ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ORDINAL ARITHMETIC JULIAN J. SCHLÖDER"

Transcript

1 ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form. 1. Ordinals Definition 1.1. A set x is called transitive iff y x z y : z x. Definition 1.2. A set α is called an ordinal iff α transitive and all β α are transitive. Write α Ord. Lemma 1.3. If α is an ordinal and β α, then β is an ordinal. Proof. β is transitive, since it is in α. Let γ β. By transitivity of α, γ α. Hence γ is transitive. Thus β is an ordinal. Definition 1.4. If a is a set, define a + 1 = a {a}. Remark 1.5. is an ordinal. Write 0 =. If α is an ordinal, so is α + 1. Definition 1.6. If α and β are ordinals, say α < β iff α β. Lemma 1.7. For all ordinals α, α < α + 1. Proof. α {α}, so α α {α} = α + 1. Notation 1.8. From now on, α, β, γ, δ, ε, ζ, η denote ordinals. Theorem 1.9. The ordinals are linearly ordered i.e. i. α : α α (strictness). ii. α β γ : α < β β < γ α < γ (transitivity). iii. α β : α < β β < α α = β (linearity). Proof. i. follows from (Found). ii. follows from transitivity of the ordinals. iii. : Assume this fails. By (Found), choose a minimal α such that some β is neither smaller, larger or equal to α. Choose the minimal such β. Show towards a contradiction that α = β: 1

2 2 JULIAN J. SCHLÖDER Let γ α. By minimality of α, γ < β β < γ β = γ. If β = γ, β < α. If β < γ then by ii. β < α. Thus γ < β, i.e. γ β. Hence α β. Let γ β. By minimality of β, γ < α α < γ α = γ. If α = γ, α < β. If α < γ then by ii α < β. Thus γ < α, i.e. γ α. Hence β α. Lemma If α 0 is an ordinal, 0 < α, i.e. 0 is the smallest ordinal. Proof. Since α 0, by linearity α < 0 or 0 < α, but α < 0 would mean α. Definition An ordinal α is called a successor iff there is a β with α = β + 1. Write α Suc. An ordinal α is called a limit if it is no successor. Write α Lim. Remark By definition, every ordinal is either or a successor or a limit. Lemma For all ordinals α, β: If β < α+1, then β < α β = α, i.e. β α. Proof. Let β < α + 1, i.e. β α {α}. By definition of, β α or β {α}, i.e. β α β = α. Lemma For all ordinals α, β: If β < α, then β + 1 α. Proof. Suppose this fails for some α, β. Then by linearity, β + 1 > α, hence by the previous lemma α β. Hence by transitivity β < α β, contradicting strictness. Lemma For all α, there is no β with α < β < α + 1. Proof. Assume there are such α and β. Then, since β < α + 1, β α, but since α < β, by linearity α < α, contradicting strictness. Lemma For all α, β, if there is no γ with α < γ < β, then β = α + 1. Proof. Suppose β α + 1. Since α < β, α + 1 β, so α + 1 < β. Then α + 1 is some such γ. Lemma The operation +1 : Ord Ord is injective. Proof. Let α β be ordinals. Wlog α < β. Then by the previous lemmas, α + 1 β < β + 1, i.e α + 1 β + 1. Lemma α Lim iff β < α : β + 1 < α and α 0.

3 ORDINAL ARITHMETIC 3 Proof. Let α Lim, β < α. By linearity, β + 1 < α α < β + 1 β + 1 = α. The last case is excluded by definition of limits. So suppose α < β + 1. Then α = β α < β. Since β < α, α = β implies α < α, contradicting strictness. By linearity, α < β implies β < β, contradicting strictness. Thus β + 1 < α. Now suppose α 0 and β < α : β + 1 < α. Assume α Suc. Then there is β such that α = β + 1. Then β < β + 1 = α, thus β < α, i.e. β + 1 < α. Then α = β + 1 < α, contradicting strictness. Hence α is a limit. Theorem 1.19 (Ordinal Induction). Let ϕ be a property of ordinals. Suppose the following holds: i. ϕ( ) (base step). ii. α : ϕ(α) ϕ(α + 1) (successor step). iii. α Lim : ( β < α : ϕ(β)) ϕ(α) (limit step). Then ϕ(α) holds for all ordinals α. Proof. Suppose i, ii and iii hold. Assume there is some α such that ϕ(α). By (Found), take the smallest such α. Suppose α =. This contradicts i. Suppose α Suc. Then there is β such that α = β + 1, since β < β + 1, β < α and hence by minimality of α, ϕ(β). By ii, ϕ(α). Suppose α Lim. By minimality of α, all β < α satisfy ϕ(β). Thus by iii, ϕ(α). Hence there can t be any such α. Definition Let ω be the (inclusion-)smallest set that contains 0 and is closed under +1, i.e. x ω : x + 1 ω. More formally, ω = {w 0 w v w : v + 1 w}. Remark ω is a set by the Axiom of Infinity. Theorem ω is an ordinal. Proof. Consider ω Ord. This set contains 0 and is closed under +1, as ordinals are closed under +1. So ω must by definition be a subset of ω Ord, i.e. ω contains only ordinals. Hence it suffices to show that ω is transitive. Consider ω = {x x ω y x : y ω}. Clearly, 0 ω. Let x ω and show that x + 1 ω. By definition, x + 1 ω. Let y x + 1, i.e. y = x y x. If y = x, y ω. If y x then y ω by definition of ω. Hence x + 1 ω. Thus ω contains 0 and is closed under +1, i.e. ω ω. But ω ω by defintion, hence ω = ω, i.e. ω is transitive.

4 4 JULIAN J. SCHLÖDER Theorem ω is a limit, in particular, it is the smallest limit ordinal. Proof. ω 0, since 0 ω. Let α < ω. Then α + 1 < ω by definition. Assume γ < ω is a limit ordinal. Since γ, 0 γ. Also, as a limit, γ is closed under +1. Hence γ contradicts the minimality of ω. 2. Ordinal Arithmetic Definition 2.1. Define an ordinal 1 := = { }. Lemma ω. Proof. 0 ω and ω is closed under +1. Definition 2.3. Let α, β be ordinals. Define ordinal addition recursively: i. α + 0 = α. ii. If β Suc, β = γ + 1, define α + β = (α + γ) + 1. iii. If β Lim, define α + β = γ<β (α + γ). Remark 2.4. By this definition, the sum α + 1 of an ordinal α and the ordinal 1 = {0} is the same as α + 1 = α {α}. Definition 2.5. Let α, β be ordinals. recursively: Define ordinal multiplication i. α 0 = 0. ii. If β Suc, β = γ + 1, define α β = (α γ) + α. iii. If β Lim, define α β = γ<β (α γ). Definition 2.6. Let α, β be ordinals. Define ordinal exponentiation recursively: i. α 0 = 1. ii. If β Suc, β = γ + 1, define α β = (α γ ) α. iii. If β Lim and α > 0, define α β = γ<β (αγ ). If α = 0, define α β = 0. Lemma 2.7. If A is a set of ordinals, A is an ordinal. Proof. Let A be a set of ordinals, define a = A. Let x y a, then there is an α A such that x y α, so x α hence x a. Thus, a is transitive. Let z a. There is α A such that z α, hence z is transitive. Thus a is transitive and every element of a is transitive, i.e. a is an ordinal.

5 ORDINAL ARITHMETIC 5 Remark 2.8. By induction and this lemma, the definitions of +, and exponentiation above are well-defined, i.e. if α, β are ordinals, α + β, α β and α β are again ordinals. Definition 2.9. Let A be a set of ordinals. The supremum of A is definied as: sup A = min{α β A : β α}. Lemma Let A be a set of ordinals, then sup A = A. Proof. Since sup A is again an ordinal, it is just the set of all ordinals smaller than it. Hence by linearity, sup A = {α β A : α < β}. Which equals A by definition. Lemma Let A be a set of ordinals. If sup A is a successor, then sup A A. Proof. Assume sup A = α + 1 / A, then for all β A, β < α + 1, i.e. β α. Then sup A = α < α + 1 = sup A. Lemma Let A be a set of ordinals, B A such that α A β B : α β. Then sup A = sup B. Proof. Show {γ α A : γ α} = {γ β B : γ β}. Then the minima of these sets, and hence the suprema of A and B, are equal. Suppose γ α for all α A. Then, since B A, γ α for all β B. Suppose γ β for all β B. Let α A, then there is some β B with β α, hence γ β α. Thus γ α for all α A. Lemma If γ is a limit, γ = sup γ = α<γ α = sup α<γ α = γ. Proof. We ve shown a more general form of the first equality, the second and third are just a different ways of writing the same set. Assume γ sup α<γ α, i.e. γ < sup α<γ α or sup α<γ α < γ by linearity. In the first case, there is α < γ such that γ < α, i.e. γ < γ contradicting strictness. In the second case, (sup α<γ α) + 1 < γ, since γ is a limit. But then, by definition of sup, (sup α<γ α) + 1 sup α<γ α while sup α<γ α < (sup α<γ α) + 1, again contradicting strictness. Lemma For all α, 0 + α = α. Proof. By induction on α. Since = 0, the base step is trivial. Suppose α = β + 1 and 0 + β = β. Then 0 + α = 0 + (β + 1) = (0 + β) + 1 = β + 1 = α. Suppose α Lim and for all β < α, 0 + β = β. Then 0 + α = β<α (0 + β) = β<α β = α. Lemma For all α, 1 α = α 1 = α.

6 6 JULIAN J. SCHLÖDER Proof. α 1 = α (0 + 1) = (α 0) + α = α. Prove 1 α = α by induction on α. Since 1 0 = 0, the base step holds. Suppose α = β +1 and 1 β = β. Then 1 α = (1 β)+1 = β +1 = α. Suppose α is a limit and for all β < α, 1 β = β. Then 1 α = β<α (1 β) = β<α β = α. Lemma For all α, α 1 = α. Proof. α 1 = α 0+1 = α 0 α = 1 α = α. Lemma For all α, 1 α = 1. Proof. If α = 0, 1 α = 1 by definition. If α = β + 1, 1 β+1 = 1 β 1 = 1. If α is a limit, 1 α = sup β<α 1 β = sup β<α 1 = 1. Lemma Let α be an ordinal. If α > 0, 0 α = 0. Otherwise 0 α = 1. Proof. 0 0 = 1 by definition, so let α > 0. If α = β + 1, 0 α = 0 β 0 = 0. If α is a limit, 0 α = 0 by defnition. Theorem 2.19 (Subtraction). For all β α there is some γ α with β + γ = α. Proof. By induction on α. α = 0 is trivial. Suppose α = δ + 1 and β α. If β = α, set γ = 0. So suppose β < α, i.e. β δ. Find γ β with β + γ = δ. Set γ = γ + 1, then β + γ = β + (γ + 1) = (β + γ ) + 1 = δ + 1 = α. If α is a limit and β < α then for all δ < α, β δ, find γ δ such that β + γ δ = δ. If δ < β, set γ δ = 0. Set γ = sup β<δ<α γ δ. If γ is a successor, then there is some δ with γ = γ δ. But δ + 1 < α and as in the successor case, γ δ+1 = γ δ + 1 > γ δ = γ, so this can t be the supremum. Also, γ 0, since if it were, for all β < δ < γ, β = δ, i.e. there are no such δ. This implies β + 1 = α, but α is no successor. So, γ is a limit. In particular for all δ < α, γ δ < γ: If there were any δ < γ with γ δ = γ, then since γ 0, β < δ. Then again γ δ+1 = γ δ + 1 > γ δ = γ, contradicting that γ is the supremum. Hence, β + γ = sup ε<γ (β + ε) = sup γδ <γ(β + γ δ ) = sup γδ <γ δ = sup δ<α δ = α. Theorem ω is closed under +, and exponentiation, i.e. n, m ω : n + m ω n m ω n m ω. Proof. By induction on m. Since ω does not contain any limits, we may omit the limit step.

7 ORDINAL ARITHMETIC 7 First consider addition. If m = 0 then n + m = m ω. Suppose m = k + 1. n + m = (n + k) + 1. By induction n + k ω and since ω is closed under +1, (n + k) + 1 ω. Now consider multiplication. If m = 0, n 0 = 0 ω. Suppose m = k + 1. n m = (n k) + n. By induction n k ω and since ω is closed under +, (n k) + n ω. Finally consider exponentiation. If m = 0, n 0 = 1 ω. Suppose m = k + 1. n m = n k n. By induction, n k ω and since ω is closed under, n k n ω Comparisons of Addition. 3. Monotonicity Laws Lemma 3.1. If α and β are ordinals, and α β, then α + 1 β + 1. Proof. Assume α β and α + 1 > β + 1. By transitivity it suffices to now derive a contradiction. Since β + 1 < α + 1, β + 1 = α β + 1 < α. If β + 1 = α, β + 1 β, but β < β + 1. If β + 1 < α, by transitivity β + 1 β, but β < β + 1. Lemma 3.2. If α and β are ordinals, then α α + β. Proof. By induction on β: If β = 0, α = α + β. If β = γ + 1 and α α + γ, then α + β = (α + γ) + 1 α + 1 α. If β Lim and for all γ < β, α α+γ, then: α+β = γ<β (α+γ) = sup γ<β (α + γ) sup γ<β α = α. Lemma 3.3. If α and β are ordinals, then β α + β. Proof. By induction on β: β = 0 is trivial, since 0 is the smallest ordinal. If β = γ + 1 and γ α + γ, then α + β = (α + γ) + 1 γ + 1 = β. If β Lim and for all γ < β, γ α+γ, then: α+β = γ<β (α+γ) = sup γ<β (α + γ) sup γ<β γ = β. Lemma 3.4. If γ is a limit, then for all α: α + γ is a limit. Proof. γ 0, so α + γ γ > 0, i.e. α + γ 0. So let x α + γ. Show that x + 1 < α + γ. x α + γ = β<γ (α + β), i.e. there is β < γ such that x α + β. By a previous lemma, x + 1 α + β. If x + 1 α + β, x + 1 < α + γ. So suppose α + β = x + 1. Since γ is a limit, β + 1 < γ and by definition α + (β + 1) = (α + β) + 1, and x + 1 (α + β) + 1, hence x + 1 α + γ. Lemma 3.5. Suppose γ is a limit, α, β are ordinals and β < γ. then α + β < α + γ.

8 8 JULIAN J. SCHLÖDER Proof. By definition, α+γ = δ<γ (α+δ). Since γ is a limit, β +1 < γ. Also by definition: α + β < (α + β) + 1 = α + (β + 1) {α + δ δ < γ}. Hence α + β δ<γ α + δ. Lemma 3.6. Suppose α, β, γ are ordinals and β < γ. then α + β < α + γ. Proof. By induction over γ. γ = 0 is clear, since there is no β < 0. And the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ + 1. Then β < γ means β δ. If β = δ, notice: α + β = α + δ < (α + δ) + 1 = α + (δ + 1) = α + γ. If β < δ, apply induction: α+β < α+δ. Hence α+β < (α+δ)+1 = α + (δ + 1) = α + γ. Theorem 3.7 (Left-Monotonicity of Ordinal Addition). Let α, β, γ be ordinals. The following are equivalent: i. β < γ. ii. α + β < α + γ. Proof. The previous lemma shows the forward direction. So assume α + β < α + γ and not β < γ. By linearity, γ β. If γ = β, α + γ = α + β < α + γ. If γ < β, by the forward direction, α + γ < α + β < α + γ. Lemma ω = ω. Proof. 1 + ω is a limit by a lemma above, so ω 1 + ω (since ω is the smallest limit). ω is a limit, so 1 + ω = sup α<ω 1 + α. Since ω is closed under +, 1 + α < ω for all α < ω, hence sup α<ω ω. It follows that 1 + ω = ω. Remark 3.9. Right-Monotoniticy does not hold: Clearly, 0 < 1 and we ve seen that 0 + ω = ω and 1 + ω = ω. So 0 + ω 1 + ω Comparisons of Multiplications. Lemma For all α, β: α + β = 0 iff α = β = 0. Proof. Reverse direction is trivial. So suppose α + β = 0 and not α = β = 0. If β = 0, then 0 = α + β = α and if β > 0, by Left- Monotonicity 0 α + 0 < α + β = 0. Lemma If α and β 0 are ordinals, then α α β. Proof. By induction on β. Suppose β = γ+1, then α β = (α γ)+α α, by induction and the corresponding lemma on addition. Suppose β is a limit. α β = γ<β (α γ) = sup γ<β(α γ) sup γ<β α = α.

9 ORDINAL ARITHMETIC 9 Lemma If α 0 and β are ordinals, then β α β. Proof. By induction on β. β = 0 is trivial. Suppose β = γ + 1, then: α β = (α γ) + α > α γ γ (since α > 0 and by Left-Monotonicity) (by induction). And α β > γ implies α β γ + 1 = β. Suppose β is a limit. α β = γ<β (α γ) = sup γ<β(α γ) sup γ<β γ = β. Lemma If γ is a limit, then for all α 0: α γ is a limit. Proof. γ 0, so α γ γ > 0, i.e. α γ 0. So let x α γ. Show that x + 1 < α γ. x α γ = β<γ (α β), i.e. there is β < γ such that x α β. By a previous lemma, x + 1 α β. If x + 1 α β, x + 1 < α γ. So suppose α β = x + 1. Since γ is a limit, β + 1 < γ and by definition α (β + 1) = (α β) + α, and x + 1 (α β) + 1 (α β) + α by Left-Monotonicity (since α 1). Hence x + 1 α γ. Lemma Suppose γ is a limit, α 0 and β are ordinals and β < γ. Then α β < α γ. Proof. By definition, α γ = δ<γ (α δ). Since γ is a limit, β + 1 < γ. By Left-Monotonicity: α β < (α β) + α = α (β + 1) {α δ δ < γ}. Hence α β δ<γ α δ. Lemma Suppose α 0 and β, γ are ordinals and β < γ. Then α β < α γ. Proof. By induction over γ. γ = 0 is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ+1. Then β < γ means β δ. If β = δ, apply Left-Monotonicity: α β = α δ < (α δ) + α = α (δ + 1) = α γ. If β < δ, apply induction: α β < α δ. Hence (by Left-Monotonicity) α β < α δ < (α δ) + α = α (δ + 1) = α γ. Theorem 3.16 (Left-Monotonicity of Ordinal Multiplication). Let α, β, γ be ordinals. The following are equivalent: i. β < γ α > 0. ii. α β < α γ. Proof. The previous lemma shows the forward direction. So assume α β < α γ and not β < γ. If α = 0, then α β = 0 = α γ. So α > 0. By linearity, γ β. If γ = β, α γ = α β < α γ. If γ < β, by the forward direction, α γ < α β < α γ.

10 10 JULIAN J. SCHLÖDER Lemma Let 2 = ω = ω. Proof. Since ω is the smallest limit and by a lemma above 2 ω is a limit, ω 2 ω. Since ω is closed under, for all α < ω, 2 α ω. Hence 2 ω = sup α<ω 2 α ω. Remark Right-Monotonicity does not hold: Clearly, 1 < 2 and since 1 ω = ω and 2 ω = ω, 1 ω 2 ω Comparisons of Exponentation. Lemma If α and β 0 are ordinals, then α α β. Proof. If α = 0 the lemma is trivial. So suppose α > 0. By induction on β. Suppose β = γ + 1, then α β = (α γ ) α α, by induction and the corresponding lemma on multiplication. Suppose β is a limit. α β = γ<β (αγ ) = sup γ<β (α γ ) sup γ<β α = α. Lemma If α > 1 and β are ordinals, then β α β. Proof. If β = 0 the lemma is trivial. So suppose β > 0. By induction on β. Suppose β = γ + 1, then: α β = (α γ ) α > α γ 1 (by Left-Monotonicity) = α γ γ (by induction). And α β > γ implies α β γ + 1 = β. Suppose β is a limit. α β = γ<β (αγ ) = sup γ<β (α γ ) sup γ<β γ = β. Lemma If γ is a limit, then for all α > 1: α γ is a limit. Proof. γ 0, so α γ γ > 0, i.e. α γ 0. So let x α γ. Show that x + 1 < α γ. x α γ = β<γ (αβ ), i.e. there is β < γ such that x α β. By a previous lemma, x + 1 α β. If x + 1 α β, x + 1 < α γ. So suppose α β = x+1. Since γ is a limit, β +1 < γ and by definition α β+1 = (α β ) α, and x + 1 (α β ) + 1 α β + α β α β 2 α β α by Left-Monotonicity (since α 2). Hence x + 1 α γ. Lemma Suppose γ is a limit, α > 1 and β are ordinals and β < γ. Then α β < α γ. Proof. By definition, α γ = δ<γ (αδ ). Since γ is a limit, β + 1 < γ. By Left-Monotonicity: α β < (α β ) α = α β+1 {α δ δ < γ}. Hence α β δ<γ αδ.

11 ORDINAL ARITHMETIC 11 Lemma Suppose α > 1 and β, γ are ordinals and β < γ. Then α β < α γ. Proof. By induction over γ. γ = 0 is clear and the previous lemma is the limit step. So we need to cover the successor step. Suppose γ = δ+1. Then β < γ means β δ. If β = δ, apply Left-Monotonicity: α β = α δ < (α δ ) α = α δ+1 = α γ. If β < δ, apply induction: α β < α δ. Hence (by Left-Monotonicity) α β < α δ < (α δ ) α = α δ+1 = α γ. Theorem 3.24 (Left-Monotonicity of Ordinal Exponentiation). Let α, β, γ be ordinals and α > 0. The following are equivalent: i. β < γ α > 1. ii. α β < α γ. Proof. The previous lemma shows the forward direction. So assume α β < α γ and not β < γ. If α = 1, α β = 1 = α γ. By linearity, γ β. If γ = β, α γ = α β < α γ. If γ < β, by the forward direction, α γ < α β < α γ. Lemma Let 0 < n ω. n ω = ω. Proof. ω is the smallest limit and n ω is a limit by a lemma above. So ω n ω. Since ω is closed under exponentiation, for all α < ω, n α ω. Then n ω = sup α<ω n α ω. Remark Right-Monotonicity does not hold: Define 3 = ω. Clearly, 2 < 3 and since 2 ω = ω and 3 ω = ω, 2 ω 3 ω. 4. Associativity, Distributivity and Commutativity Theorem , and exponentiation are not commutative, i.e. there are α, β, γ, δ, ε, ζ such that α + β β + α, γ δ δ γ and ε ζ ζ ε. Proof. Let α = 1, β = ω, γ = 2, δ = ω, ε = 0, ζ = ω = ω as shown above. ω ω {ω} = ω + 1, so α + β < β + α. 2 ω = ω as shown above. By Left-Monotonicity, ω < ω + ω = ω 2. So γ δ < δ γ. 0 1 = = 0, but 1 0 = 1 by definition. Hence ε ζ < ζ ε. Theorem 4.2 (Associativity of Ordinal Addition). Let α, β, γ be ordinals. Then (α + β) + γ = α + (β + γ).

12 12 JULIAN J. SCHLÖDER Proof. By induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. (α + β) + (δ + 1) = ((α + β) + δ) + 1 (by definition) = (α + (β + δ)) + 1 (by induction) = α + ((β + δ) + 1) (by definition) = α + (β + (δ + 1)) (by definition) = α + (β + γ). Now suppose γ is a limit, in particular γ > 1. Then β + γ is a limit, so α + (β + γ) and (α + β) + γ are limits. (α + β) + γ = sup((α + β) + ε) (by definition) ε<γ = sup ((α + β) + ε) (by Left-Monotonicity) β+ε<β+γ = sup β+ε<β+γ (α + (β + ε)) (by induction) = sup (α + δ) (see below) δ<β+γ = α + (β + γ) (by definition). Recall Lemma Write B = {α + (β + ε) β + ε < β + γ} and A = {α + δ δ < β + γ}. Clearly B A. Let α + δ A. Let ε = min{ζ β + ζ δ}. Obviously ε γ. Assume ε = γ, then for each ζ < γ, β + ζ < δ. Then δ < β + γ = sup ζ<γ β + ζ δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α + δ α + (β + ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Theorem 4.3 (Distributivity). Let α, β, γ be ordinals. Then α (β + γ) = α β + α γ. Proof. Note that the theorem is trivial if α = 0, so suppose α > 0. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. α (β + (δ + 1)) = α ((β + δ) + 1) (by definition) = α (β + δ) + α (by definition) = α β + α δ + α (by induction) = α β + α (δ + 1) (by definition). Suppose γ is a limit. Hence α γ and β + γ are limits.

13 ORDINAL ARITHMETIC 13 α (β + γ) = sup δ<β+γ α δ (by definition) = sup β+ε<β+γ (α (β + ε)) (see below) = sup(α (β + ε)) (by Left-Monotonicity) ε<γ = sup(α β + α ε) (by induction) ε<γ = sup α ε<α γ (α β + α ε) (by Left-Monotonicity) = sup (α β + ζ) (see below) ζ<α γ = α β + α γ (by definition). Recall Lemma Write B = {α (β + ε) β + ε < β + γ} and A = {α δ δ < β + γ}. Clearly B A. Let α δ A. Let ε = min{η β + η δ}. Obviously ε γ. Assume ε = γ, then for each η < γ, β + η < δ. Then δ < β + γ = sup η<γ β + η δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α δ α (β + ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Write B = {α β + α ε α ε < α γ} and A = {α β + ζ ζ < α γ}. Clearly B A. Let α β+ζ A. Let ε = min{η α η ζ}. Obviously ε γ. Assume ε = γ, then for each η < γ, α η < ζ. Then ζ < α γ = sup η<γ α η ζ. Hence, ε < γ, i.e. α ε < α γ. By construction, ζ α ε. Thus, by Left-Monotonicity, α β + ζ α β + α ε B. Thus, the conditions of Lemma 2.12 are satisfied. Theorem 4.4 (Associativity of Ordinal Multiplication). Let α, β, γ be ordinals. Then (α β) γ = α (β γ). Proof. Note that the theorem is trivial if β = 0. So suppose β > 0. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. (α β) (δ + 1) = ((α β) δ) + (α β) (by definition) = (α (β δ)) + (α β) (by induction) = α ((β δ) + β) (by Distributivity) = α (β (δ + 1)) (by definition) = α (β γ).

14 14 JULIAN J. SCHLÖDER Now suppose γ is a limit, in particular γ > 1. Then β γ is a limit, so α (β γ) and (α β) γ are limits. (α β) γ = sup((α β) ε) (by definition) ε<γ = sup ((α β) ε) (by Left-Monotonicity) β ε<β γ = sup β ε<β γ (α (β ε)) (by induction) = sup (α δ) (see below) δ<β γ = α (β γ) (by definition). Recall Lemma Write B = {α (β ε) β ε < β γ} and A = {α δ δ < β γ}. Clearly B A. If A =, B = A. Let α δ A. Let ε = min{ζ β ζ δ}. Obviously ε γ. Assume ε = γ, then for each ζ < γ, β ζ < δ. Then δ < β γ = sup ζ<γ β ζ δ. Hence, ε < γ, i.e. β ε < β γ. By construction, δ β ε. Thus, by Left-Monotonicity, α δ α (β ε) B. Thus, the conditions of Lemma 2.12 are satisfied. Notation 4.5. As of now, we may omit bracketing ordinal addition and multiplication. Remark 4.6. Ordinal exponentiation is not associative, i.e. there are α, β, γ with α (βγ) (α β ) γ. Proof. Let α = ω, β = 1, γ = ω. Then β γ = 1, i.e. α (βγ) = α 1 = ω. But α β = ω, hence (α β ) γ = ω ω. And ω < ω ω by Left-Monotonicity. Theorem 4.7. Let α, β, γ be ordinals. Then α β+γ = α β α γ. Proof. Recall that β + γ = 0 iff β = γ = 0, so the theorem holds for α = 0. Also note that the theorem is trivial for α = 1, so suppose α > 1. Proof by induction on γ. γ = 0 is trivial. Suppose γ = δ + 1. α β+δ+1 = α β+δ α (by definition) = α β α δ α (by induction) = α β α δ+1 (by definition).

15 ORDINAL ARITHMETIC 15 Suppose γ is a limit. Then α γ and α β+γ are limits. α β+γ = sup α δ δ<β+γ = sup α β+ε β+ε<β+γ = sup α β+ε ε<γ (by definition) (see below) (by Left-Monotonicity) = sup(α β α ε ) (by induction) ε<γ = sup α ε <α γ (α β α ε ) = sup ζ<α γ (α β ζ) (by Left-Monotonicity) (see below) = α β + α γ (by definition). Recall Lemma Write B = {α β+ε β +ε < β +γ} and A = {α δ δ < β + γ}. Clearly B A. Let α δ A. Let ε = min{η β + η δ}. Obviously ε γ. Assume ε = γ, then for each η < γ, β + η < δ. Then δ < β + γ = sup η<γ β + η δ. Hence, ε < γ, i.e. β + ε < β + γ. By construction, δ β + ε. Thus, by Left-Monotonicity, α δ α β+ε B. Thus, the conditions of Lemma 2.12 are satisfied. Write B = {α β α ε α ε < α γ } and A = {α β ζ ζ < α γ }. Clearly B A. Let α β ζ A. Let ε = min{η α η ζ}. Obviously ε γ. Assume ε = γ, then for each η < γ, α η < ζ. Then ζ < α γ = sup η<γ α η ζ. Hence, ε < γ, i.e. α ε < α γ. By construction, ζ α ε. Thus, by Left-Monotonicity, α β ζ α β +α ε B. Thus, the conditions of Lemma 2.12 are satisfied. 5. The Cantor Normal Form Lemma 5.1. If α < β and n, m ω \ {0}, ω α n < ω β m. Proof. α + 1 β, so ω α+1 ω β by Left-Monotonicity (of exponentiation). Hence (by Left-Monotonicity of multiplication), ω α n < ω α ω = ω α+1 ω β ω β m. Lemma 5.2. If α 0 > α 1 >... > α n, and m 1,..., m n ω, then ω α 0 > 1 i n ωαi m i. Proof. If any m i = 0 it may just be omitted from the sum. So suppose all m i > 0. n = 0 and n = 1 are the trivial cases. Consider n = 2: ω α1 m 1 + ω α2 m 2 ω α1 m 1 + ω α1 m 1 by the lemma above and Left-Monotonicity of addition. Then again by the previous lemma ω α1 m 1 2 < ω α 0.

16 16 JULIAN J. SCHLÖDER Continue via induction: Suppose the lemma holds for n. Then consider the sequence α 1,..., α n. It follows that 2 i n+1 ωαi m i < ω α 1. By the n = 2 case, ω α 0 > ω α1 m 1 + ω α 1 and by Left-Monotonicity of addition, ω α1 m 1 + ω α 1 > 1 i n ωαi m i. Theorem 5.3 (Cantor Normal Form (CNF)). For every ordinal α, there is a unique k ω and unique tuples (m 0,..., m k ) (ω \ {0}) k, (α 0,..., α k ) of ordinals with α 0 >... > α k such that: α = ω α0 m ω αk m k Proof. Existence by induction on α: If α = 0, then k = 0. Suppose that every β < α has a CNF. Let ˆα = sup{γ ω γ α} and let ˆm = sup{m ω ω ˆα m α}. Note that ω ˆα α: If not, then α ω ˆα. Then there is γ, ω γ α with α γ. But since ω α+1 > ω α α, γ < α + 1, i.e. γ α. Also note that ˆm ω: If not, then ˆm = ω, hence: α < ω ˆα+1 = ω ˆα ω = sup n ω ω ˆα n α. By construction, ω ˆα ˆm α, so there is ε α with α = ω ˆα ˆm + ε. Show that ε < α: Suppose not, then ε α, hence ε ω ˆα, so there is ζ ε with ε = ω ˆα + ζ, i.e. α = ω ˆα ˆm + ω ˆα + ζ. By left-distributivity, α = ω ˆα ( ˆm + 1) + ζ ω ˆα ( ˆm + 1), contradicting the choice of ˆm. Thus, by induction, ε has a CNF i l n ωβi i. Note that β 0 ˆα: If not, β 0 > ˆα, i.e. by the choice of ˆα, ω β 0 > α, so ε ω β 0 > α. Now state the CNF of α: If β 0 < ˆα set k = l + 1, α 0 = ˆα, m 0 = ˆm and α i = β i 1, m i = n i 1 for 1 i k. And if β 0 = ˆα set k = l, m 0 = n 0 + ˆm, α 0 = ˆα and α i = β i, m i = n i for 1 i k. Uniqueness: Suppose not and let α be the minimal counterexample. Let α = ω α0 m ω αm m m = ω β0 n ω βn n n. Obviously α > 0, i.e. the sums are not empty. Show α 0 = β 0 : Suppose not, wlog assume α 0 > β 0. Consider the previous lemma. Then α ω α0 m 0 > ω β0 n ω βn n n = α. Then show m 0 = n 0 : Suppose not, wlog assume m 0 < n 0. Then, again by the previous lemma, ω α 0 > 1 i m ωαi m i. So, by Left- Monotonicity of addition, α < ω α0 m 0 + ω α 0, i.e. α < ω α0 (m 0 + 1) ω α0 n 0 α. So ω α0 m 0 = ω β0 n 0, so by Left-Monotonicity, ω α1 m ω αm m m = ω β1 n ω βn n n. These terms are strictly smaller than α by the previous lemma. By minimality of α, m = n, and the α s, β s, m s and n s are equal. Thus α has a unique CNF.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let

Thus X is nonempty by supposition. By (i), let x be a minimal element of X. Then let 4. Ordinals July 26, 2011 In this chapter we introduce the ordinals, prove a general recursion theorem, and develop some elementary ordinal arithmetic. A set A is transitive iff x A y x(y A); in other

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Strukturalna poprawność argumentu.

Strukturalna poprawność argumentu. Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

STAT200C: Hypothesis Testing

STAT200C: Hypothesis Testing STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Two generalisations of the binomial theorem

Two generalisations of the binomial theorem 39 Two generalisations of the binomial theorem Sacha C. Blumen Abstract We prove two generalisations of the binomial theorem that are also generalisations of the q-binomial theorem. These generalisations

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Cardinal and Ordinal Numbers Math Klaus Kaiser

Cardinal and Ordinal Numbers Math Klaus Kaiser Cardinal and Ordinal Numbers Math 6300 Klaus Kaiser April 9, 2007 Contents 1 Introduction 2 2 The Zermelo Fraenkel Axioms of Set Theory 5 3 Ordinals 14 3.1 Well-Orderings.........................................

Διαβάστε περισσότερα

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics REDUCIBILITY OF STANDARD REPRESENTATIONS GORAN MUIĆ Volume 222 No. 1 November 2005 PACIFIC JOURNAL OF MATHEMATICS Vol. 222, No. 1, 2005 REDUCIBILITY OF STANDARD REPRESENTATIONS

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Differential Topology (math876 - Spring2006 Søren Kold Hansen Problem 1: Exercise 3.2 p. 246 in [MT]. Let {ɛ 1,..., ɛ n } be the basis of Alt 1 (R n dual to the standard basis {e 1,...,

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

DERIVATIONS IN SOME FINITE ENDOMORPHISM SEMIRINGS

DERIVATIONS IN SOME FINITE ENDOMORPHISM SEMIRINGS Discussiones Mathematicae General Algebra and Applications 32 (2012) 77 100 doi:10.7151/dmgaa.1191 DERIVATIONS IN SOME FINITE ENDOMORPHISM SEMIRINGS Ivan Dimitrov Trendafilov Technical University of Sofia

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 342 Βάσεις εδοµένων ιδάσκων: Γ. Σαµάρας 5η σειρά ασκήσεων: Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση. Λύσεις Μέρος Α. Συναρτησιακές Εξαρτήσεις 1. Αποδείξτε

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Semigroups of Linear Transformations with Invariant Subspaces

Semigroups of Linear Transformations with Invariant Subspaces International Journal of Algebra, Vol 6, 2012, no 8, 375-386 Semigroups of Linear Transformations with Invariant Subspaces Preeyanuch Honyam Department of Mathematics, Faculty of Science Chiang Mai University,

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 26 - I. ΜΗΛΗΣ NP-complete προβλήματα ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 26 - Ι. ΜΗΛΗΣ 6 NP-COMPLETENESS II Tree of reductions (partial) Cook s Th. Π NP SAT 3-SAT

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Θεωρία Πληροφορίας και Κωδίκων

Θεωρία Πληροφορίας και Κωδίκων Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/

Διαβάστε περισσότερα

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"

ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

The Normal and Lognormal Distributions

The Normal and Lognormal Distributions The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

arxiv: v2 [math.lo] 21 Jun 2010

arxiv: v2 [math.lo] 21 Jun 2010 BLACK BOXES arxiv:0812.0656v2 [math.lo] 21 Jun 2010 SAHARON SHELAH Abstract. We shall deal comprehensively with Black Boxes, the intention being that provably in ZFC we have a sequence of guesses of extra

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

Locking to ensure serializability

Locking to ensure serializability Locking to ensure serializability Concurrent access to database items is controlled by strategies based on locking, timestamping or certification A lock is an access privilege to a single database item

Διαβάστε περισσότερα