ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)"

Transcript

1 ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) η Σειρά Ασκήσεων 19/1/7 Ι. Σ. Ράπτης 1. Ηµιαγωγός, µε ενεργειακό χάσµα 1.5, ενεργό µάζα ηλεκτρονίων m.8m, ενεργό µάζα οπών m.5m, και σχετική διηλεκτρική σταθερά ε r 1, έχει εµπλουτισθεί, ανοµοιογενώς, µε προσµίξεις τύπου «ότες». (α) Να υπολογίσετε την ενεργειακή διαφορά του ελαχίστου της ζώνης αγωγιµότητας από την ενδοχασµατική ενεργειακή κατάσταση των δοτών. (β) Να υποθέσετε ότι οι προσµίξεις κατανέµονται κατά βάθος ( µε συγκέντρωση N(N (-a, όπου Ν , και a 4(µm) -1, και να εξηγείσετε, µε ποιοτικά επιχειρήµατα ή µε έναν υπολογισµό τάξης µεγέθους, ότι όλες οι προσµείξεις µπορούν να θεωρηθούν ιονισµένες. (γ) Θεωρήστε, µε βάση το προηγούµενο συµπέρασµα, ότι η συγκέντρωση ηλεκτρονίων αλλάζει, µε το βάθος, σύµφωνα µε τη σχέση ( N (-a, όπου η ενδογενής πυκνότητα φορέων, και υπολογίστε την κατά βάθος κατανοµή οπών (, σε κατάσταση θερµοδυναµικής ισορροπίας. (δ) Υπολογίστε το ηλεκτρικό πεδίο Ε Ε(, που προκύπτει ως αποτέλεσµα της ανοµοιογενούς κατανοµής φορέων σε θερµοδυναµκή ισορροπία. (ε) Σχεδιάστε, σε ένα ποιοτικό σχεδιάγραµµα τις συναρτήσεις (, (, (, (, (, (, και το ηλεκτρικό πεδίο του ερωτήµατος (γ). (α) 1.6 m m ε m 1 ( 15 4µ x (β) Οι προσµείξεις κατανέµονται σύµφωνα µε την σχέση ( ) 15 ( x ) 1, 1 oπότε: για x max για x1µ 1 ( x 1) 1.8 % του, max Αν δεχθούµε ότι έχουµε ολικό ιονισµό, τότε µπορούµε να εκτιµήσουµε την τιµή της στάθµης rm, (στο πλαίσιο της υπόθεσης του ολικού ιονισµού). Επειδή το σύστηµα βρίσκεται σε θερµοδυναµική ισορροπία, η στάθµη rm είναι ίδια σε όλη την έκταση του συστήµατος, εποµένως µπορούµε να εκτιµήσουµε την απόσταση της στάθµης rm από την ζώνη αγωγιµότητας, (που είναι αυτή η ενεργειακή ζώνη που µεταβάλλει τιµή, συναρτήσει του βάθους), για διαφορετικά σηµεία κατά βάθος του ηµιαγώγιµου υλικού. ηλαδή. ax l l ax l Ενδεικτικά: x 5m ( 1 ) 6 g x 1µ 5m ( 1 ) 4 g Στη συνέχεια µπορούµε να ελέγξουµε την αυτοσυνέπεια του αποτελέσµατος µε την αρχική παραδοχή του ολικού ιονισµού, δηλαδή : 1

2 m x m 99.8% 5 ( ) m x 5 ( 1) x m x µ m 99.9% Άρα η προσέγγιση του ολικού ιονισµού είναι ασφαλής αφού δίνει αυτοσυνεπή αποτελέσµατα. (γ) Αν δεχτούµε ότι ( από το νόµο δράσης των µαζών ax ( P( ( ax Οπότε, για η συγκέντρωση οπών, σε δύο διαφορετικά βάθη, υπολογίζονται: 1 5 ( x ) ( x ) 15 ( x 1 6 1) ( x 1) ( x 1) 1.8 (δ) Η ανοµοιογενής κατανοµή φορέων, κατά βάθος, δηµιουργεί, σε πρώτη φάση, προσανατολισµένη διάχυση φορέων, που έχει ως αποτέλεσµα την δηµιουργία, µέσω του φορτίου χώρου, την δηµιουργία ηλεκτρικού πεδίου, που προκαλεί αντίθετα προσανατολισµένη ολίσθηση φορέων. Από την απαίτηση αλληλοαναίρεσης των ρευµάτων διάχυσης και ολίσθησης, σε θερµοδυναµική ισορροπία, (σε συνδυασµό µε την σχέση st, για τους συντελεστές διάχυσης και ευκινησίας), προκύπτει η έκφραση υπολογισµού του ηλεκτρικού πεδίου ax ax 1 d( ( a) a ax ax q ( dx q q Η προηγούµενη έκφραση για το ηλεκτρικό πεδίο δίνει µία περίπου σταθερή τιµή για το βάθος του πρώτου ενός µικροµέτρου ( x 1µ m ), αφού, σε όλη αυτή την έκταση, είναι << (, οπότε a m 1 q. Σε µεγαλύτερο βάθος το µ m ηλεκτρικό πεδίο µειώνεται..

3 . Hµιαγώγιµο υλικό της οικογένειας I, µε ενεργειακό χάσµα Ε g 1., σχετική διηλεκτρική σταθερά ε r 11, και ενδογενή συγκέντρωση φορέων 5 -, φέρει οµοιόµορφη συγκέντρωση πρόσµειξης Αλουµινίου (l, στήλη III του Περιοδικού Πίνακα) ίση προς 5 17 (άτοµα l)/, σε όλο του τον όγκο. Στην µία επιφάνεια του ανωτέρω υλικού εµφυτεύουµε, επιπλέον, Αρσενικό (s, στήλη του Περιοδικού Πίνακα), µε οµοιόµορφη συγκέντρωση ίση προς (άτοµα s)/, σε µία περιοχή µέχρι βάθος.5µm. (α)να εξηγήσετε ότι το τελικό αποτέλεσµα είναι µία επαφή -, και να υπολογίσετε το εσωτερικό δυναµικό της επαφής. (β) Να υπολογίσετε το συνολικό πλάτος της περιοχής απογύµνωσης καθώς και τα επί µέρους πλάτη των περιοχών απογύµνωσης εκατέρωθεν της επαφής. (γ) Να σχεδιάσετε ένα ενεργειακό διάγραµµα, υπό κλίµακα, του πρώτου 1 µm του συστήµατος, από την πλευρά του υλικού που βρίσκεται η επαφή -, στο οποίο να φαίνονται όλα τα µεγέθη των ερωτηµάτων (α) και (β). ΤΚ. (α) Στα πρώτα.5 µm, ( x.5µ m ) συµβαίνει αντιστάθµιση των προσµείξεων (Αποδέκτες και ότες), οπότε (σε συνδυασµό µε την παραδοχή του ολικού ιονισµού), έχουµε τελικά περιοχή τύπου, µε συγκέντρωση φορέων πλειονότητας 16 5 Στο υπόλοιπο υλικό, (σε βάθος x >.5µ m ), οι φορείς προσδιορίζονται από τις προσµείξεις αλουµινίου (Αποδέκτες), οπότε (σε συνδυασµό µε την παραδοχή του ολικού ιονισµού), έχουµε τελικά περιοχή τύπου, µε συγκέντρωση φορέων πλειονότητας Το δυναµικό επαφής υπολογίζεται από τη σχέση 16 5m / 5 5 l l q / m (β) Τα επί µέρους πλάτη των περιοχών απογύµνωσης εκατέρωθεν της επαφής υπολογίζονται από τη σχέση 14 εrε x µ m 19 q 1.6 ( ) Όµοια, x.18µ m, και το συνολικό πλάτος απογύµνωσης w x x.15 m µ (γ) o 748. m.5 µm x w 1 µm () 1. () x

4 . Ηµιαγώγιµο υλικό, της οικογένειας III- µε ενεργειακό χάσµα Ε g 1. και σχετική διηλεκτρική σταθερά ε r 14, έχει µέσες ενεργές µάζες, (της πυκνότητας καταστάσεων), οπών και ηλεκτρονίων, m.15m και m.6m, αντίστοιχα. (α) Εξηγείστε γιατί η νόθευση ενός υλικού III-, µε προσµίξεις ατόµων της οµάδας I, µπορεί να λειτουργίσει ως εµπλουτισµός µε φορείς τύπου ή τύπου. (β) Να υπολογιστούν οι ενεργειακές στάθµες οτών και Αποδεκτών, σε αυτό το υλικό, και οι ενεργές πυκνότητες καταστάσεων στις στάθµες σθένους και αγωγιµότητας, σε θερµοκρασία δωµατίου. Σχεδιάστε ένα ενεργειακό διάγραµµα, σηµειώνοντας τις αποστάσεις όλων των ενεργειακών επιπέδων από το µέγιστο της ζώνης σθένους (γ) Στο υλικό υπάρχουν προσµίξεις οι οποίες λειτουργούν ως δότες. Εξηγείστε γιατί, στις χαµηλές θερµοκρασίες, η συγκέντρωση ηλεκτρονίων της ζώνης αγωγιµότητας προέρχεται κυρίως από τον ιονισµό των δοτών. (δ) εχτείτε ότι, στις χαµηλές θερµοκρασίες, η συγκέντρωση ηλεκτρονίων () της ζώνης αγωγιµότητας προέρχεται κυρίως από τον ιονισµό των δοτών (µε συγκέντρωση Ν ), σύµφωνα µε τη σχέση NN / x. Προσδιορίστε τη µέγιστη συγκέντρωση προσµίξεων Ν,max για την οποία εξασφαλίζεται ολικός ιονισµός τους ήδη από τη θερµοκρασία υγρού αζώτου (Τ8Κ). (ε) Εκτιµήστε τη συγκέντρωση ενδογενών ηλεκτρονίων, σε θερµοκρασία δωµατίου, και το επίπεδο rm του υλικού, αν Ν 1.98x 15 -, κάνοντας εύλογες προσεγγίσεις. (στ) Εκτιµήστε από ποιά θερµοκρασία και πάνω ο ηµιαγωγός συµπεριφέρεται ως ενδογενής, αν Ν 1.98x (α) Ανάλογα µε το αν η πρόσµειξη τηw στήλης I θα αντικαταστήσει άτοµο της στήλης III ή άτοµο της στήλης θα λειτουργήσει ως ότης ή ως Αποδέκτης, αντίστοιχα. (β) 1.6 m ε m r 1.6 m m, όµοια. 4m ε m r 1 m kg m , ff 4.4 π π s Επίσης, (γ) m m m m 1 1, εποµένως, σε χαµηλές θερµοκρασίες, διεγείρονται κατά προτεραιότητα ηλεκτρόνια από την στάθµη οτών, παρά από την ζώνη Σθένους, αφού η τελευταία απέχει από την ζώνη αγωγιµότητας πάνω από φορές περισσότερο από ότι η στάθµη Σθένους. (δ) Σύµφωνα µε την εκφώνηση έστω ότι, για Τ8Κ, οπότε, crtcal,

5 15 (ε) 1.98 και Αν υποθέσουµε ότι, έχουµε kt l 19 Αλλά (από (β)) 1.1, οπότε 15. m ενώ, (στ) ισχύει:, και, αν το υλικό συµπεριφέρεται ως ενδογενής, θα πρέπει να l 85m T 9K

6 4. α) Υποθέστε ότι οι ενεργές µάζες πυκνότητας καταστάσεων ηλεκτρονίων και οπών του πυριτίου (S) και του γερµανίου (G) είναι της ίδιας τάξης µεγέθους, τα ενεργεικά τους χάσµατα είναι 1.17 και.66, αντίστοιχα, και η ενδογενής συγκέντρωση φορέων του πυριτίου, σε θερµοκρασία δωµατίου είναι 1.5x -. (α) Εξηγείστε γιατί προσµείξεις Sb, σε συγκέντρωση 1 -, καθιστούν, σε θερµοκρασία Κ, ηµιαγωγό τύπου το πυρίτιο αλλά όχι το γερµάνιο. (β) Υποθέστε ότι έχετε επαφή - πυριτίου µε συγκεντρώσεις ολικά ιονισµένων προσµείξεων Ν Α και N, αντίστοιχα σε κάθε πλευρά. Να δείξετε ότι, για την περιοχή θερµοκρασιών όπου ισχύει η παραδοχή του ολικού ιονισµού των προσµείξεων, το εσωτερικό δυναµικό (ή δυναµικό διάχυσης, ή δυναµικό επαφής),, µίας επαφής - ενός ηµιαγώγιµου υλικού, ικανοποιεί µία σχέση της µορφής T ( B l T ), και να προσδιορισθούν οι συντελεστές Α και g Β.συναρτήσει, των συγκεντρώσεων N και N, των ενεργών µαζών m και m, των παγκοσµίων σταθερών (φορτίο ηλεκτρονίου), k (σταθερά του Bolzma) και (σταθερά του Plack), και της θερµοκρασίας Τ. (γ) Με βάση το ερώτηµα (β), εξηγήστε αν το εσωτερικό δυναµικό,, εξαρτάται από τις ιδιότητες του ηµιαγώγιµου υλικού, από τις ιδιότητες των προσµείξεων, ή και από τα δύο. Με βάση την υπόθεση του προβλήµατος ότι οι ενεργές µάζες πυκνότητας καταστάσεων είναι ίδιες, τόσο για τα ηλεκτρόνια των δύο υλικών (S, G) όσο και για τις οπές, έχουµε ότι και οι ενεργές πυκνότητες (κβαντικών) καταστάσεων ικανοποιούν τις σχέσεις : ( S) ( G) και ( S) ( G) Εποµένως: ( G) ( S) ( G) ( G) 5 14 ( G) ( S) 1.5 ( G) 4 ( S) ( S) Τελικά: 1 ( G) >> ( Sb) >> ( S) Άρα: G : ενδογενής, ενώ, S : εξωγενής (β) [Βλ. Και πρόβληµα.6 (β)] q l BT, όπου το Β: συνάρτηση των ενεργών µαζών [ ] g / ηλεκτρονίων και οπών, και παγκόσµιων σταθερών (γ) Από (β) η τάση επαφής είναι συνάρτηση : () του υλικού (κυρίως, µέσω του ενεργειακού χάσµατος µέσω των ενεργών µαζών m,, m () των προσµείξεων, µέσω των,. g και δευτερευόντως

7 5. Επαφή - µε διατοµή.1 mm, κατασκευάζεται από ηµιαγώγιµο υλικό µε σχετική διηλεκτρική σταθερά ε r, ενεργειακό χάσµα Ε g 1.17, ενδογενή συγκέντρωση φορέων.x 9 -, σε θερµοκρασία δωµατίου, ευκινησίες φορέων µ 5 /s, µ 15 /s, ίδιο µέσο ελεύθερο χρόνο µεταξύ κρούσεων, (της τάξης του -1 s), καθώς και ίδιο χρόνο ζωής, τ τ.5 µs, (από την διέγερση-δηµιουργία, µέχρι της επανασύνδεση) των φορέων µειονότητας. Θεωρείστε ότι το πηλίκο των ενεργών µαζών αγωγιµότητας είναι όσο και το πηλίκο των ενεργών µαζών πυκνότητας καταστάσεων. Η επαφή κατασκευάζεται νοθεύοντας τις περιοχές και, µε προσµίξεις συγκεντρώσεων Ν 5x 15 -, N 1.5x 16 - αντίστοιχα, οι οποίες θεωρούνται ολικά ιονισµένες. (α) Να υπολογιστεί η ενεργός πυκνότητα καταστάσεων για τις ζώνες σθένους (N ) και αγωγιµότητας (Ν ). (β) Να σχεδιαστεί το ενεργειακό διάγραµµα της επαφής, σε κατάσταση θερµοδυναµικής ισορροπίας, (Ε () -, - (), δυναµικό επαφής). (γ) Να υπολογιστεί το εύρος της περιοχής απογύµνωσης (άντλησης), σε κατάσταση θερµοδυναµικής ισορροπίας. (δ) Να υπολογιστεί το ρεύµα που διαρρέει την επαφή όταν είναι πολωµένη ευθέως µε τάση.5. (α) Θα προσδιορίσουµε τις,, υπολογίζοντας το γινόµενό τους και το πηλίκο τους, ως εξής: επίσης (1) m µ τ m, αλλά, όπου οι µέσοι ελεύθεροι χρόνοι µεταξύ κρούσεων, (της m µ τ m τάξης του -1 s) είναι ίσοι ( τ τ ), σύµφωνα µε την εκφώνηση, οπότε m m µ µ και, τελικά, µ µ.19 () Από τις (1) και () παίρνουµε : 5 και m / 7.5 (β) l l 66. m q.5 / Επίσης: l m 46. ( ) ( ) και l m 6. 5 ( ) ( ) ενώ m g l m ( ) ( ) 4 m

8 o 66. m 46. m () 65 m 565 m 6.5 m () 1.17 () () (γ) Πλάτος της περιοχής απογύµνωσης w 14 m ε ε w.4µ m q (δ) Για τον υπολογισµό του ρεύµατος πρέπει να υπολογιστεί η τιµή της πυκνότητας ρεύµατος κορεσµού Js τ τ Υπολογίζουµε τις συγκεντρώσεις των φορέων µειονότητας, σε κατάσταση θερµοδυναµικής ισορροπίας : και καθώς και τους συντελεστές διάχυσης (συναρτήσει των συντελεστών ευκινησίας, από την σχέση του st) m / µ s µ / 7.5 s Οπότε: J s τ 1 6 και το ρεύµα κορεσµού τ IS JS s mm s 5.46 Για την συγκεκριµένη τιµή,.5, της ευθείας πόλωσης, το ρεύµα γίνεται 5m 16 5m I ( ) µ

9 6. Θεωρείστε γνωστό ότι σε έναν ηµιαγωγό µε συγκέντρωση προσµίξεων τύπου ίση µε N d, η συγκέντρωση ιονισµένων δοτών, (σε χαµηλές θερµοκρασίες, όπου k B T<< Ε - Nd d ), δίδεται από τη σχέση N d, όπου Ε το επίπεδο rm και d η ( d ) x kbt στάθµη ενέργειας δοτών, µε αναφορά την ανώτατη ενέργεια της στάθµης σθένους. Συνδυάζοντας τη σχέση αυτή µε το γεγονός ότι, στην ίδια περιοχή χαµηλών θερµοκρασιών, <<N d /, να υπολογίσετε : (α) τη συγκέντρωση ηλεκτρονίων (), και (β) το επίπεδο rm ( ), συναρτήσει της θερµοκρασίας και των N c, N d, c, d. (γ) Σε ποιά τιµή τείνει, για την παραπάνω περίπτωση, το επίπεδο rm, στο όριο Τ ; Σύµφωνα µε την προσέγγιση της εκφώνησης του προβλήµατος (1) Η συνθήκη ουδετερότητας του συστήµατος, σε συνδυασµό µε το νόµο δράσης των µαζών δίνει: / µε φυσικώς αποδεκτή λύση την 1 4 Επειδή, στην περιοχή χαµηλών θερµοκρασιών, ισχύει <<, η προηγούµενη σχέση δίνει, οπότε από (1): () αλλά γενικά ισχύει () Πολλαπλασιάζοντας τις () και () : 1 (β) Για τον υπολογισµό της συνδυάζουµε την τελευταία (προσεγγιστική) µε την, (γενικώς ισχύουσα), σχέση (), εξισώνοντας τα δεύτερα µέλη και λύνοντας ως προς : l (γ) Στο όριο T παίρνουµε ( T ). Γενικά, όµως, επειδή <, η στάθµη rm είναι χαµηλότερη από το όριο αλλά, (στις περισσότερες των περιπτώσεων), και από την ενεργειακή στάθµη των δοτών.

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) Ασκήσεις που παρουσιάστηκαν στο µάθηµα (2008-09)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) Ασκήσεις που παρουσιάστηκαν στο µάθηµα (2008-09) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) Ασκήσεις ου αρουσιάστηκαν στο µάθηµα (8-9). Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου υλικού

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 1 η Σειρά ασκήσεων

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 1 η Σειρά ασκήσεων ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 8-9 Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο) Απαντήσεις στην 1 η Σειρά ασκήσεων 1. α) Υπολογίστε τον αριθµό των πλεγµατικών σηµείων που ανήκουν εξ ολοκλήρου

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commos. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 2: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας (1από2) Η δομή του ημιαγωγού Ενδογενής ημιαγωγός Οπές και ηλεκτρόνια Ημιαγωγός με προσμίξεις:

Διαβάστε περισσότερα

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/

http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ Δίοδος επαφής 1 http://www.electronics.teipir.gr /personalpages/papageorgas/ download/3/ 2 Θέματα που θα καλυφθούν Ορθή πόλωση Forward bias Ανάστροφη πόλωση Reverse bias Κατάρρευση Breakdown Ενεργειακά

Διαβάστε περισσότερα

Θέµατα που θα καλυφθούν

Θέµατα που θα καλυφθούν Ηµιαγωγοί Semiconductors 1 Θέµατα που θα καλυφθούν Αγωγοί Conductors Ηµιαγωγοί Semiconductors Κρύσταλλοι πυριτίου Silicon crystals Ενδογενείς Ηµιαγωγοί Intrinsic semiconductors ύο τύποι φορέων για το ρεύµασεηµιαγωγούς

Διαβάστε περισσότερα

Ημιαγώγιμα και διηλεκτρικά υλικά. ΚΕΦΑΛΑΙΟ 2 ο

Ημιαγώγιμα και διηλεκτρικά υλικά. ΚΕΦΑΛΑΙΟ 2 ο Ε. Λοιδωρίκης Δ. Παπαγεωργίου ΚΕΦΑΛΑΙΟ ο Πυρίτιο Πυρίτιο o ry ltro s s s ελεύθερο άτομο πυριτίου άτομο πυριτίου όταν κάνει δεσμούς yb A CODUCIO AD Δεσμοί και ζώνες πυριτίου Δεσμοί και ζώνες πυριτίου s

Διαβάστε περισσότερα

Φαινόμενα μεταφοράς φορέων

Φαινόμενα μεταφοράς φορέων Φαινόμενα μεταφοράς φορέων 1. Ολίσθηση φορέων (ρεύμα αγωγιμότητας). Διάχυση φορέων (ρεύμα διάχυσης) 3. Έγχυση φορέων 4. Δημιουργία-επανασύνδεση φορέων 1 Φαινόμενα Μεταφοράς και Σκέδασης Φορέων στους Ημιαγωγούς

Διαβάστε περισσότερα

4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron

4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron Τα ηλεκτρόνια στα Μέταλλα Α. Χωρίς ηλεκτρικό πεδίο: 1. Τι είδους κίνηση κάνουν τα ηλεκτρόνια; Τα ηλεκτρόνια συγκρούονται μεταξύ τους; 2. Πόσα ηλεκτρόνια περνάνε προς τα δεξιά και πόσα προς τας αριστερά

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: "One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really Ημιαγωγοί Ανακαλύφθηκαν το 190 Το 191 ο Pauli δήλωσε: "Oe should't work o semicoductors, that is a filthy mess; who kows if they really exist!" Πιο ήταν το πρόβλημα? Οι ανεπιθύμητες προσμείξεις Το 1947

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ Για να κατανοήσουµε τη λειτουργία και το ρόλο των διόδων µέσα σε ένα κύκλωµα, θα πρέπει πρώτα να µελετήσουµε τους ηµιαγωγούς, υλικά που περιέχουν

Διαβάστε περισσότερα

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 3: Δίοδος Επαφής Δρ. Δημήτριος Γουστουρίδης Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Ενεργειακές στοιβάδες προσμίξεων Η εισαγωγή προσμίξεων σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1ο : ΗΜΙΑΓΩΓΟΙ

ΜΑΘΗΜΑ 1ο : ΗΜΙΑΓΩΓΟΙ ΜΑΘΗΜΑ 1ο : ΗΜΙΑΓΩΓΟΙ ΣΤΟΧΟΙ ΠΕΡΙΓΡΑΦΗ ΟΜΗΣ ΚΡΥΣΤΑΛΛΟΥ ΠΥΡΙΤΙΟΥ ΙΑΚΡΙΣΗ ΥΟ ΤΥΠΩΝ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΤΥΠΟ ΠΡΟΣΜΙΞΕΩΝ ΠΟΥ ΚΑΘΟΡΙΖΕΙ ΤΟ ΦΟΡΕΑ ΠΛΕΙΟΝΟΤΗΤΑΣ MsC in Telecommunications 1 ΑΓΩΓΟΙ Στοιβάδα σθένους

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VSI Techology ad Comuter Archtecture ab Ηµιαγωγοί Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Φράγμα δυναμικού. Ενεργειακές ζώνες Ημιαγωγοί

Διαβάστε περισσότερα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1 Η2 Μελέτη ηµιαγωγών 1. Σκοπός Στην περιοχή της επαφής δυο ηµιαγωγών τύπου p και n δηµιουργούνται ορισµένα φαινόµενα τα οποία είναι υπεύθυνα για τη συµπεριφορά της επαφής pn ή κρυσταλλοδιόδου, όπως ονοµάζεται,

Διαβάστε περισσότερα

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016 Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

7.a. Οι δεσμοί στα στερεά

7.a. Οι δεσμοί στα στερεά ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με

Διαβάστε περισσότερα

5. Ημιαγωγοί και επαφή Ρ-Ν

5. Ημιαγωγοί και επαφή Ρ-Ν 5. Ημιαγωγοί και επαφή Ρ-Ν Thomas Zimmer, University of Bordeaux, France Περιεχόμενα Φυσικό υπόβαθρο των ημιαγωγών... 2 Ο ενδογενής ημιαγωγός... 6 Ο εξωγενής ημιαγωγός... 7 ημιαγωγός n-τύπου... 7 ημιαγωγός

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Δρ. Ιούλιος Γεωργίου Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Τρέχον περιεχόμενο Αγωγή ηλεκτρικών φορτίων σε ημιαγωγούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Συστήµατα µονάδων Για το σχηµατισµό ενός συστήµατος µονάδων είναι απαραίτητη η εκλογή ορισµένων µεγεθών που ονοµάζονται θεµελιώδη. Στις επιστήµες χρησιµοποιείται αποκλειστικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΠΡΩΤΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΠΡΩΤΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΠΡΩΤΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΕΝΕΡΓΕΙΑΚΕΣ ΤΑΙΝΙΕΣ : Ηλεκτρονική δομή των ενεργειακών ταινιών Ε(k) διαφόρων ημιαγωγών Άμεσο και έμμεσο ενεργειακό χάσμα Ταινία αγωγιμότητας και ηλεκτρόνιαταινία

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ

Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-48) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ Κατά τη δηµιουργία µιας -n επαφής αρχικά υπάρχουν µόνο οπές στην -περιοχή και µόνο ηλεκτρόνια στην n-περιοχή. Οι οπές µε τα αρνητικά ιόντα της πρόσµιξης

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος κανόνας

Διαβάστε περισσότερα

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς

Διαβάστε περισσότερα

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Υποψήφιος Διδάκτορας: Α. Χατζόπουλος Περίληψη Οι τελευταίες εξελίξεις

Διαβάστε περισσότερα

Ηλεκτρονικά υλικά. Ηλεκτρική αγωγιµότητα στερεού είναι η ευκολία, µε την οποία άγει το ηλεκτρικό ρεύµα.

Ηλεκτρονικά υλικά. Ηλεκτρική αγωγιµότητα στερεού είναι η ευκολία, µε την οποία άγει το ηλεκτρικό ρεύµα. Ηλεκτρονικά υλικά ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΥΛΙΚΑ Ηλεκτρική αγωγιµότητα στερεού είναι η ευκολία, µε την οποία άγει το ηλεκτρικό ρεύµα. ιάκριση υλικών µε βάση τον τρόπο µεταβολής της ηλεκτρικής αγωγιµότητας

Διαβάστε περισσότερα

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από την μία κατεύθυνση, ανάλογα με την πόλωσή της. Κατασκευάζεται

Διαβάστε περισσότερα

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών. Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th Intrnational Physis Olympiad, Mrida, Mxio, 1-19 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 3 ΓΙΑΤΙ ΤΑ ΑΣΤΕΡΙΑ ΕΧΟΥΝ ΜΕΓΑΛΕΣ ΔΙΑΣΤΑΣΕΙΣ? Τα αστέρια είναι σφαίρες από ζεστό αέριο. Τα περισσότερα από αυτά λάμπουν

Διαβάστε περισσότερα

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC 6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC Θεωρητικό µέρος Αν µεταξύ δύο αρχικά αφόρτιστων αγωγών εφαρµοστεί µία συνεχής διαφορά δυναµικού ή τάση V, τότε στις επιφάνειές τους θα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 25/12/2016. Νόμος του Coulomb q1 q2 F K. C 8,85 10 N m Ένταση πεδίου Coulomb σε σημείο του Α

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 25/12/2016. Νόμος του Coulomb q1 q2 F K. C 8,85 10 N m Ένταση πεδίου Coulomb σε σημείο του Α ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 5/1/16 Τυπολόγιο 1ου Κεφαλαίου Στατικός Ηλεκτρισμός Τύποι που ισχύουν Νόμος του Coulomb 1 F K Για το κενό ή αέρα στο S: 9 k 91 N m / C Απόλυτη διηλεκτρική

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"

Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ- ηµόκριτος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 57 80 ATHENS - GREECE

Διαβάστε περισσότερα

Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Φυσική Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου Ζήτηµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Από

Διαβάστε περισσότερα

Αλλαγή της δομής των ταινιών λόγω κραματοποίησης

Αλλαγή της δομής των ταινιών λόγω κραματοποίησης Αλλαγή της δομής των ταινιών λόγω κραματοποίησης Παράμετροι που τροποποιούν την δομή των ταινιών Σχηματισμός κράματος ή περισσοτέρων ημιαγωγών Ανάπτυξη ετεροδομών ή υπερδομών κβαντικός περιορισμός (quantum

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος Φωτοδίοδος 1.Σκοπός της άσκησης Ο σκοπός της άσκησης είναι να μελετήσουμε την συμπεριφορά μιας φωτιζόμενης επαφής p-n (φωτοδίοδος) όταν αυτή είναι ορθά και ανάστροφα πολωμένη και να χαράξουμε την χαρακτηριστική

Διαβάστε περισσότερα

Άσκηση 4 ίοδος Zener

Άσκηση 4 ίοδος Zener Άσκηση 4 ίοδος Zener Εισαγωγή Σκοπός Πειράµατος Στην εργαστηριακή άσκηση 2 µελετήθηκε η δίοδος ανόρθωσης η οποία είδαµε ότι λειτουργεί µονάχα εάν πολωθεί ορθά. Το ίδιο ισχύει και στην περίπτωση της φωτοεκπέµπουσας

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

Φαινόµενα µεταφοράς φορέων

Φαινόµενα µεταφοράς φορέων Φαινόµενα µεταφοράς φορέων 1. Ολίσθηση φορέων (ρεύµα αγωγιµότητας). ιάχυση φορέων (ρεύµα διάχυσης) 3. Έγχυση φορέων 4. ηµιουργία-επανασύνδεση φορέων 1 Φαινόµενα Μεταφοράς και Σκέδασης Φορέων στους Ηµιαγωγούς

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός είδους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ ΘΕΜ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η σχέση

Διαβάστε περισσότερα

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ Οι ασκήσεις που αναφέρονται στο νόµο του Τζάουλ είναι απλή εφαρµογή στον τύπο. Για τη λύση των ασκήσεων θα ακολουθούµε τα εξής βήµατα: i) ιαβάζουµε προσεκτικά την εκφώνηση της άσκησης,

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης

ΙΑΧΥΣΗ. Σχήµα 1: Είδη διάχυσης ΙΑΧΥΣΗ ΟΡΙΣΜΟΣ - ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ιάχυση (diffusin) είναι ο µηχανισµός µεταφοράς ατόµων (όµοιων ή διαφορετικών µεταξύ τους) µέσα στη µάζα ενός υλικού, λόγω θερµικής διέγερσής τους. Αποτέλεσµα της διάχυσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Πείραμα - 6 Η ηλεκτρική αγωγιμότητα και η μέτρηση του ενεγειακού χασματος στο Γερμάνιο

Πείραμα - 6 Η ηλεκτρική αγωγιμότητα και η μέτρηση του ενεγειακού χασματος στο Γερμάνιο Πείραμα - 6 Η ηλεκτρική αγωγιμότητα και η μέτρηση του ενεγειακού χασματος στο Γερμάνιο 1 Η ηλεκτρική αγωγιμότητα και η μέτρηση του ενεργειακού χάσματος στο Γερμάνιο 1.1 Αρχή της άσκησης Η ηλεκτρική αγωγιμότητα

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α I A. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4) ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 8 Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Η θεωρία των μαγνητικών μονοπόλων προβλέπει οτι αυτά αντιδρούν με πρωτόνια και δίνουν M + p M + e + + π 0 (1) με ενεργό διατομή σ 0.01 barn. Το

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 1. Αγωγός διαρρέεται από ρεύμα σταθερής έντασης 4 mα. α. Να υπολογίσετε τον αριθμό των ηλεκτρονίων που διέρχονται από διατομή του αγωγού, σε χρόνο 5 s. β. Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ Όπως θα παρατηρήσετε, τα θέματα αφορούν σε θεωρία που έχει διδαχθεί στις παραδόσεις και σε ασκήσεις που είτε προέρχονται από τα λυμένα παραδείγματα του βιβλίου, είτε έχουν

Διαβάστε περισσότερα

U I = U I = Q D 1 C. m L

U I = U I = Q D 1 C. m L Από την αντιστοιχία της µάζας που εκτελεί γ.α.τ. µε περίοδο Τ και της εκφόρτισης πυκνωτή µέσω πηνίου L, µπορούµε να ανακεφαλαιώσουµε τις αντιστοιχίες των µεγεθών τους. Έχουµε: ΜΑΖΑ ΠΟΥ ΕΚΤΕΛΕΙ γ.α.τ..

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Περιοχή φορτίων χώρου

Περιοχή φορτίων χώρου 1. ΔΙΟΔΟΙ (ΚΑΙ ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ) 1.1. Γενικά Η δίοδος αποτελείται από έναν ημιαγωγό τύπου «p» (φορείς πλειονότητας: οπές) και έναν ημιαγωγό τύπου «n» (φορείς πλειονότητας: ηλεκτρόνια). Γύρω από την επαφή

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 20: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1) Να αναφέρετε τις 4 παραδοχές που ισχύουν για το ηλεκτρικό φορτίο 2) Εξηγήστε πόσα είδη κατανοµών ηλεκτρικού φορτίου υπάρχουν. ιατυπώστε τους

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) Τα μοντέρνα ψηφιακά κυκλώματα (λογικές πύλες, μνήμες, επεξεργαστές και άλλα σύνθετα κυκλώματα) υλοποιούνται σήμερα

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30

ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30 ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ80 Γραπτή Δοκιμασία.06.07 ώρα 1:00-14:30 Επισυνάπτεται διάγραμμα με ισουψείς ειδικής κατανάλωσης καυσίμου [g/psh] στο πεδίο λειτουργίας του κινητήρα Diesel με προθάλαμο καύσης, OM61 της

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Φυσική Γενικής Παιδείας Β Λυκείου 2001

Φυσική Γενικής Παιδείας Β Λυκείου 2001 Φυσική Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Στις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Πυκνωτής χωρητικότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ

ΚΕΦΑΛΑΙΟ ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ ΚΕΦΑΛΑΙΟ 4 41 ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ Η συνδεσµολογία κοινού συλλέκτη φαίνεται στο σχήµα 41 Αν σχηµατίσουµε το ac ισοδύναµο θα δούµε ότι ο συλλέκτης συνδέεται στη γη και αποτελεί κοινό

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

Λύνουµε περισσότερες ασκήσεις

Λύνουµε περισσότερες ασκήσεις Χηµεία Γ Λυκείου - Θετικής Κατεύθυνσης Βήµα 3 ο Λύνουµε περισσότερες ασκήσεις 17. Λύνουµε περισσότερες ασκήσεις 1. Ηλεκτρόνιο ατόµου του υδρογόνου που βρίσκεται στη θεµελιώδη κατάσταση απορροφά ένα φωτόνιο

Διαβάστε περισσότερα

10) Στις παρακάτω συνδεσµολογίες όλοι οι αντιστάτες έχουν την ίδια αντίσταση. ε. 3 3 R 3

10) Στις παρακάτω συνδεσµολογίες όλοι οι αντιστάτες έχουν την ίδια αντίσταση. ε. 3 3 R 3 Συνεχές ρεύµα 1) Έχουµε ένα σύρµα µήκους 1m. Συνδέουµε στα άκρα του τάση V=4V, οπότε διαρρέεται από ρεύµα έντασης 2Α. i) Κόβουµε ένα τµήµα από το παραπάνω σύρµα µε µήκος 40cm και στα άκρα του συνδέουµε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Ενότητα: ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΔΙΗΛΕΚΤΡΙΚΑ Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τμήμα: Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα