Χρονική Αξία του Χρήµατος
|
|
- Θήρα Κοσμόπουλος
- 2 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Ι ΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Χρονική Αξία του Χρήµατος Α. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ Η αξία του χρήµατος (όπως λ.χ. ενός ευρώ), καθώς και η αξία ενός κεφαλαίου επενδυµένου σε εξοπλισµό ή ακίνητη περιουσία, µεταβάλλεται µε τον χρόνο. Αν υποθέσουµε ότι: P: είναι το χρηµατικό ποσό που διαθέτουµε σήµερα (τη χρονική στιγµή t=0), η παρούσα αξία του χρηµατικού ποσού S: είναι η χρηµατική αξία του ποσού P µετά από (κ) χρονικές περιόδους (π.χ. µετά από κ έτη), η µελλοντική αξία του P. Τ Κ : ισχύει: είναι η συνολική αύξηση του P µετά από (κ) περιόδους, δηλαδή ο τόκος, τότε S = P + T k (1) Αν υποθέσουµε ότι (r) είναι το επιτόκιο, δηλαδή ο βαθµός απόδοσης του κεφαλαίου στην διάρκεια ενός χρόνου και το r παραµένει σταθερό στη διάρκεια 1,,3.κ ετών, τότε στο τέλος του 1 ου χρόνου το ποσό P θα γίνει: S = P + P r = P (1+ r) () Κεφάλαιο Τόκος στο τέλος του ου χρόνου το ποσό S 1 θα γίνει: 1
2 ( ) ( ) ( ) ( ) ( ) S = P 1 + r + P 1 + r r = P 1 + r 1 + r = P 1 + r (3) S K = P (1+r) k στο τέλος του (κ) χρόνου το αρχικό ποσό P θα γίνει: Η σχέση (4) προέκυψε µε την υπόθεση ότι ο τόκος προστίθεται στο αρχικό κεφάλαιο στο τέλος κάθε έτους (περιόδου). Γι αυτό είναι γνωστή σαν σχέση του σύνθετου τόκου ή του ανατοκισµού (δηλ. του τοκισµού όχι µόνο του κεφαλαίου αλλά και του τόκου που παράγεται σε κάθε περίοδο). Αν δεν γινόταν ανατοκισµός (δηλ. ο τοκισµός του τόκου) και είχαµε τη µέθοδο του απλού τόκου, η σχέση (1) θα λάµβανε την µορφή: ( ) S = S = P + P r k = P 1+ r k (5) k Αν ο τόκος προστίθεται στο κεφάλαιο όχι στο τέλος του έτους αλλά m φορές στην διάρκεια του έτους τότε η σχέση (1) για (κ) έτη θα λάµβανε την µορφή: S = P 1+ Αν υποτεθεί ότι το m τείνει στο άπειρο, τότε: (4) (6) S = P e r k (7) Η σχέση (7) είναι γνωστή ως η σχέση του συνεχούς ανατοκισµού. Είναι προφανές ότι η σχέση (7) δίνει µεγαλύτερες τιµές για το S έναντι της σχέσεως (4). Λόγου χάριν, για k=1 και r=0.0 1 S= P 1+ r = 100. P Η σχέση () δίδει : ( ) Η σχέση (7) δίδει : S= P. e 0. 0 = 11. P Με βάση τα παραπάνω µπορεί να σχεδιαστεί η καµπύλη µεταβολής του σχετικού rk k k σφάλµατος [ e ( + r) ]/( + r) 1 1 συναρτήσει του ( r ) για διάφορες τιµές του k.
3 Β. ΡΑΣΤΗΡΙΟΤΗΤΕΣ ραστηριότητα 1. Να βρεθεί το ποσό που θα έχει συγκεντρωθεί µετά από 10 έτη αν καταθέσει κάποιος σήµερα στην τράπεζα ποσό µε ετήσιο επιτόκιο καταθέσεων % και ετήσιο ανατοκισµό. S K = P (1+r) k. Συγκεκριµένα : S = (1+0.0) =10000*(1+0.0)^10 Το αποτέλεσµα που λαµβάνω είναι : ραστηριότητα. Να βρεθεί το ποσό που θα έχει συγκεντρωθεί µετά από 10 έτη αν καταθέσει κάποιος σήµερα στην τράπεζα ποσό µε ετήσιο επιτόκιο καταθέσεων % και εξαµηνιαίο ανατοκισµό. 0.0 S = (1+ ) S = P 1+. Συγκεκριµένα : 10 =10000*(1+0.0/)^(10*) Το αποτέλεσµα που λαµβάνω είναι :
4 ραστηριότητα 3. Να βρεθεί το ποσό που θα έχει συγκεντρωθεί µετά από 8 έτη αν καταθέσει κάποιος σήµερα στην τράπεζα ποσό µε ετήσιο επιτόκιο καταθέσεων,5 % και τετραµηνιαίο ανατοκισµό S = (1+ ) 3 S = P 1+. Συγκεκριµένα : 8 3 =10000*(1+0.05/3)^(8*3) Το αποτέλεσµα που λαµβάνω είναι : ραστηριότητα 4. Ένας επενδυτής στη λήξη της 15ετίας µιας κατάθεσης έλαβε το ποσό των Το ετήσιο επιτόκιο καταθέσεων ήταν 3.5 % και ο ανατοκισµός εξαµηνιαίος. Να βρεθεί το αρχικά κατατεθέν ποσό Ρ. Συγκεκριµένα : P = (1+ ) S S = P 1+ P= m 15 =35000/((1+(0.035/))^(15*)) Το αποτέλεσµα που λαµβάνω είναι : r 1+ m 4
5 ραστηριότητα 5. Καταθέτει σήµερα κάποιος στην τράπεζα ποσό ευρώ. Μετά τη συµπλήρωση εξαµήνου κάνει ανάληψη από την τράπεζα ποσό P. Σε τραπεζική ενηµέρωση του βιβλιαρίου του µετά από 8 έτη από σήµερα βρίσκει ότι διαθέτει ποσό Αν το ετήσιο επιτόκιο καταθέσεων είναι 3% και ο ανατοκισµός είναι εξαµηνιαίος να βρεθεί το ποσό Ρ που έκανε ανάληψη. Λύνω την εξίσωση ως προς Ρ: (150000*(1+r/)-P)*(1+r/)^15=90000 για r=0.03 Απάντηση: ραστηριότητα 6. Καταθέτει σήµερα κάποιος στην τράπεζα ποσό P ευρώ. Μετά τη συµπλήρωση τετραµήνου κάνει ανάληψη από την τράπεζα ποσό Σε τραπεζική ενηµέρωση του βιβλιαρίου του µετά από 5 έτη από σήµερα βρίσκει ότι διαθέτει ποσό Αν το ετήσιο επιτόκιο καταθέσεων είναι 3% και ο ανατοκισµός είναι τετραµηνιαίος να βρεθεί το ποσό Ρ που είχε καταθέσει αρχικά. Λύνω την εξίσωση ως προς Ρ: (P*(1+r/3)-0000)*(1+r/3)^14=50000 για r=0.03 Απάντηση: Γ. ΑΣΚΗΣΕΙΣ 1. Να βρεθεί (και µε τους δύο τρόπους) το ποσό που θα έχει συγκεντρωθεί µετά από 5 έτη αν καταθέσει κάποιος σήµερα στην τράπεζα ποσό µε ετήσιο επιτόκιο καταθέσεων.5 % και εξαµηνιαίο ανατοκισµό.. Ένας επενδυτής στη λήξη της 0ετίας µιας κατάθεσης έλαβε το ποσό των Το ετήσιο επιτόκιο καταθέσεων ήταν 4 % και ο ανατοκισµός εξαµηνιαίος. Να βρεθεί το αρχικά κατατεθέν ποσό Ρ (και µε τους δύο τρόπους). 5
Χρηματοοικονομική Ι. Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 4: Η Χρονική Αξία του Χρήματος (1/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ kosmid@econ.auth.gr ΣΗΜΕΙΩςΕΙς ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗςΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ,
ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών
ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ
ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Παράδειγµα 1 Να βρεθεί ο τόκος κεφαλαίου 100.000 ευρώ, το οποίο τοκίστηκε µε ετήσιο επιτόκιο 12% για 2 χρόνια. Απάντηση: Ο τόκος ανέρχεται σε I = (100.000 0,12 2=) 24.000 ευρώ
Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό
2. ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 1 Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό διάστηµα θέλουµε. Εκτός
β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ;
Άσκηση 1 α) Κάνει κάποιος κατάθεση ποσού 5 χιλ. σε λογαριασμό απλού τόκου με ετήσιο επιτόκιο 4%. Μετά από 3 μήνες κάνει ανάληψη 3 χιλ. και μετά από άλλους 7 μήνες επιθυμεί να κάνει μία κατάθεση, έτσι ώστε
εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1=
ΑΣΚΗΣΗ Έστω τραπεζική κατάθεση ταµιευτηρίου µε ετήσιο επιτόκιο 8%. Ποιο είναι το πραγµατικό (effective) ετήσιο επιτόκιο, αν ο εκτοκισµός γίνεται κάθε τρίµηνο (εξάµηνο); Το πραγµατικό επιτόκιο είναι η ετήσια
C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1]
Ο υπολογισμός των δόσεων που οφείλει ένας δανειζόμενος στον δανειστή του, για την εξόφληση ενός χρέους, βασίζεται στις προηγούμενες εξισώσεις και εξαρτάται από την ημερομηνία αξιολόγησης. Σε αυτές τις
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ Διάκριση Μαθηματικών Έννοια Χρηματοοικονομικών Ορισμοί Χρηματοοικονομικά Τράπεζες Χρηματιστήρια Προεξόφληση Αντικατάσταση Γραμματίων Δάνεια Ομόλογα Αμοιβαία Κεφάλαια
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12
(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Α.Α.Δράκος 2015-2016 ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 1 ο ΣΕΤ. ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΑΙ ΤΡΑΠΕΖΙΚΑ ΔΑΝΕΙΑ
Εφεξής θα χρησιµοποιούµε για απλούστευση την εµπορική µέθοδο. d 365
Σύµβαση Εµπορικού Υπολογισµού έτος µήνες των 30 ηµερών 360 ηµέρες π.χ. έστω, K00, T από / έως /3 και % Τ% 00,0 χιλ. 59 Με ακριβή τρόπο θα ήταν: Ι% 00.940 365 υσκολία: Υπολογισµός ηµερών για συγκεκριµένες
Υπολογισμός αρχικού ποσού C 0, όταν είναι γνωστό το τελικό ποσό C t Από την εξίσωση (2) και επιλύνοντας ως προς C 0 ή από την εξίσωση (3) λαμβάνουμε:
Ημερομηνία αξιολόγησης Η αξία του κεφαλαίου δεν είναι σταθερή στο χρόνο, και κάθε εξίσωση που περιλαμβάνει το επιτόκιο είναι εξίσωση αξίας, γιατί απεικονίζει ισοδυναμία μεταξύ δυο χρηματικών ποσών σε μια
Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.
Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση
Εφαρμογές Ανατοκισμού
Εφαρμογές Ανατοκισμού Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Μέσο επιτόκιο - Ισοδύναμα επιτόκια - Αντικατάσταση κεφαλαίων - Ρυθμός πληθωρισμού ΣΤΟΧΟΙ - Εύρεση μέσου επιτοκίου, όταν γνωρίζουμε
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων)
Ανατοκισμός Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχικό κεφάλαιο ή παρούσα αξία (συμβολισμός Κ ο ή PV) -Τελικό κεφάλαιο ή μελλοντική αξία (συμβολισμός Κ n ή FV) -Επιτόκιο (συμβολισμός
ΑΣΚΗΣΕΙΣ. Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Μάθημα: Πληροφορική Ι (εργαστήριο)
1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α ΑΣΚΗΣΕΙΣ Άσκηση 1 Κατασκευάστε ένα λογιστικό φύλλο
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα # 1: Βασικοί Χρηματοοικονομικοί Ορισμοί Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Βασικές έννοιες οικονομικής αξιολόγησης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Βιομηχανικής και Ενεργειακής Οικονομίας ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΙΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΑΠΟΦΑΣΕΩΝ 8 ο Εξάμηνο Βασικές έννοιες οικονομικής αξιολόγησης
www.onlineclassroom.gr
ΕΡΩΤΗΣΗ. (5 μονάδες) Θέλετε να αξιολογήσετε τέσσερα ομόλογα. Όλα τα ομόλογα έχουν 0 χρόνια μέχρι την λήξη και ονομαστική αξία.000. Το ομόλογο Α έχει κουπόνι με ετήσια απόδοση % το οποίο παραμένει σταθερό
Μεθοδολογία κατάρτισης της νέας σειράς επιτοκίων τραπεζικών καταθέσεων και δανείων
Μεθοδολογία κατάρτισης της νέας σειράς επιτοκίων τραπεζικών καταθέσεων και δανείων Η Τράπεζα της Ελλάδος (ΤτΕ), εφαρµόζοντας την Π /ΤΕ 2496/28.5.2002, άρχισε από το Σεπτέµβριο του 2002 να συγκεντρώνει
ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ
ΜΈΤΡΗΣΗ ΠΟΣΟΣΤΟΎ ΑΠΌΔΟΣΗΣ ΕΠΈΝΔΥΣΗΣ Η επένδυση μπορεί επίσης να ορισθεί ως η απόκτηση ενός περιουσιακού στοιχείου (π.χ. χρηματοδοτικού τίτλου) με την προσδοκία να αποφέρει μια ικανοποιητική απόδοση. Η
1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28
Άσκηση 1 Η κατασκευαστική εταιρία Κ εξετάζει την περίπτωση αγοράς μετοχών της εταιρίας «Ε» με πληρωμή σε μετρητά. Κατά τη διάρκεια της χρήσης που μόλις ολοκληρώθηκε, η «Ε» είχε κέρδη ανά μετοχή 4,25 και
ΚΤΡ. - 2.900 1.250 1.900 1.585 1.280 Π.ΚΤΡ. - 2.900 1.147 1.599 1.224 907 Κ.Π.Α. 1.977
1.Έχετε να επιλέξτε για την κατάθεση ενός ποσού 150 Euro, στην τράπεζα Αλφα µε σταθερό επιτόκιο 10% για 5 έτη και ανατοκισµό στο τέλος κάθε έτους, και την κατάθεση 148 Euro στην τράπεζα Βήτα µε το ίδιο
ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ
22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑ.Λ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 7 ΟΥ & 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΠΑ.Λ Σηµειώστε αν είναι σωστή ή λανθασµένη καθεµία από τις παρακάτω προτάσεις σηµειώνοντας το αντίστοιχο
11.1.1 Χρονική αξία του χρήματος
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας
Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας - Η Παρούσα Αξία (PV) ενός ποσού R που θα εισπραχθεί μετά από μια περίοδο
1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ
Σηµειώσεις στο Μάθηµα Ειδικά Θέµατα Χρηµατοδοτικής Διοίκησης. Π. Φ. Διαµάντης Α.Α.Δράκος 1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ Τα Δάνεια, είναι τα πολύ γνωστά σε όλους µας πιστωτικά προϊόντα στα οποία η αποπληρωµή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ ΦΩΤ. ΑΡΓΥΡΟΠΟΥΛΟΥ ΚΑΛΑΜΑΤΑ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛ ΑΠΛΗ ΚΕΦΑΛΑΙΟΠΟΙΗΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:
Εαρινό Εξάµηνο
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Ι ιδάσκουσα: Φωτεινή Ψιµάρνη- Βούλγαρη Εαρινό Εξάµηνο 2013-14 1 Αντικείµενο -Στόχος της Χρηµατοοικονοµικής ιοίκησης Η Η κατανόηση των παραγόντων που είναι σηµαντικοί στη λήψη
ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ ΤΟ ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ
ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ ΤΟ ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ 1. Τι πρέπει να κατανοήσει ο μαθητής 2. Τεχνικές παρατηρήσεις και παραδείγματα Το χρήμα Για να κατανοήσει ο μαθητής γιατί το χρήμα (με οποιαδήποτε μορφή) διευκόλυνε
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 01 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 01 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ. π.μ.)
Άσκηση (τελικές 2009).onlineclassroom.gr Η Τράπεζα DIX CREDITS έχει τον ακόλουθο ισολογισμό σε τρέχουσες τιμές της αγοράς. Ενεργητικό σε 000 ευρώ Υποχρεώσεις και Καθαρή Θέση σε 000 Διαθέσιμα 125.000 Καταθέσεις
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 9: ΑΝΑΤΟΚΙΣΜΟΣ Η ΣΥΝΘΕΤΟΣ ΤΟΚΟΣ ΜΕΡΟΣ Β Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creaive Commons εκτός και αν αναφέρεται
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων
Από 1η Φεβρουαρίου 2017 εφαρμόζεται στο Δήμο Μεγαρέων το Κοινωνικό Εισόδημα Αλληλεγγύης
ΔΕΛΤΙΟ ΤΥΠΟΥ Από 1η Φεβρουαρίου 2017 εφαρμόζεται στο Δήμο Μεγαρέων το Κοινωνικό Εισόδημα Αλληλεγγύης Μέγαρα, 30 Ιανουαρίου 2017 Από 1η Φεβρουαρίου 2017 και στον Δήμο Μεγάρων θα εφαρμόζεται το Κοινωνικό
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται
Έτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000
Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2
Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος.
ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 4 Άσκηση 1 Η ομολογία Β εκδόθηκε στο παρελθόν και έχει διάρκεια ζωής τρία ακόμη έτη. Η ονομαστική της αξία είναι 1.000 ευρώ και το εκδοτικό της επιτόκιο είναι 8%. Τα τοκομερίδια πληρώνονται
Σύμφωνα με τα παραπάνω, ο άξονας του χρόνου είναι ο εξής:
ΑΣΚΗΣΗ 1 Για την κατασκευ ενός έργου ύδρευσης ένας Δμος δανείζεται από το Ταμείο Παρακαταθηκών και Δανείων ποσό 5.000.000, με επιτόκιο 5%. Το δάνειο θα αποπληρωθεί σε 10 ισόποσες δόσεις ενώ η αποπληρωμ
Τεχνολογική Οικονομική
Τεχνολογική Οικονομική Τμήμα: Μηχανικών Παραγωγής & ιοίκησης Καθηγητής Κ.Π. Αναγνωστόπουλος, D.E.A., Ms, PhD Λέκτορας A.Π. Βαβάτσικος, Dip.Eg., PhD Εισαγωγικά Ο σχεδιασμός τεχνολογικών συστημάτων βασίζεται
Κεφάλαιο Απλός τόκος. 1.1 Η εξίσωση του απλού τόκου
. Απλός τόκος Κεφάλαιο. Η εξίσωση του απλού τόκου Αν τοκίσουμε ένα κεφάλαιο Κ για ένα έτος με ετήσιο επιτόκιο i, τότε στο τέλος του έτους θα δημιουργηθεί τόκος ο οποίος θα δίνεται από τη σχέση: I= i. Συνεχίζοντας,
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 7: Καθαρή Παρούσα Αξία Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 6: Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Αξιολόγηση Επενδύσεων Σύνολο- Περιεχόμενο Μαθήματος
Αξιολόγηση Επενδύσεων Σύνολο- Περιεχόμενο Μαθήματος Ζιώγας Ιώαννης Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τι ενδιαφέρει τον ιδιώτη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΠΜΣ «Επιστήµη και Τεχνολογία Υδατικών Πόρων» Οικονοµικά του Περιβάλλοντος και των Υδατικών Πόρων Αξιολόγηση επενδύσεων Τι ενδιαφέρει τον ιδιώτη Πόσα χρήµατα θα επενδύσω; Πότε
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Αυξητική και Ωριμότητα
Αυξητική και Ωριμότητα Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής Τηλ. & Φαξ: 510 60435 E-mail: vkazaa@teikav.e.gr
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΔΕΟ 31 Χρηµατοοικονοµική Διοίκηση Ακαδηµαϊκό Έτος: 2013-2014 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα
ΚΕΦΑΛΑΙΟ 7 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΛΗΚΤΟΤΗΤΑΣ
ΚΕΦΑΛΑΙΟ 7 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΛΗΚΤΟΤΗΤΑΣ Εισαγωγή Ο κίνδυνος επιτοκίων προέρχεται τόσο από τη διαφορά ληκτότητας που υπάρχει μεταξύ των στοιχείων του ενεργητικού και του παθητικού, όσο
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 5 ΙΑΝΟΥΑΡΙΟΥ 005 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Την /,
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδ. Έτος: 1-1 Θέμα 1 α) Ο επενδυτής μπορεί να εκμεταλλευτεί τις
Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Κόστος της κατασκευής. Επιτάχυνση κατασκευής του έργου. Βελτιστοποίηση του κόστους. Επίλυση προβλημάτων κόστους
Πίνακας περιεχομένων. Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων Κεφάλαιο 2 Συγκεντρωτικοί πίνακες Πρόλογος... 11
Πίνακας περιεχομένων Πρόλογος... 11 Κεφάλαιο 1 Λειτουργίες βάσης δεδομένων...13 1.1 Εισαγωγή... 13 1.2 Δημιουργία βάσης δεδομένων... 14 1.3 Ταξινόμηση βάσης δεδομένων... 16 1.4 Μερικά αθροίσματα... 20
Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί.
Εργαστήριο 9 ο Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί. NPER Αποδίδει το πλήθος των περιόδων μιας επένδυσης,
Μέθοδοι Αξιολόγησης Επενδύσεων:
TΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΑΡΑ ΟΣΕΙΣ V. Βασικές Μέθοδοι Αξιολόγησης Επενδύσεων. ιδάσκων, Μακρυγιωργάκης Μάριος BSc, ΜΒΑ, MSc, PhD-c. Μέθοδοι Αξιολόγησης Επενδύσεων: Οι επενδυτικές αποφάσεις
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ 9 π.μ. π.μ. .......
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013 1 ΠΕΡΙΓΡΑΜΜΑ ΥΛΗΣ 1. Απλός τόκος 2. Ανατοκισµός 3. Ράντες 4. άνεια 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ι ΕΑ ΤΟΥ ΕΠΙΤΟΚΙΟΥ
Επιχειρησιακός Σχεδιασμός & Επιχειρηματικότητα
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιχειρησιακός Σχεδιασμός & Επιχειρηματικότητα Ενότητα 4: Επιχειρηματική Ομάδα Νικόλαος Καρανάσιος Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ. Άσκηση 1 (τελικές 2011 θέμα 3)
Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Άσκηση 1 (τελικές 2011 θέμα 3) Ένας επενδυτής έχει αγοράσει μία μετοχή. Για να προστατευτεί από πιθανή μικρή πτώση της τιμής της μετοχής λαμβάνει θέση αγοράς σε ένα δικαίωμα
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 13/7/2016 Πρωί: x Απόγευμα: Θεματική ενότητα: Χρηματοοικονομικά Πρότυπα, Κωδ. Αε 1. Στις χρονικές στιγμές 1 και 2 θα πληρωθεί από 1 αντίστοιχα. Ποιο επιτόκιο εξασφαλίζει ότι
Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value)
Η τεχνική της Καθαρής Παρούσας Αξίας ( Net Present Value) Σύμφωνα με αυτή την τεχνική θα πρέπει να επιλέγουμε επενδυτικά σχέδια τα οποία έχουν Καθαρή Παρούσα Αξία μεγαλύτερη του μηδενός. Συγκεκριμένα δίνεται
Αντικείμενα 6 ου εργαστηρίου
1.1 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 6 ο Φυλλάδιο Ασκήσεων
Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων
Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Οτιδήποτε δύναται να μετρηθεί, δύναται και
ΚΕΦΑΛΑΙΟ 2. Εισαγωγή στην Τιμολόγηση Παραγώγων Διωνυμικό Μοντέλο μιας Περιόδου
ΚΕΦΑΛΑΙΟ 2 Εισαγωγή στην Τιμολόγηση Παραγώγων Διωνυμικό Μοντέλο μιας Περιόδου 2.1. Χρονική Αξία Χρήματος - Επιτόκια Αν ένα άτομο ή εταιρία Α κατέχει ένα χρηματικό ποσό P και δεν σκοπεύει να το χρησιμοποιήσει
ΚΕΦΑΛΑΙΟ 2 ΧΡΟΝΙΚΗ ΑΞΙΑ ΧΡΗΜΑΤΟΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΑΞΙΟΓΡΑΦΩΝ
ΚΕΦΑΛΑΙΟ 2 ΧΡΟΝΙΚΗ ΑΞΙΑ ΧΡΗΜΑΤΟΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΑΞΙΟΓΡΑΦΩΝ A. Η Έννοια της Παρούσας και της Μελλοντικής Αξίας A1. Εισαγωγή στην έννοια της χρονικής αξίας του χρήµατος Η «πράξη» της αναγωγής σε παρούσα και
Τεχνοοικονομική Μελέτη
Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 1: Γενικά Εισαγωγικά Θέματα Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) . Μια
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο ΤΕΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΟΜΑΔΑ. Νικόλαος Καρανάσιος Επίκουρος Καθηγητής
ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΟΜΑΔΑ Νικόλαος Καρανάσιος Επίκουρος Καθηγητής Επενδυτές (αυτοί που διαθέτουν περιουσιακά στοιχεία). Στελέχη με ειδικές δεξιότητες (κλειδιά). Εξωτερικοί Συνεργάτες Κύριοι Χρηματοδότες καθηγητής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ Μάθημα 7 Ζήτηση χρήματος Ζήτηση χρήματος! Όπως είδαμε στο προηγούμενο μάθημα η προσφορά χρήματος επηρεάζεται από την Κεντρική Τράπεζα και ως εκ τούτου είναι εξωγενώς δεδομένη!
Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου
1. Κεφάλαιο 6 Εκτίµηση και Οµόλογα 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου Είναι καµιά φορά δύσκολο να εξηγήσει κανείς τι σηµαίνει παρούσα αξία σε κάποιον που δεν το έχει µελετήσει. Αλλά, όπως έχει
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στα Οικονομικά Μαθηματικά
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Τμήμα Λογιστικής και Χρηματοοικονομικής Εισαγωγή στα Οικονομικά Μαθηματικά Σημειώσεις Διδασκαλίας Ανδρέας Αναστασάκης, Καθηγητής Εφαρμογών Ηράκλειο Ιανουάριος 2015
ΙΚΗΓΟΡΟΙ ΕΠΑΡΧΙΩΝ ΚΑΙ ΙΚΑΣΤΙΚΟΙ ΕΠΙΜΕΛΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΕΝΙΑΙΟ ΤΑΜΕΙΟ ΑΝΕΞΑΡΤΗΤΑ ΑΠΑΣΧΟΛΟΥΜΕΝΩΝ Ε. Τ. Α. Α Ν.Π... ΙΕΥΘΥΝΣΗ: ΑΣΦΑΛΙΣΗΣ-ΠΑΡΟΧΩΝ ΤΟΜΕΑΣ ΥΓΕΙΑΣ ΙΚΗΓΟΡΩΝ ΕΠΑΡΧΙΩΝ
Τραπεζική Λογιστική Θέματα εξετάσεων Σεπτεμβρίου 15 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2015
Τραπεζική Λογιστική Θέματα εξετάσεων Σεπτεμβρίου 15 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Άσκηση 1 Η τράπεζα Α αγόρασε την 31.12.2014,
Τεχνοοικονομική Μελέτη
Τμήμα Μηχανολόγων Μηχανικών Τεχνοοικονομική Μελέτη Ενότητα 9: Κόστος κεφαλαίου - Χρηματορροές Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 11 ΟΚΤΩΒΡΙΟΥ 2016 ΜΗ ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Οικονομικές Συναρτήσεις με μεταβλητούς ρυθμούς
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 13: ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΟΙ ΘΕΣΜΟΙ ΚΑΙ ΠΡΟΪΟΝΤΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Μακροοικονομική Θεωρία Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 7: Ζήτηση Χρήματος Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ασκήσεις Χρηµατοοικονοµικής ιοίκησης
Ασκήσεις Χρηµατοοικονοµικής ιοίκησης. Εξετάζετε δύο αµοιβαία αποκλειόµενες επενδύσεις, µε τις ακόλουθες Καθαρές Ταµειακές Ροές. Κάθε επένδυση διαρκεί τρία έτη. Α Β Τ 0 (.000) (2.000) Τ 629,326.79,245 Τ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε
Αναγνώριση Κινδύνων. Στα επόµενα σενάρια αναγνωρίστε πιο από τα παρακάτω είδη κινδύνου δηµιουργείται για την Τράπεζα (µε τον πιο «προφανή» τρόπο)
Άσκηση Αναγνώριση Κινδύνων Αναγνώριση Κινδύνων Στα επόµενα σενάρια αναγνωρίστε πιο από τα παρακάτω είδη κινδύνου δηµιουργείται για την Τράπεζα (µε τον πιο «προφανή» τρόπο) Πιστωτικός κίνδυνος Κίνδυνος
ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ
ΤΕΙ ΛΑΡΙΣΑΣ- ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ (ΔΔΕ) ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (MASTER) ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΩΝ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΩΝ» ΔΙΟΙΚΗΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Αντικατάσταση Μηχανημάτων
Διάλεξη 2η:Επιλογή Έργου
Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας Διαχείριση Έργων Πληροφορικής Διάλεξη 2η:Επιλογή Έργου Β. Βασιλειάδης Τµ. Διοικ. Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Μελέτη Σκοπιµότητας Ø Τι είναι: Ø Τεκµηρίωση
ΤΕΧΝΙΚΗ ΟΙΚΟΝΟΜΙΚΗ Ακαδ. Έτος η Εργασία Προθεσμία υποβολής: Παρ
ΤΕΧΝΙΚΗ ΟΙΚΟΝΟΜΙΚΗ Ακαδ. Έτος 2013-14 1η Εργασία Προθεσμία υποβολής: Παρ. 21-3-2014 1. Ένας μηχανικός ξεκινάει σήμερα (χρόνος 0) έναν τραπεζικό λογαριασμό καταθέτοντας ποσό 5.000. Στα επόμενα χρόνια κάνει
Χρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 2: Ράντες Γιανναράκης Γρηγόρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από
1 ΔΕΟ31 - Λύση 3ης γραπτής εργασίας 2013-14 Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από f ( S I ) Ke t t t r( T t) Aρχικά βρίσκουμε τη παρούσα αξία των μερισμάτων που πληρώνει
(Πολιτική. Οικονομία ΙΙ) Τμήμα ΜΙΘΕ. Καθηγητής Σπύρος Βλιάμος. Αρχές Οικονομικής ΙΙ. 14/6/2011Εαρινό Εξάμηνο 2010-2011. (Πολιτική Οικονομία ΙΙ) 1
Αρχές Οικονομικής ΙΙ (Πολιτική Οικονομία ΙΙ) Καθηγητής Σπύρος Βλιάμος Τμήμα ΜΙΘΕ Καθηγητής Σπύρος Βλιάμος 2010-2011 Αρχές Οικονομικής ΙΙ (Πολιτική Οικονομία ΙΙ) 1 Θεματικές Ενότητες Επισκόπηση της Μακροοικονομικής-Τα
Θεοδωράκη Ελένη Μαρία
Εισαγωγή στην ασφάλεια Θεοδωράκη Ελένη Μαρία elma.theodoraki@aegean.gr Κεφάλαιο (Principal) ονομάζουμε το αρχικό ποσό που διαθέτουμε για μια επένδυση, για μία χρονική περίοδο Συσσωρευμένη αξία (accumulated
Διοίκηση Έργου. Ενότητα 2: Επιλογή Έργων. Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Διοίκηση Έργου Ενότητα 2: Επιλογή Έργων Σαμαρά Ελπίδα Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΚΑΤΑΛΟΓΟΣ ΠΡΟΜΗΘΕΙΩΝ ΚΑΙ ΧΡΕΩΣΕΩΝ
Οι προµήθειες και οι χρεώσεις για τις υπηρεσίες που προσφέρει η Περιφερειακή ΣΠΕ Λεµεσού Λτδ εγκρίνονται από την Επιτροπεία. Τα ποσά αναθεωρούνται σε τακτά χρονικά διαστήµατα µε βάση την εκάστοτε πολιτική
Βοηθητικές σηµειώσεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» Χρηµατοοικονοµική αξιολόγηση επενδυτικών σχεδίων Βοηθητικές σηµειώσεις. Καλιαµπάκος Επίκουρος Καθηγητής
ΜΑΘΗΜΑ ΕΜΒΑΘΥΝΣΗΣ ΝΟΜΙΣΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΚΑΙ ΠΛΗΘΩΡΙΣΜΟΣ
ΜΑΘΗΜΑ ΕΜΒΑΘΥΝΣΗΣ ΝΟΜΙΣΜΑΤΙΚΟ ΣΥΣΤΗΜΑ ΚΑΙ ΠΛΗΘΩΡΙΣΜΟΣ Έστω ότι ένας καταθέτης μπορεί να αποταμιεύσει 100 ευρώ σε μια τράπεζα. Αν το ποσοστό των καταθέσεων που είναι υποχρεωμένες να κρατούν διαθέσιμο οι