Proof. By definition, α+γ = δ<γ (α+δ). Since γ is a limit, β +1 < γ. Also by definition: α + β < (α + β) + 1 = α + (β + 1) {α + δ δ < γ}. Hence α + β δ<γ α + δ. Lemma 3.6. Suppose α, β, γ are ordinals and β < γ. then α + β < α + γ. Proof. By induction over γ. γ = 0 is clear, since there is no β < 0. And the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ + 1. Then β < γ means β δ. If β = δ, notice: α + β = α + δ < (α + δ) + 1 = α + (δ + 1) = α + γ. If β < δ, apply induction: α+β < α+δ. Hence α+β < (α+δ)+1 = α + (δ + 1) = α + γ. Theorem 3.7 (Left-Monotonicity of Ordinal Addition). Let α, β, γ be ordinals. The following are equivalent: i. β < γ. ii. α + β < α + γ. Proof. The previous lemma shows the forward direction. So assume α + β < α + γ and not β < γ. By linearity, γ β. If γ = β, α + γ = α + β < α + γ. If γ < β, by the forward direction, α + γ < α + β < α + γ. Lemma ω = ω. Proof. 1 + ω is a limit by a lemma above, so ω 1 + ω (since ω is the smallest limit). ω is a limit, so 1 + ω = sup α<ω 1 + α. Since ω is closed under +, 1 + α < ω for all α < ω, hence sup α<ω ω. It follows that 1 + ω = ω. Remark 3.9. Right-Monotoniticy does not hold: Clearly, 0 < 1 and we ve seen that 0 + ω = ω and 1 + ω = ω. So 0 + ω 1 + ω Comparisons of Multiplications. Lemma For all α, β: α + β = 0 iff α = β = 0. Proof. Reverse direction is trivial. So suppose α + β = 0 and not α = β = 0. If β = 0, then 0 = α + β = α and if β > 0, by Left- Monotonicity 0 α + 0 < α + β = 0. Lemma If α and β 0 are ordinals, then α α β. Proof. By induction on β. Suppose β = γ+1, then α β = (α γ)+α α, by induction and the corresponding lemma on addition. Suppose β is a limit. α β = γ<β (α γ) = sup γ<β(α γ) sup γ<β α = α.

9 ORDINAL ARITHMETIC 9 Lemma If α 0 and β are ordinals, then β α β. Proof. By induction on β. β = 0 is trivial. Suppose β = γ + 1, then: α β = (α γ) + α > α γ γ (since α > 0 and by Left-Monotonicity) (by induction). And α β > γ implies α β γ + 1 = β. Suppose β is a limit. α β = γ<β (α γ) = sup γ<β(α γ) sup γ<β γ = β. Lemma If γ is a limit, then for all α 0: α γ is a limit. Proof. γ 0, so α γ γ > 0, i.e. α γ 0. So let x α γ. Show that x + 1 < α γ. x α γ = β<γ (α β), i.e. there is β < γ such that x α β. By a previous lemma, x + 1 α β. If x + 1 α β, x + 1 < α γ. So suppose α β = x + 1. Since γ is a limit, β + 1 < γ and by definition α (β + 1) = (α β) + α, and x + 1 (α β) + 1 (α β) + α by Left-Monotonicity (since α 1). Hence x + 1 α γ. Lemma Suppose γ is a limit, α 0 and β are ordinals and β < γ. Then α β < α γ. Proof. By definition, α γ = δ<γ (α δ). Since γ is a limit, β + 1 < γ. By Left-Monotonicity: α β < (α β) + α = α (β + 1) {α δ δ < γ}. Hence α β δ<γ α δ. Lemma Suppose α 0 and β, γ are ordinals and β < γ. Then α β < α γ. Proof. By induction over γ. γ = 0 is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ+1. Then β < γ means β δ. If β = δ, apply Left-Monotonicity: α β = α δ < (α δ) + α = α (δ + 1) = α γ. If β < δ, apply induction: α β < α δ. Hence (by Left-Monotonicity) α β < α δ < (α δ) + α = α (δ + 1) = α γ. Theorem 3.16 (Left-Monotonicity of Ordinal Multiplication). Let α, β, γ be ordinals. The following are equivalent: i. β < γ α > 0. ii. α β < α γ. Proof. The previous lemma shows the forward direction. So assume α β < α γ and not β < γ. If α = 0, then α β = 0 = α γ. So α > 0. By linearity, γ β. If γ = β, α γ = α β < α γ. If γ < β, by the forward direction, α γ < α β < α γ.

10 10 JULIAN J. SCHLÖDER Lemma Let 2 = ω = ω. Proof. Since ω is the smallest limit and by a lemma above 2 ω is a limit, ω 2 ω. Since ω is closed under, for all α < ω, 2 α ω. Hence 2 ω = sup α<ω 2 α ω. Remark Right-Monotonicity does not hold: Clearly, 1 < 2 and since 1 ω = ω and 2 ω = ω, 1 ω 2 ω Comparisons of Exponentation. Lemma If α and β 0 are ordinals, then α α β. Proof. If α = 0 the lemma is trivial. So suppose α > 0. By induction on β. Suppose β = γ + 1, then α β = (α γ ) α α, by induction and the corresponding lemma on multiplication. Suppose β is a limit. α β = γ<β (αγ ) = sup γ<β (α γ ) sup γ<β α = α. Lemma If α > 1 and β are ordinals, then β α β. Proof. If β = 0 the lemma is trivial. So suppose β > 0. By induction on β. Suppose β = γ + 1, then: α β = (α γ ) α > α γ 1 (by Left-Monotonicity) = α γ γ (by induction). And α β > γ implies α β γ + 1 = β. Suppose β is a limit. α β = γ<β (αγ ) = sup γ<β (α γ ) sup γ<β γ = β. Lemma If γ is a limit, then for all α > 1: α γ is a limit. Proof. γ 0, so α γ γ > 0, i.e. α γ 0. So let x α γ. Show that x + 1 < α γ. x α γ = β<γ (αβ ), i.e. there is β < γ such that x α β. By a previous lemma, x + 1 α β. If x + 1 α β, x + 1 < α γ. So suppose α β = x+1. Since γ is a limit, β +1 < γ and by definition α β+1 = (α β ) α, and x + 1 (α β ) + 1 α β + α β α β 2 α β α by Left-Monotonicity (since α 2). Hence x + 1 α γ. Lemma Suppose γ is a limit, α > 1 and β are ordinals and β < γ. Then α β < α γ. Proof. By definition, α γ = δ<γ (αδ ). Since γ is a limit, β + 1 < γ. By Left-Monotonicity: α β < (α β ) α = α β+1 {α δ δ < γ}. Hence α β δ<γ αδ.

11 ORDINAL ARITHMETIC 11 Lemma Suppose α > 1 and β, γ are ordinals and β < γ. Then α β < α γ. Proof. By induction over γ. γ = 0 is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ+1. Then β < γ means β δ. If β = δ, apply Left-Monotonicity: α β = α δ < (α δ ) α = α δ+1 = α γ. If β < δ, apply induction: α β < α δ. Hence (by Left-Monotonicity) α β < α δ < (α δ ) α = α δ+1 = α γ. Theorem 3.24 (Left-Monotonicity of Ordinal Exponentiation). Let α, β, γ be ordinals and α > 0. The following are equivalent: i. β < γ α > 1. ii. α β < α γ. Proof. The previous lemma shows the forward direction. So assume α β < α γ and not β < γ. If α = 1, α β = 1 = α γ. By linearity, γ β. If γ = β, α γ = α β < α γ. If γ < β, by the forward direction, α γ < α β < α γ. Lemma Let 0 < n ω. n ω = ω. Proof. ω is the smallest limit and n ω is a limit by a lemma above. So ω n ω. Since ω is closed under exponentiation, for all α < ω, n α ω. Then n ω = sup α<ω n α ω. Remark Right-Monotonicity does not hold: Define 3 = ω. Clearly, 2 < 3 and since 2 ω = ω and 3 ω = ω, 2 ω 3 ω. 4. Associativity, Distributivity and Commutativity Theorem , and exponentiation are not commutative, i.e. there are α, β, γ, δ, ε, ζ such that α + β β + α, γ δ δ γ and ε ζ ζ ε. Proof. Let α = 1, β = ω, γ = 2, δ = ω, ε = 0, ζ = ω = ω as shown above. ω ω {ω} = ω + 1, so α + β < β + α. 2 ω = ω as shown above. By Left-Monotonicity, ω < ω + ω = ω 2. So γ δ < δ γ. 0 1 = = 0, but 1 0 = 1 by definition. Hence ε ζ < ζ ε. Theorem 4.2 (Associativity of Ordinal Addition). Let α, β, γ be ordinals. Then (α + β) + γ = α + (β + γ).

12 12 JULIAN J. SCHLÖDER Proof. By induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. (α + β) + (δ + 1) = ((α + β) + δ) + 1 (by definition) = (α + (β + δ)) + 1 (by induction) = α + ((β + δ) + 1) (by definition) = α + (β + (δ + 1)) (by definition) = α + (β + γ). Now suppose γ is a limit, in particular γ > 1. Then β + γ is a limit, so α + (β + γ) and (α + β) + γ are limits. (α + β) + γ = sup((α + β) + ε) (by definition) ε<γ = sup ((α + β) + ε) (by Left-Monotonicity) β+ε<β+γ = sup β+ε<β+γ (α + (β + ε)) (by induction) = sup (α + δ) (see below) δ<β+γ = α + (β + γ) (by definition). Recall Lemma Write B = {α + (β + ε) β + ε < β + γ} and A = {α + δ δ < β + γ}. Clearly B A. Let α + δ A. Let ε = min{ζ β + ζ δ}. Obviously ε γ. Assume ε = γ, then for each ζ < γ, β + ζ < δ. Then δ < β + γ = sup ζ<γ β + ζ δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α + δ α + (β + ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Theorem 4.3 (Distributivity). Let α, β, γ be ordinals. Then α (β + γ) = α β + α γ. Proof. Note that the theorem is trivial if α = 0, so suppose α > 0. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. α (β + (δ + 1)) = α ((β + δ) + 1) (by definition) = α (β + δ) + α (by definition) = α β + α δ + α (by induction) = α β + α (δ + 1) (by definition). Suppose γ is a limit. Hence α γ and β + γ are limits.

13 ORDINAL ARITHMETIC 13 α (β + γ) = sup δ<β+γ α δ (by definition) = sup β+ε<β+γ (α (β + ε)) (see below) = sup(α (β + ε)) (by Left-Monotonicity) ε<γ = sup(α β + α ε) (by induction) ε<γ = sup α ε<α γ (α β + α ε) (by Left-Monotonicity) = sup (α β + ζ) (see below) ζ<α γ = α β + α γ (by definition). Recall Lemma Write B = {α (β + ε) β + ε < β + γ} and A = {α δ δ < β + γ}. Clearly B A. Let α δ A. Let ε = min{η β + η δ}. Obviously ε γ. Assume ε = γ, then for each η < γ, β + η < δ. Then δ < β + γ = sup η<γ β + η δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α δ α (β + ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Write B = {α β + α ε α ε < α γ} and A = {α β + ζ ζ < α γ}. Clearly B A. Let α β+ζ A. Let ε = min{η α η ζ}. Obviously ε γ. Assume ε = γ, then for each η < γ, α η < ζ. Then ζ < α γ = sup η<γ α η ζ. Hence, ε < γ, i.e. α ε < α γ. By construction, ζ α ε. Thus, by Left-Monotonicity, α β + ζ α β + α ε B. Thus, the conditions of Lemma 2.12 are satisfied. Theorem 4.4 (Associativity of Ordinal Multiplication). Let α, β, γ be ordinals. Then (α β) γ = α (β γ). Proof. Note that the theorem is trivial if β = 0. So suppose β > 0. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. (α β) (δ + 1) = ((α β) δ) + (α β) (by definition) = (α (β δ)) + (α β) (by induction) = α ((β δ) + β) (by Distributivity) = α (β (δ + 1)) (by definition) = α (β γ).

14 14 JULIAN J. SCHLÖDER Now suppose γ is a limit, in particular γ > 1. Then β γ is a limit, so α (β γ) and (α β) γ are limits. (α β) γ = sup((α β) ε) (by definition) ε<γ = sup ((α β) ε) (by Left-Monotonicity) β ε<β γ = sup β ε<β γ (α (β ε)) (by induction) = sup (α δ) (see below) δ<β γ = α (β γ) (by definition). Recall Lemma Write B = {α (β ε) β ε < β γ} and A = {α δ δ < β γ}. Clearly B A. If A =, B = A. Let α δ A. Let ε = min{ζ β ζ δ}. Obviously ε γ. Assume ε = γ, then for each ζ < γ, β ζ < δ. Then δ < β γ = sup ζ<γ β ζ δ. Hence, ε < γ, i.e. β ε < β γ. By construction, δ β ε. Thus, by Left-Monotonicity, α δ α (β ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Notation 4.5. As of now, we may omit bracketing ordinal addition and multiplication. Remark 4.6. Ordinal exponentiation is not associative, i.e. there are α, β, γ with α (βγ) (α β ) γ. Proof. Let α = ω, β = 1, γ = ω. Then β γ = 1, i.e. α (βγ) = α 1 = ω. But α β = ω, hence (α β ) γ = ω ω. And ω < ω ω by Left-Monotonicity. Theorem 4.7. Let α, β, γ be ordinals. Then α β+γ = α β α γ. Proof. Recall that β + γ = 0 iff β = γ = 0, so the theorem holds for α = 0. Also note that the theorem is trivial for α = 1, so suppose α > 1. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. α β+δ+1 = α β+δ α (by definition) = α β α δ α (by induction) = α β α δ+1 (by definition).

15 ORDINAL ARITHMETIC 15 Suppose γ is a limit. Then α γ and α β+γ are limits. α β+γ = sup α δ δ<β+γ = sup α β+ε β+ε<β+γ = sup α β+ε ε<γ (by definition) (see below) (by Left-Monotonicity) = sup(α β α ε ) (by induction) ε<γ = sup α ε <α γ (α β α ε ) = sup ζ<α γ (α β ζ) (by Left-Monotonicity) (see below) = α β + α γ (by definition). Recall Lemma Write B = {α β+ε β +ε < β +γ} and A = {α δ δ < β + γ}. Clearly B A. Let α δ A. Let ε = min{η β + η δ}. Obviously ε γ. Assume ε = γ, then for each η < γ, β + η < δ. Then δ < β + γ = sup η<γ β + η δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α δ α β+ε B. Thus, the conditions of Lemma 2.12 are satisfied. Write B = {α β α ε α ε < α γ } and A = {α β ζ ζ < α γ }. Clearly B A. Let α β ζ A. Let ε = min{η α η ζ}. Obviously ε γ. Assume ε = γ, then for each η < γ, α η < ζ. Then ζ < α γ = sup η<γ α η ζ. Hence, ε < γ, i.e. α ε < α γ. By construction, ζ α ε. Thus, by Left-Monotonicity, α β ζ α β +α ε B. Thus, the conditions of Lemma 2.12 are satisfied. 5. The Cantor Normal Form Lemma 5.1. If α < β and n, m ω \ {0}, ω α n < ω β m. Proof. α + 1 β, so ω α+1 ω β by Left-Monotonicity (of exponentiation). Hence (by Left-Monotonicity of multiplication), ω α n < ω α ω = ω α+1 ω β ω β m. Lemma 5.2. If α 0 > α 1 >... > α n, and m 1,..., m n ω, then ω α 0 > 1 i n ωαi m i. Proof. If any m i = 0 it may just be omitted from the sum. So suppose all m i > 0. n = 0 and n = 1 are the trivial cases. Consider n = 2: ω α1 m 1 + ω α2 m 2 ω α1 m 1 + ω α1 m 1 by the lemma above and Left-Monotonicity of addition. Then again by the previous lemma ω α1 m 1 2 < ω α 0.

16 16 JULIAN J. SCHLÖDER Continue via induction: Suppose the lemma holds for n. Then consider the sequence α 1,..., α n. It follows that 2 i n+1 ωαi m i < ω α 1. By the n = 2 case, ω α 0 > ω α1 m 1 + ω α 1 and by Left-Monotonicity of addition, ω α1 m 1 + ω α 1 > 1 i n ωαi m i. Theorem 5.3 (Cantor Normal Form (CNF)). For every ordinal α, there is a unique k ω and unique tuples (m 0,..., m k ) (ω \ {0}) k, (α 0,..., α k ) of ordinals with α 0 >... > α k such that: α = ω α0 m ω αk m k Proof. Existence by induction on α: If α = 0, then k = 0. Suppose that every β < α has a CNF. Let ˆα = sup{γ ω γ α} and let ˆm = sup{m ω ω ˆα m α}. Note that ω ˆα α: If not, then α ω ˆα. Then there is γ, ω γ α with α γ. But since ω α+1 > ω α α, γ < α + 1, i.e. γ α. Also note that ˆm ω: If not, then ˆm = ω, hence: α < ω ˆα+1 = ω ˆα ω = sup n ω ω ˆα n α. By construction, ω ˆα ˆm α, so there is ε α with α = ω ˆα ˆm + ε. Show that ε < α: Suppose not, then ε α, hence ε ω ˆα, so there is ζ ε with ε = ω ˆα + ζ, i.e. α = ω ˆα ˆm + ω ˆα + ζ. By left-distributivity, α = ω ˆα ( ˆm + 1) + ζ ω ˆα ( ˆm + 1), contradicting the choice of ˆm. Thus, by induction, ε has a CNF i l n ωβi i. Note that β 0 ˆα: If not, β 0 > ˆα, i.e. by the choice of ˆα, ω β 0 > α, so ε ω β 0 > α. Now state the CNF of α: If β 0 < ˆα set k = l + 1, α 0 = ˆα, m 0 = ˆm and α i = β i 1, m i = n i 1 for 1 i k. And if β 0 = ˆα set k = l, m 0 = n 0 + ˆm, α 0 = ˆα and α i = β i, m i = n i for 1 i k. Uniqueness: Suppose not and let α be the minimal counterexample. Let α = ω α0 m ω αm m m = ω β0 n ω βn n n. Obviously α > 0, i.e. the sums are not empty. Show α 0 = β 0 : Suppose not, wlog assume α 0 > β 0. Consider the previous lemma. Then α ω α0 m 0 > ω β0 n ω βn n n = α. Then show m 0 = n 0 : Suppose not, wlog assume m 0 < n 0. Then, again by the previous lemma, ω α 0 > 1 i m ωαi m i. So, by Left- Monotonicity of addition, α < ω α0 m 0 + ω α 0, i.e. α < ω α0 (m 0 + 1) ω α0 n 0 α. So ω α0 m 0 = ω β0 n 0, so by Left-Monotonicity, ω α1 m ω αm m m = ω β1 n ω βn n n. These terms are strictly smaller than α by the previous lemma. By minimality of α, m = n, and the α s, β s, m s and n s are equal. Thus α has a unique CNF.

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let

4. Ordinals July 26, 2011 In this chapter we introduce the ordinals, prove a general recursion theorem, and develop some elementary ordinal arithmetic. A set A is transitive iff x A y x(y A); in other

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

### THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### Two generalisations of the binomial theorem

39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

### A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### DERIVATIONS IN SOME FINITE ENDOMORPHISM SEMIRINGS

Discussiones Mathematicae General Algebra and Applications 32 (2012) 77 100 doi:10.7151/dmgaa.1191 DERIVATIONS IN SOME FINITE ENDOMORPHISM SEMIRINGS Ivan Dimitrov Trendafilov Technical University of Sofia

Διαβάστε περισσότερα

### Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 342 Βάσεις εδοµένων ιδάσκων: Γ. Σαµάρας 5η σειρά ασκήσεων: Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση. Λύσεις Μέρος Α. Συναρτησιακές Εξαρτήσεις 1. Αποδείξτε

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

### Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### "ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.

Διαβάστε περισσότερα

### ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

### Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

### The Normal and Lognormal Distributions

The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

### Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

### 14 Lesson 2: The Omega Verb - Present Tense

Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

### ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

### Locking to ensure serializability

Locking to ensure serializability Concurrent access to database items is controlled by strategies based on locking, timestamping or certification A lock is an access privilege to a single database item

Διαβάστε περισσότερα

### Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Volume 31, 2004, 83 97 T. Tadumadze and L. Alkhazishvili FORMULAS OF VARIATION OF SOLUTION FOR NON-LINEAR CONTROLLED DELAY DIFFERENTIAL EQUATIONS

Διαβάστε περισσότερα

### MATRICES

MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

### Door Hinge replacement (Rear Left Door)

Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

### Test Data Management in Practice

Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?

Διαβάστε περισσότερα

### Correction Table for an Alcoholometer Calibrated at 20 o C

An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### Online Appendix to. When Do Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination?

Online Appendix to When o Times of Increasing Uncertainty Call for Centralized Harmonization in International Policy Coordination? Andrzej Baniak Peter Grajzl epartment of Economics, Central European University,

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES. 1. Introduction

Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 DETERMINANT AND PFAFFIAN OF SUM OF SKEW SYMMETRIC MATRICES TIN-YAU TAM AND MARY CLAIR THOMPSON Abstract. We completely describe

Διαβάστε περισσότερα

### Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a

Διαβάστε περισσότερα

### 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

### Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

### Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ

ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ ΥΟΛΖ ΓΗΟΗΚΖΖ ΚΑΗ ΟΗΚΟΝΟΜΗΑ ΣΜΖΜΑ ΛΟΓΗΣΗΚΖ Εςπωπαϊϊκή Εταιιπείία,, ο θεσμόρ καιι η ανάπτςξη τηρ. Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859 Δπηβιέπνλ Καζεγεηήο:

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

### Case 1: Original version of a bill available in only one language.

currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the

Διαβάστε περισσότερα

### Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

### Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

### ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «ΑΜΦΙΣΒΗΤΗΣΕΙΣ ΟΡΙΩΝ ΓΕΩΤΕΜΑΧΙΩΝ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ ΜΕΣΩ ΔΙΚΑΣΤΙΚΩΝ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΩΝ.»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕIO ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «ΑΜΦΙΣΒΗΤΗΣΕΙΣ ΟΡΙΩΝ ΓΕΩΤΕΜΑΧΙΩΝ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ ΜΕΣΩ ΔΙΚΑΣΤΙΚΩΝ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΩΝ.» ΕΠΙΒΛΕΠΟΥΣΑ: Χ.

Διαβάστε περισσότερα

### (1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

### arxiv: v1 [math.ra] 17 Sep 2012

DEIVATIONS IN SOME FINITE ENDOMOPHISM SEMIINGS IVAN TENDAFILOV arxiv:1209.3656v1 [math.a] 17 Sep 2012 Abstract.The goal of this paper is to provide some basic structure information on derivations in finite

Διαβάστε περισσότερα

### ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness x x x 2 x 2 x 3 x 3 x 4 x 4 2 22 32 3 2 23 3 33 NP-Completeness

Διαβάστε περισσότερα

### Elements of Information Theory

Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

### Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

### 1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

### Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα