ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ"

Transcript

1 ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΠΑΡΑΡΤΗΜΑ 3 ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ ΑΠΟ ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΕΔΟΜΕΝΑ 1 Εισαγωγή Τα διαγράμματα φάσεων δεν είναι εμπειρικά σχήματα αλλά είναι ουσιαστικής σημασίας γραφικές παραστάσεις των θερμοδυναμικών σχέσεων μεταξύ των φάσεων. Στην ενότητα αυτή η θερμοδυναμική συμπεριφορά θα περιγραφεί μέσω της χημικής σύστασης του συστήματος. Η μεθοδολογία που ακολουθείται δεν αντικαθιστά την πλήρη θερμοδυναμική προσέγγιση, η οποία εμπεριέχει την κρυσταλλική δομή, τους ηλεκτρονικούς δεσμούς κ.λ.π., αλλά στοχεύει στην παρουσίαση της εφαρμογής των θερμοδυναμικών αρχών στον υπολογισμό των διαγραμμάτων ισορροπίας. 2 Συστήματα ενός συστατικού Η ελεύθερη ενέργεια Gibbs (G) μπορεί να χρησιμοποιηθεί για την εύρεση της σταθερότερης φάσης σε ορισμένες συνθήκες. Ο ένας τρόπος έγκειται στον προσδιορισμό του ΔG μιας μεταβολής, όπως για παράδειγμα: Cu Cu (1) o ΔG της παραπάνω αντίδρασης δίνεται από τη σχέση: G G G (2) Όταν ΔG > 0 η στερεά φάση είναι σταθερή. Όταν ΔG = 0 υγρό και στερεό είναι σε ισορροπία (σημείο τήξης). Όταν ΔG < 0 η υγρή φάση είναι σταθερή. Η μέθοδος αυτή απαιτεί τη γνώση της μεταβολής της ΔG με τη θερμοκρασία για τον προσδιορισμό της ισορροπίας. Η ελεύθερη ενέργεια G μπορεί να προσδιοριστεί από τους δύο όρους που χρησιμοποιούνται για τον ορισμό της G = Η - S (3) την ενθαλπία Η και την εντροπία S του συστήματος. Η μεταβολή της ενθαλπίας με τη θερμοκρασία προσδιορίζεται απο τη θερμότητα που προστίθεται στο σύστημα dh = dq = CP dτ (4) Γενικά η θερμοχωρητικότητα είναι μεγαλύτερη για τις φάσεις οι οποίες έχουν λιγότερο ισχυρό δεσμό (λόγω των μεγαλυτέρων θερμικών ταλαντώσεων σε συγκεκριμένη θερμοκρασία) και επομένως η Η υγρο θα αυξάνεται πιο γρήγορα με τη θερμοκρασία απο ότι η Η στερεο. Οι παραπάνω σχέσεις επιτρέπουν το σχεδιασμό των καμπυλών ελεύθερης ενέργειας για την υγρή και στερεή φάση ακόμη και στην περιοχή όπου μια δεδομένη φάση δεν είναι σταθερή. Από τη θερμοδυναμική είναι γνωστή η σχέση G S P P Όπου G είναι η γραμμομοριακή ελεύθερη ενέργεια, μ το χημικό δυναμικό, S η εντροπία. Είναι γνωστό ότι μεταξύ αέριας (g), υγρής (I) και στερεής (s) φάσης ισχύει S αερια >> S υγρο > S στερεο. Ετσι σε ένα (5) 1

2 διάγραμμα ΔG - Τ υπό σταθερή πίεση η κλίση της καμπύλης της αέριας φάσης θα είναι η πλέον αρνητική (το S έχει αρνητικό πρόσιμο) ενώ η αντίστοιχη της στεράς φάσης η λιγότερο αρνητική. Η εικόνα που παρουσιάζει ένα τέτοιο διάγραμμα (σε πίεση p φαίνεται στην εικόνα Π3.1. Από το διάγραμμα αυτό προκύπτει ότι η σταθερότερη φάση στη συγκεκριμένη πίεση είναι αυτή που έχει τη χαμηλότερη τιμή του G. Από την τομή των ευθειών στερεού-υγρού προκύπτει το σήμειο τήξης (Τ f) του συστατικού και από την τομή των ευθειών υγρού-αερίου προκύπτει το σημείο βρασμού (Τ b). Εάν ελαττωθεί πολύ η πίεση (p) τότε η καμπύλη του υγρού περνάει πάνω από το σημείο τομής των ευθειών στερεού-αερϊου (σημείο εξάχνωσης) (εικόνα Π3.1γ). Αυτό σημαίνει ότι στην πίεση αυτή η υγρή φάση δεν είναι σε καμία θερμοκρασία θερμοδυναμικά σταθερότερη από τις δύο άλλες. Σε κάποια πίεση μεταξύ p 1 και p 3 οι τρεις καμπύλες τέμνονται σε ένα σημείο σε μία ορισμένη θερμοκρασία. Στις συνθήκες αυτές συνυπάρχουν και οι τρεις φάσεις και το σημείο ονομάζεται τριπλό σημείο. (α) (β) γ) Εικόνα Π3.1: Διαγράμματα μ Τ σε διαφορες πιέσεις. Εικόνα Π3.2: Τυπικό διάγραμμα φάσεων p -Τ ενός συστατικού. Εάν κατασκευαστεί μία σειρά παρόμοιων διαγραμμάτων ΔG - Τ για πολλές πιέσεις θα προκύψουν τα σημεία τομής των ευθειών των φάσεων για κάθε πίεση καθώς και οι θερμοκρασιακές περιοχές που η κάθε φάση είναι σταθερή στη συγκεκριμένη πίεση. Μπορεί έτσι να κατασκευαστεί ένα 2

3 ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ διάγραμμα p - Τ όπως φαίνεται στην εικόνα Π3.2. Η τρίτη διάσταση του διαγράμματος αυτού είναι το G. Τα τρία διαγράμματα της εικόνας Π3.1 (α, β, και γ) είναι κάθετα στο επίπεδο του διαγράμματος και το τέμνουν στις διακεκομένες γραμμές στις πιέσεις p 1, p 2 και p 3. Θα πρέπει να σημειωθεί ότι σε ένα διάγραμμα φάσεων μπορούν να υπάρχουν περισσότερα από ένα τριπλά σημεία. Αυτό συμβαίνει όταν γίνεται αλλαγή κρυσταλλικού συστήματος στη στερεά κατάσταση (δηλ. υπάρχουν δύο ή περισσότερες στερεές φάσεις-αλλοτροπία). Εάν για ένα συστατικό, σε θερμοκρασία Τ η φάση α βρίσκεται σε ισορροπία με τη φάση β, τότε από τη θερμοδυναμική ισχύει G G H H ( S S ) ΔG = ΔH - ΔS (7) και επειδή ΔG = 0 (λόγω ισορροπίας) η (7) γίνεται H S (8) Επειδή η μεταβολή μεταξύ των δύο φάσεων συμβαίνει υπό σταθερή πίεση, ο όρος ΔΗ της (8) είναι η λανθάνουσα θερμότητα (π.χ. λανθάνουσα θερμότητα τήξης, βρασμού κ.α.). Από τη θερμοδυναμική, για τις φάσεις α και β ισχύουν οι σχέσεις dg d S d V dp dg d S d V dp Επειδή στην ισορροπία τα πρώτα μέλη είναι ίσα προκύπτει ότι dp S d V (9) Αντικαθιστώντας το ΔS από την (8) στην (9) προκύπτει dp H d V (10) Η εξίσωση (10) είναι η εξίσωση Clapeyron και δίνει την κλίση των καμπυλών στο διάγραμμα p-τ όπως της εικόνας Π2.2. Οι εξισώσεις που ακολουθούν δίνουν την εφαρμογή της (10) στις περιπτώσεις των ισορροπιών του διαγράμματος της εικόνας Π2.2, (τήξη, βρασμός, εξάχνωση). Τήξη dp H d (V l V s ) (11α) Eξάτμιση dp H d (Vg V l) (11β) Εξάχνωση dp H d (Vg V s) (11γ) Μετατροπή φάσης dp H d (V V ) (11δ) Εάν τα ΔΗ και ΔV εκφράζονται σε cal και cm 3 αντίστοιχα, τότε η τιμή του dp/d που προκύπτει θα έχει μονάδες cal cm -3 deg -1. Για να μετασχηματιστεί αυτή η τιμή σε atm/deg χρησιμοποιείται ο συντελεστής 1 cal = cm atm. 3

4 Οι παραπάνω εξισώσεις εφαρμόζονται σε κάθε μετασχηματισμό φάσεως όπως τήξη, εξάτμιση, αλλοτροπικό μετασχηματισμό κ.λ.π. Στις εξισώσεις (11β) - εξάτμιση και (11γ) - εξάχνωση μπορεί, χωρίς σημαντικό σφάλμα, να εξαληφθεί ο όρος V s (ο οποίος είναι πολύ μικρότερος των V l και V g). Στην περίπτωση μάλιστα της (11 γ), εάν το αέριο προσεγγίζει την ιδανική συμπεριφορά, το V είναι ίσο με R/p. Ετσι η σχέση (11 γ) γίνεται dp H ph d V R g 2 και μετά από πράξεις d lnp d H R 2 (12) Η εξίσωση (12) είναι γνωστή ως εξίσωση Claussius-Clapeyron. Η ολοκλήρωση της εξίσωσης (12), με την προϋπόθεση ότι το ΔΗ παραμένει σταθερό (κάτι που πρακτικά ισχύει για στενές θερμοκρασιακές περιοχές), δίνει τη σχέση (13) H 1 d lnp I R με I = σταθερά ολοκλήρωσης. Η σχέση (13), είναι μια εκθετική σχέση του p (δηλαδή της τάσης των ατμών) και του Τ. Χαράζοντας ένα διάγραμμα Ιnp - Τ θα προκύψει ευθεία από της οποίας την κλίση μπορεί να υπολογιστεί το ΔΗ. Βεβαίως, αυτή δεν θα είναι η ακριβής τιμή, αλλά μία μέση τιμή, προσεγγιστική, που θα αντιστοιχεί στην περιοχή θερμοκρασιών όπου θεωρήθηκε η ολοκλήρωση. Εάν η εξίσωση (12) ολοκληρωθεί μεταξύ των ορίων p 1 και p 2 που αντιστοιχούν στις θερμοκρασίες Τ 1 και Τ 2 και υποθέτοντας ότι το ΔΗ παραμένει σταθερό, προκύπτει p2 H 1 1 ln p 1 R 2 1 Η εξίσωση (14) μπορεί να χρησιμοποιηθεί για τον υπολογισμό της τάσης ατμών σε κάθε θερμοκρασία εάν είναι γνωστή η τάση ατμών σε μια άλλη θερμοκρασία και η μέση ΔΗ για μια θερμοκρασιακή περιοχή. Πιο ακριβής ολοκλήρωση της εξίσωσης (12) γίνεται χρησιμοποιώντας την εξίσωση (15) του Kirchhoff για σταθερή πίεση η οποία λαμβάνει υπ'όψην τη θερμοκρασιακή μεταβολή της ΔΗ (δηλ. το ΔΗ δεν είναι σταθερό με τη μεταβολή της θερμοκρασίας όπως θεωρήθηκε στην εξίσωση (13)). Ολοκλήρωση της (15) δίνει τη σχέση (15α) dh d C H C d I p p p 1 (13) (14) (15) (15α) όπου I 1 η σταθερά ολοκλήρωσης. Αντικαθιστώντας την τιμή της ΔΗ στην εξίσωση (12) προκύπτει: d lnp Cp d I1 2 2 d R R (16) και με ολοκλήρωση, εφόσον η θερμοχωρητικότητα C p είναι ανεξάρτητη της θερμοκρασίας: 4

5 ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ Cp I1 d lnp ln I2 R R (17) Εφαρμογή 1. Στη βιβλιογραφία παρέχονται οι εξισώσεις του p σε συνάρτηση με το Τ στη μορφή της εξίσωσης (17) και δίνουν τη θερμοκρασιακή επίδραση της τάσης των ατμών στερού και υγρού. Οι μονάδες του p είναι συνήθως σε mmhg. Ετσι για την μετατροπή τους σε atm η (17) γίνεται: Cp I1 d lnp ln I2 ln760 R R Στην εξίσωση (12) το ΔΗ είναι σε cal/mol όταν το p δίνεται σε atm. 2. Από τις εξισώσεις αυτές μπορεί να προσδιοριστεί το b (δηλαδή η θερμοκρασία που η τάση ατμών του υγρού θα γίνει 1 atm), το τριπλό σημείο (που βρίσκεται στην τομή των εξισώσεων της τάσης ατμών στερού και υγρού) και πιθανώς και το s (σημείο εξάχνωσης) εάν υπάρχει τέτοιο σε p=1 atm. 3. Από την εξίσωση Claussius-Clapeyron μπορεί να προσδιοριστεί η θερμοκρασιακή συνάρτηση της ενθαλπίας εξάχνωσης ΔΗ εξαχν = ΔΗ s v ή ζέσεως ΔΗ ζες = ΔΗ l v που είναι συνήθως γραμμικής μορφής: ΔΗ = a + b με a και b σταθερές. Από τις σχέσεις αυτές μπορούν να προσδιοριστούν οι τιμές των ΔΗ εξαχν και ΔΗ ζες σε κάθε θερμοκρασία. 4. Γενικά ισχύει: ΔΗs l + ΔΗl v = ΔΗs v Ετσι μπορεί να προσδιοριστεί η θερμοκρασιακή συνάρτηση του ΔΗ τήξης = ΔΗ s v. Αν είναι γνωστό το ΔΗ τήξης (από τη βιβλιογραφία) τότε μπορεί να βρεθεί το σημείο τήξης f. 5. Από τη σχέση dh C C C d p p p, p,( s ) και με γνωστή τη θερμοκρασιακή συνάρτηση του ΔΗ τήξης προσδιορίζεται το ΔC p. 3 Συστήματα δύο συστατικών Για ένα απλό διμερές σύστημα Α-Β σε θερμοκρασία Τ κάτω απο τη θερμοκρασία τήξης,τ f, A, του Α μεταξύ των γραμμών liquidus και solidus υφίσταται ισορροπία μεταξύ του υγρού και του στερεού: Όπου Α (l): υγρό Α (s): στερεό A*: σε διάλυμμα * * A( s) A (18) Στην ισορροπία ισχύει η γενική σχέση της θερμοδυναμικής G vig i 0 (19) i 5

6 Όπου Gi είναι η γραμμομοριακή ελεύθερη ενέργεια του συστατικού i στην πραγματική του κατάσταση, v i είναι ο αριθμός των moles του συστατικού i που συμμετέχουν στην αντίδραση. Ο αριθμός αυτός θεωρείται θετικός για τα προϊόντα και αρνητικός για τα αντιδρώντα. Η ισορροπία για την περίπτωση της αντίδρασης (18) μπορεί να χωριστεί σε τρεις διαφορετικές ισορροπίες. A A G R ln A (20α) ( s ) * ( s) ( s) A( s) A * G H (20β) A A G R ln A (20γ) Οι σχέσεις (20α) και (20γ) συνδέουν την πραγματική ελεύθερη ενέργεια G i με την πρότυπη κατάσταση ΔG G G o R ln (21) i i i o όπου : Gi είναι η πρότυπη ελεύθερη ενέργεια ανά γραμμομόριο, α i: η ενεργότητα του ί συστατικού. Η ενεργότητα α i δίνεται απο την σχέση: y x (22) i i i όπου γ i: είναι ο συντελεστής ενεργότητας, χ i: το γραμμομοριακό κλάσμα. Το άθροισμα των G των τριών σχέσεων (20), όταν το σύστημα θα βρίσκεται σε ισορροπία, πρέπει να είναι μηδέν. Ετσι προκύπτει: ln A A( s ) H R Με την βοήθεια των σχέσεων (22) και (23) και με γνωστά τους συντελεστές ενεργότητας, γ, τη λανθάνουσα θερμότητα τήξης, H f, και τη θερμοκρασία τήξης, Τ f, κάθε συστατικού είναι δυνατόν να υπολογιστεί ολόκληρο το διάγραμμα ισορροπίας ενός διμερούς συστήματος. (23) 1.1 Υπολογισμός διαγράμματος ισορροπίας πλήρους αναμιξιμότητας Εστω ένα σύστημα δυο συστατικών Α και Β των οποίων είναι γνωστά τα H f και f. Η συμπεριφορά των Α και Β θεωρείται ιδανική και στα υγρά και στα στερεά διαλύματα. Επομένως η ενεργότητες μπορούν να αντικατασταθούν από τα γραμμομοριακά κλάσματα. Απο τη σχέση (23) προκύπτει: x ln x A( s ) A H R (24α) Η ίδια σχέση ισχύει και στην περίπτωση του Β συστατικού: x ln x B( s ) B H R (24β) Θεωρώντας και τα ισοζύγια μάζας στις δύο φάσεις έχουμε ότι: x x 1 (25α) A( s ) B( s ) 6

7 ΠΑΡΑΡΤΗΜΑ 3-ΥΠΟΛΟΓΙΣΜΟΣ ΔΙΑΓΡΑΜΜΑΤΩΝ ΦΑΣΕΩΝ x x 1 (25β) A B Η επίλυση του συστήματος των σχέσεων (24α,β) και (25α,β) για σταθερή θερμοκρασία μας δίνει τα xa και x A ( s ). Με τα ζεύγη των τιμών ( x A ( s ), Τ) κατασκευάζεται η καμπύλη solidus ενώ με το ( x A, Τ) η καμπύλη liquidus. 1.2 Υπολογισμός ευτηκτικού διαγράμματος με ιδανική συμπεριφορά των δύο συστατικών Εστω ενα σύστημα δύο συστατικών Α και Β των οποίων είναι γνωστά τα H f και Τ f. Το υγρό διάλυμα θεωρείται ιδανικό. Επομένως οι συντελεστές ενεργότητας είναι μονάδα, y A 1, y B 1και έτσι οι ενεργότητες μπορούν να αντικατασταθούν από τα γραμμομοριακά κλάσματα. x (26α) A A x (26β) B B Αν θεωρηθεί ότι η ποσότητα του υγρού διαλύματος είναι πολύ μεγάλη, τότε σε μια θερμοκρασία Τ δεξιά του ευτηκτικού σημείου όπου εμφανίζονται οι πρώτοι στερεοί κρύσταλλοι του Α μέσα στο διάλυμμα, 1 mole του Α μπορεί να στερεοποιηθεί χωρίς να μεταβληθεί σημαντικά η σύσταση x B. του υγρού διαλύματος. Σαν κατάσταση αναφοράς λαμβάνεται συνήθως εκείνη του καθαρού συστατικού στην σταθερή του κατάσταση, που στη συγκεκριμένη περίπτωση είναι το στερεό Α. Σε αυτή την περίπτωση ισχύει: xa ( s ) 1 (27) Η σχέση (27) γίνεται: ln ln x A A H H R R (28α) (28β) Επιλύονται ως προς Τ προκύπτει: A H H R ln xa H B Hf,B R ln xb (29α) (29β) Ο υπολογισμός των θερμοκρασιών ( Α και Τ Β) απο αυτές τις εξισώσεις συναρτήσει της συγκέντρωσης αποτελούν τις δύο καμπύλες liquidus του διαγράμματος ισορροπίας. Η ευτηκτική θερμοκρασία και συγκέντρωση βρίσκονται στο σημείο τομής των δύο καμπυλών. 7

8 1.3 Κατασκευή διαγραμμάτων φάσεων με Η/Υ Η μελέτη της σχέσης θερμοδυναμικής και διαγραμμάτων φάσεων προσέφερε πάντα χρήσιμες πληροφορίες για την ερμηνεία της θερμοδυναμικής συμπεριφοράς των τεχνολογικών υλικών. Με τη βοήθεια των ηλεκτρονικών υπολογιστών και την ανάπτυξη κατάλληλων software παρέχεται η δυνατότητα κατασκευής σύνθετων διαγραμμάτων φάσεων κραμάτων με πολλά συστατικά και με πολύπλοκους υπολογισμούς ισορροπίας. Το πρώτο στάδιο για την κατασκευή ενός τέτοιου προγράμματος αφορά τη μοντελοποίησηπροτυποποίηση (modeling) των υπό εξέταση συστημάτων, δηλαδή την αναπαράσταση και αποτύπωση όλων των τοπολογικών χαρακτηριστικών στα όρια των φάσεων με πολυωνυμικές εξισώσεις οι οποίες μπορούν εφαρμοζόμενες να δώσουν αποτελέσματα για κάθε σημείο στα όρια των φάσεων. Η ελεύθερη ενέργεια Gibbs αποτελεί το πλέον θεμελιώδες θερμοδυναμικό μέγεθος για την προσέγγιση ενός διαγράμματος φάσεων. Ετσι, σε ένα τέτοιο πρόγραμμα γίνεται modeling της ελεύθερης ενέργειας Gibbs. Το μοντέλο περιέχει εμπειρικές παραμέτρους που προσδιορίζονται από τη βέλτιστη προσαρμογή σε πειραματικές πληροφορίες χρησιμοποιώντας computer optimization procedure. Από τη στιγμή που κατασκευάζεται η συνάρτηση της ελεύθερης ενέργειας Gibbs, όλα τα άλλα θερμοδυναμικά μεγέθη υπολογίζονται εφαρμόζοντας τις θερμοδυναμικές εξισώσεις. Έχουν προταθεί πολλά μοντέλα για τον υπολογισμό των διαφόρων μεγεθών συναρτήσει της σύστασης. Κάθε φάση μπορεί να περιγράφεται από διαφορετικό μοντέλο. Οι παράμετροι κάθε φάσης μπορεί να είναι συναρτήσεις της θερμοκρασίας ή της πίεσης. Τα γνωστά λογισμικά πακέτα για υπολογισμούς ισορροπιών και διαγραμμάτων φάσεων (π.χ. hermo-calc) παρέχουν αρκετές δυνατότητες δράσεων οι οποίες μπορούν να αλληλεπιδρούν μεταξύ τους ανάλογα με τις απαιτήσεις του χρήστη. Στο πρόγραμμα δίνονται οι συνθήκες του συστήματος, όπως θερμοκρασίες, πιέσεις, ενθαλπίες, συστάσεις σταθερών φάσεων κ.α. Το πρόγραμμα μπορεί να παρουσιάσει κάθε μία από τις παραπάνω συνθήκες συναρτήσει των άλλων π.χ. πως επηρεάζει η θερμοκρασία τις σταθερές φάσεις του συστήματος κ.α. Τα προγράμματα αυτά βασίζονται σε βάσεις δεδομένων (data base) που περιέχουν εν είδει Handbook τις τιμές διαφόρων θερμοδυναμικών μεγεθών (π.χ. ενθαλπία σχηματισμού σε Κ, θερμοχωρητικότητα, κ.α.) μεγάλου αριθμού διμερών, τριμερών και ανώτερης τάξης συστημάτων. Μερικές από τις γνωστές βάσεις δεδομένων είναι οι: [1] he SGE Substance Database (http://www.sgte.org/) [2] he IRS ID (Iron Slag Database) [3] he Fe-base Database [4] he Ionic Database [5] he Saxena Geochemical Database [6] he Kaufman Binary Database [7] hermo-calc Software (http://www.thermocalc.com/index.php) [8] hermotech (hermodynamic databases) (http://www.thermotech.co.uk/databases.html) 8

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O 18-2017 Προφορικές εξετάσεις: Κάθε ομάδα ετοιμάζει μία παρουσίαση στο πρόγραμμα Power Point για ~60 λεπτά. Κάθε μέλος της ομάδας παρουσιάζει ένα από τα εξής μέρη: Πρόβλημα 1 -

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O 11-2017 Προφορικές εξετάσεις: Κάθε ομάδα ετοιμάζει μία παρουσίαση στο πρόγραμμα Power Point για ~60 λεπτά. Κάθε μέλος της ομάδας παρουσιάζει ένα από τα εξής μέρη: Πρόβλημα 1 -

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 0: Ισορροπίες φάσεων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η παρουσίαση και η εξέταση της ισορροπίας ανάμεσα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12 ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 12 Προφορικές εξετάσεις/αναφορές: Κάθε ομάδα ετοιμάζει μία παρουσίαση (στο πρόγραμμα Power Point για ~30 45 λεπτά, 10 15

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 1β: Ενθαλπία εξατμίσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία Σύμφωνα με τον κανόνα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 9

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 9 ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 9 Προφορικές εξετάσεις/αναφορές: Κάθε ομάδα ετοιμάζει μία παρουσίαση (στο πρόγραμμα Power Point για ~30 45 λεπτά, 10 15

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 1

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 1 ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΟΓΝΩΣΙΑΣ ΚΑΙ ΥΛΙΚΩΝ ΑΣΚΗΣΗ 3: ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ ΚΡΑΜΑΤΩΝ ΟΜΑΔΑ 1 Προφορικές εξετάσεις/αναφορές: Κάθε ομάδα ετοιμάζει μία παρουσίαση (στο πρόγραμμα Power Point για ~30 45 λεπτά, 10 15

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη ενέργεια Gibbs. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 5: Διαγράμματα φάσεων και ελεύθερη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2

Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Εισαγωγή στην Επιστήμη των Υλικών Διαγράμματα Φάσεων Callister Κεφάλαιο 11, Ashby Οδηγός μάθησης Ενότητα 2 Έννοιες που θα συζητηθούν Ορισμός Φάσης Ορολογία που συνοδεύει τα διαγράμματα και τους μετασχηματισμούς

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ

14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ 14. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρώτος νόμος της θερμοδυναμικής-ενθαλπία Εντροπία και ο δεύτερος νόμος της θερμοδυναμικής Πρότυπες εντροπίες και ο τρίτος νόμος της θερμοδυναμικής Ελεύθερη ενέργεια

Διαβάστε περισσότερα

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης.

Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Φάση ονοµάζεται ένα τµήµα της ύλης, οµοιογενές σε όλη την έκτασή του τόσο από άποψη χηµικής σύστασης όσο και φυσικής κατάστασης. Ανεξάρτητα συστατικά ή συνιστώσες ενός ετερογενούς συστήµατος σε ισορροπία

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,

Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ

ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ ΜΕΛΕΤΗ ΙΑΓΡΑΜΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΦΑΣΕΩΝ 1. ΙΜΕΡΕΣ ΙΑΓΡΑΜΜΑ ΜΕ ΠΛΗΡΗ ΣΤΕΡΕΑ ΙΑΛΥΤΟΤΗΤΑ (Σχ. 1) Σχήµα1: ιµερές διάγραµµα µε πλήρη στερεά διαλυτότητα Μελετάται η απόψυξη διµερούς κράµατος Α-Β, το οποίο βρίσκεται

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O9-2017

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O9-2017 ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O9-2017 Προφορικές εξετάσεις: Κάθε ομάδα ετοιμάζει μία παρουσίαση στο πρόγραμμα Power Point για ~60 λεπτά. Κάθε μέλος της ομάδας παρουσιάζει ένα από τα εξής μέρη: Πρόβλημα 1 - Διάγραμμα

Διαβάστε περισσότερα

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΘΗΜΑ 3 : ΟΙ ΑΛΛΑΓΕΣ ΤΩΝ ΦΑΣΕΩΝ ΟΙ ΦΑΣΕΙΣ ΤΩΝ ΥΛΙΚΩΝ Ο ΟΡΟΣ «ΜΕΤΑΒΟΛΗ ΦΑΣΗΣ» ΑΦΟΡΑ ΤΗΝ ΜΕΤΑΠΤΩΣΗ ΕΝΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟς ΑΠΟ ΜΙΑ ΦΑΣΗ (ή κατάσταση της ύλης που εμπεριέχεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υγρού Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3

M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3 Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος εκεµβρίου 04- (//04. ίνονται οι ακόλουθες πληροφορίες για τον διθειάνθρακα (CS. Γραµµοµοριακή µάζα 76.4 g/mol, κανονικό σηµείο ζέσεως 46 C, κανονικό

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Διδάσκοντες:Ν. Καλογεράκης Π. Παναγιωτοπούλου Γραφείο: K.9 Email: ppanagiotopoulou@isc.tuc.gr Μέρες/Ώρες διδασκαλίας: Δευτέρα (.-3.)-Τρίτη (.-3.) ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ

Διαβάστε περισσότερα

R T ενώ σε ολοκληρωµένη, αν θεωρήσουµε ότι οι ενθαλπίες αλλαγής φάσεως είναι σταθερές στο διάστηµα θερµοκρασιών που εξετάζουµε, είναι

R T ενώ σε ολοκληρωµένη, αν θεωρήσουµε ότι οι ενθαλπίες αλλαγής φάσεως είναι σταθερές στο διάστηµα θερµοκρασιών που εξετάζουµε, είναι Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξετάσεις: Περίοδος Σεπτεµβρίου 007-0 (.9.00) Θέµα. Η τάση ατµών του στερεού µονοξειδίου του άνθρακα σε 60 K είναι.6 kpa και σε 65 K είναι. kpa. Η τάση ατµών του υγρού

Διαβάστε περισσότερα

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%)

ΤΕΧΝΙΚΑ ΥΛΙΚΑ ( ) (Βαρύτητα θέματος 25%) ΤΕΧΝΙΚΑ ΥΛΙΚΑ (2013-2014) (Βαρύτητα θέματος 25%) Άσκηση 1 (α) Κατασκευάστε το διάγραμμα φάσεων Ag-Cu χρησιμοποιώντας τα παρακάτω δεδομένα (υποθέστε ότι όλες οι γραμμές είναι ευθείες): Σημείο τήξης Ag:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε. 2012-13 Διάρκεια: 3 ώρες και 30 λεπτά (15.15 18.45) ΘΕΜΑ 1 Α. Χημική Θερμοδυναμική Μια πλάκα από χαλκό μάζας 2 kg και θερμοκρασίας 0 ο C

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 34 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ" ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ,

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

Υδατική Χηµεία-Κεφάλαιο 3 1

Υδατική Χηµεία-Κεφάλαιο 3 1 Υδατική Χηµεία-Κεφάλαιο 3 Δηµιουργία της σύστασης των φυσικών νερών Κεφάλαιο 3 Χηµικές Έννοιες:. Νόµος δράσεως των µαζών- Σταθερές ισορροπίας. Προσδιορισµός της αυθόρµητης κατεύθυνσης των αντιδράσεων 3.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 Θερμική ανάλυση μετάλλων, κραμάτων και μέθοδοι μέτρησης θερμοκρασιών

ΑΣΚΗΣΗ 3 Θερμική ανάλυση μετάλλων, κραμάτων και μέθοδοι μέτρησης θερμοκρασιών ΑΣΚΗΣΗ 3-2016 ΑΣΚΗΣΗ 3 Θερμική ανάλυση μετάλλων, κραμάτων και μέθοδοι μέτρησης θερμοκρασιών 1 Σκοπός Σκοπός της άσκησης είναι η κατασκευή του διαγράμματος φάσεων ενός διμερούς κράματος Sn- Bi. Η μεταλλική

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές των θερμοδυναμικών ιδιοτήτων. Είναι εμφανές λοιπόν ότι αυτές πρέπει ότι πρέπει να αναπτυχθούν

Διαβάστε περισσότερα

4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων

4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων 4. Θερμοδυναμική κραμάτων και διαγράμματα ισορροπίας των φάσεων ΠΕΡΙΛΗΨΗ Ο σχηματισμός της μικροδομής των κραμάτων διέπεται από την θερμοδυναμική και την κινητική. Η θερμοδυναμική καθορίζει το αν θα σχηματιστεί

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 1. Σε δοχείο σταθερού όγκου και σε σταθερή θερμοκρασία, εισάγονται κάποιες ποσότητες των αερίων Η 2(g) και Ι 2(g) τα οποία αντιδρούν σύμφωνα με

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας ΥΔΡΟΧΗΜΕΙΑ Ενότητα 4: Θερμοδυναμικά δεδομένα Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Εισαγωγικές έννοιες της Θερμοδυναμικής Κατανόηση των εννοιών της εντροπίας, ενθαλπίας

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 7 η ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Κατανόηση της έννοιας της

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 4: Θερμοδυναμική και Κινητική της Δομής Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός

Διαβάστε περισσότερα

O δεύτερος νόµος της θερµοδυναµικής

O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής Γιατί χρειαζόµαστε ένα δεύτερο νόµο ; Ζεστό, Τζ Κρύο, Τκ Ζεστό, Τζ Κρύο, Τκ q Tε Τε Ζεστό, Τζ Κρύο, Τκ q q Tε Τε Πιο ζεστό Πιο κρύο

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ22 ΒΑΡΥΤΗΤΑ: 30%

Ακαδημαϊκό έτος ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ22 ΒΑΡΥΤΗΤΑ: 30% Ακαδημαϊκό έτος 03-04 7.06.04 ΜΕΡΟΣ Α : ΘΕΩΡΙΑ/ΕΡΩΤΗΜΑΤΑ Τελική Εξέταση ΦΥΕ ΒΑΡΥΤΗΤΑ: 30% ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ: ώρα (4:00-5:00) Α. Χημική Θερμοδυναμική

Διαβάστε περισσότερα

Εντροπία Ελεύθερη Ενέργεια

Εντροπία Ελεύθερη Ενέργεια Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

Πετρολογία Μαγματικών & Μεταμορφωμένων μ Πετρωμάτων Μέρος 1 ο : Μαγματικά Πετρώματα

Πετρολογία Μαγματικών & Μεταμορφωμένων μ Πετρωμάτων Μέρος 1 ο : Μαγματικά Πετρώματα Πετρολογία Μαγματικών & Μεταμορφωμένων μ Πετρωμάτων Μέρος 1 ο : Μαγματικά Πετρώματα Ιωάννης Ηλιόπουλος Πανεπιστήμιο Πατρών Τμήμα Γεωλογίας Τομέας Ορυκτών Πρώτων Υλών Μάρτιος 2017 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Cmmns. Για

Διαβάστε περισσότερα

Διαδικασίες Υψηλών Θερμοκρασιών

Διαδικασίες Υψηλών Θερμοκρασιών Διαδικασίες Υψηλών Θερμοκρασιών Θεματική Ενότητα 2: Θερμοδυναμική και Ισορροπία φάσεων Τίτλος: Διαγράμματα ισορροπίας φάσεων Ονόματα Καθηγητών: Κακάλη Γλυκερία, Ρηγοπούλου Βασιλεία Σχολή Χημικών Μηχανικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά ( ) Α. Χημική Θερμοδυναμική

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά ( ) Α. Χημική Θερμοδυναμική ΘΕΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΦΥΕ22 (ΦΥΣΙΚΟΧΗΜΕΙΑ) 2 ο Μέρος: ΑΣΚΗΣΕΙΣ (75 %) Διάρκεια: 3 ώρες και 45 λεπτά (15.15 19.00) Α. Χημική Θερμοδυναμική Υπολογίστε την πρότυπη ελεύθερη ενέργεια Gibbs και τη σταθερά

Διαβάστε περισσότερα

Διαγράμματα Ellingham

Διαγράμματα Ellingham Μάθημα Διαγράμματα Ellingham Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Ελεύθερη Ενέργεια Χημικών Αντιδράσεων Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

5,2 5,1 5,0 4,9 4,8. Συµπιεστοτητα (10-10 Pa -1 ) 4,7. k T 4,6 4,5 4,4. k S 4,3 4,2. Θερµοκρασια ( 0 C)

5,2 5,1 5,0 4,9 4,8. Συµπιεστοτητα (10-10 Pa -1 ) 4,7. k T 4,6 4,5 4,4. k S 4,3 4,2. Θερµοκρασια ( 0 C) [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001 Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 001 Ζήτηµα 1 ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός

Διαβάστε περισσότερα

Δύο προσεγγίσεις Ποιοτική εκτίμηση: για τη μελέτη ενός γεωλογικού συστήματος ή την πρόβλεψη της επίδρασης φυσικοχημικών μεταβολών (P/T/ P/T/Χ) σε ένα

Δύο προσεγγίσεις Ποιοτική εκτίμηση: για τη μελέτη ενός γεωλογικού συστήματος ή την πρόβλεψη της επίδρασης φυσικοχημικών μεταβολών (P/T/ P/T/Χ) σε ένα Πετρολογία Μαγματικών & Μεταμορφωμένων μ Πετρωμάτων Μέρος 1 ο : Μαγματικά Πετρώματα Ιωάννης Ηλιόπουλος Πανεπιστήμιο Πατρών Τμήμα Γεωλογίας Τομέας Ορυκτών Πρώτων Υλών Φεβρουάριος 2016 ΣΙΚΕΣ ΡΧΕΣ ΘΕΡΜΟΔΥΝΜΙΚΗΣ

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 004-05 (Α. Χημική Θερμοδυναμική) η Άσκηση Στερεό CO, βάρους 6 g, εισάγεται μέσα σε κενό δοχείο όγκου 00 cm 3 που βρίσκεται συνεχώς σε θερμοκρασία δωματίου (300

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O

ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O ΕΡΓΑΣΤΗΡΙΟ ΥΛΙΚΩΝ ΟΜΑΔΑ O 17-2017 Προφορικές εξετάσεις: Κάθε ομάδα ετοιμάζει μία παρουσίαση στο πρόγραμμα Power Point για ~60 λεπτά. Κάθε μέλος της ομάδας παρουσιάζει ένα από τα εξής μέρη: Πρόβλημα 1 -

Διαβάστε περισσότερα

Μηχανική Τροφίμων. Θεμελιώδεις Έννοιες Μηχανικής. Μέρος 1 ο. Συστήματα μονάδων

Μηχανική Τροφίμων. Θεμελιώδεις Έννοιες Μηχανικής. Μέρος 1 ο. Συστήματα μονάδων Μηχανική Τροφίμων Θεμελιώδεις Έννοιες Μηχανικής Μέρος 1 ο Συστήματα μονάδων Διεθνές σύστημα (S.I). Έχει υιοθετηθεί αποκλειστικά στην μηχανική και τις επιστήμες. Οι τρεις βασικές μονάδες είναι το μέτρο

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΧΗΜΕΙΑΣ Θέµατα εξετάσεων Σεπτέµβριος 2009 ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΤΗΣ ΥΛΗΣ ΚΑΙ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΤΜΗΜΑ ΧΗΜΕΙΑΣ Θέµατα εξετάσεων Σεπτέµβριος 2009 ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΤΗΣ ΥΛΗΣ ΚΑΙ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Θέµατα εξετάσεων Σεπτέµβριος 2009 1) α) Ανηγµένη εξίσωση van der Waals. Παραγωγή της εξίσωσης και θεώρηµα των αντίστοιχων καταστάσεων. β) Μοριακή επιφανειακή ενέργεια υγρών και εξάρτηση αυτής από τη θερµοκρασία

Διαβάστε περισσότερα

P n. Να υπολογισθεί η μεταβολή στην γραμμομοριακή εντροπία ατμού νερού, που θερμαίνεται από τους 160 o στους 170 o C υπό σταθερό όγκο.

P n. Να υπολογισθεί η μεταβολή στην γραμμομοριακή εντροπία ατμού νερού, που θερμαίνεται από τους 160 o στους 170 o C υπό σταθερό όγκο. Να υπολογισθεί η μέση τετραγωνική (rs) ταχύτητα μορίων οξυγόνου σε θερμοκρασία 5οC. u rs ; Mg (5+7)K 8. 45 98 N u M u R urs u 48 / se Υπολογίστε τον όγκο V που καταλαμβάνει ol αερίου Ο υπό πίεση P 00 Pa,

Διαβάστε περισσότερα

Θερμότητα - διαφάνειες , Σειρά 1

Θερμότητα - διαφάνειες , Σειρά 1 Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 5 η - Α ΜΕΡΟΣ ΔΙΑΛΥΜΑΤΑ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Κατανόηση των εννοιών:

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1 2 2.1 Εισαγωγή ΘΕΡΜΟΔΥΝΑΜΙΚΗ Σύστημα: Ένα σύνολο σωματιδίων που τα ξεχωρίζουμε από τα υπόλοιπα για να τα μελετήσουμε ονομάζεται σύστημα. Οτιδήποτε δεν ανήκει στο σύστημα

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

Κεφάλαιο 20. Θερμότητα

Κεφάλαιο 20. Θερμότητα Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 8: Θερμοχημεία Προσδιορισμός θερμότητας αντιδράσεως Βασιλική Χαβρεδάκη Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 7. Προσδιορισμός θερμοχωρητικότητας θερμιδομέτρου...

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Κ. Μάτης ΤΟ ΠΡΟΒΛΗΜΑ ΠΕΡΙΛΑΜΒΑΝΕΙ ΕΝΑ ΣΥΝΕΧΗ ΠΛΗΡΩΣ ΑΝΑΜΙΓΝΥΟΜΕΝΟ ΑΝΤΙΔΡΑΣΤΗΡΑ (CSTR) ΜΕ ΔΥΝΑΤΟΤΗΤΑ ΕΝΑΛΛΑΓΗΣ ΘΕΡΜΟΤΗΤΑΣ ΕΣΩΤΕΡΙΚΑ ΜΕ ΜΙΑ ΣΠΕΙΡΑ. Σημ. Η σωστή απάντηση κάθε

Διαβάστε περισσότερα

Παππάς Χρήστος. Επίκουρος καθηγητής

Παππάς Χρήστος. Επίκουρος καθηγητής Παππάς Χρήστος Επίκουρος καθηγητής 1 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΧΗΜΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Η χημική θερμοδυναμική ασχολείται με τις ενεργειακές μεταβολές που συνοδεύουν μια χημική αντίδραση. Προβλέπει: ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 1 : Εισαγωγή Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο

Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Μάθημα Αναγωγή Οξειδίων με Άνθρακα, Μονοξείδιο του Άνθρακα και Υδρογόνο Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αναγωγικά μέσα Πως μπορεί να απομακρυνθεί το O 2 (g) από

Διαβάστε περισσότερα

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημεία Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημικές διεργασίες στο εσωτερικό της γης Στοιχεία Θερμοδυναμικής

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Διαγράμματα Ισορροπίας Φάσεων Διδάσκων : Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV

Ενθαλπία. Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Ενθαλπία Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται ως: Η=U+pV Αλλά ποια είναι η φυσική σηµασία της ενθαλπίας ; Ενθαλπία Ηενθαλπία (Η) συστήµατος ορίζεται

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 9: Θερμοδυναμική αερίων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι ο ορισμός του ιδανικού αερίου με βάση το χημικό

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

2.6.2 Φυσικές σταθερές των χημικών ουσιών

2.6.2 Φυσικές σταθερές των χημικών ουσιών 1 2.6.2 Φυσικές σταθερές των χημικών ουσιών Ερωτήσεις θεωρίας με απαντήσεις 6-2-1. Ποιες χημικές ουσίες λέγονται καθαρές ή καθορισμένες; Τα χημικά στοιχεία και οι χημικές ενώσεις. 6-2-2. Ποια είναι τα

Διαβάστε περισσότερα

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημεία Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημικές διεργασίες στο εσωτερικό της γης Στοιχεία Θερμοδυναμικής

Διαβάστε περισσότερα

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια

εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος

Διαβάστε περισσότερα

ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών

ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών ΔΡ. Α. ΞΕΝΙΔΗΣ ΔΙΑΛΕΞΗ 3. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΤΙΔΡΑΣΕΩΝ ΑΝΑΓΩΓΗΣ ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 15: Διαλύματα Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στοιχεία Θερμοδυναμικής. Ι. Βασικές αρχές. Χριστίνα Στουραϊτη

Στοιχεία Θερμοδυναμικής. Ι. Βασικές αρχές. Χριστίνα Στουραϊτη Στοιχεία Θερμοδυναμικής Ι. Βασικές αρχές Χριστίνα Στουραϊτη Περιεχόμενα 1. Εισαγωγή 2. Ορισμοί Σύστημα, Φάση, Συστατικό, Θερμοδυναμικές ιδιότητες 3. Χημική Ισορροπία 2 Εισαγωγή Ποιο είναι το αντικείμενο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα

Διαβάστε περισσότερα

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

Γεωχημεία. Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης. Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημεία Ενότητα 1: Γεωχημικές διεργασίες στο εσωτερικό της γης Χριστίνα Στουραϊτη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Γεωχημικές διεργασίες στο εσωτερικό της γης Στοιχεία Θερμοδυναμικής

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 5: Διαγράμματα σημείων ζέσεως συνθέσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Μιγμάτων Πρόρρηση Θερμοδυναμικών Ιδιοτήτων Μιγμάτων 1 Χημικό Δυναμικό μ d = dg U = N V,S,N Για 1 mole καθαρής ουσίας: SdT +Vd j H = N S,,N j A = N V,T,N j G = N ( T, ) ( T,) = T T T,,N j SdT + όπου μ(t',') είναι

Διαβάστε περισσότερα

ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ

ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ 2 η θεματική ενότητα: Εργαστηριακές εφαρμογές Συγχρονικού Συστήματος Λήψης και Απεικόνισης (Σ.Σ.Λ.Α.) ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα δραστηριότητας: Μάθημα και Τάξη στην οποία απευθύνεται: Εκπαιδευτικοί:

Διαβάστε περισσότερα

4. Να υπολογιστεί η πίεση που χρειάζεται να ασκηθεί για να λιώσει ο πάγος στους -4 ο C. (1.5 β)

4. Να υπολογιστεί η πίεση που χρειάζεται να ασκηθεί για να λιώσει ο πάγος στους -4 ο C. (1.5 β) Α Ε Η Ν Α Ω ΝήΝ Η ΑΝΕ Η Η Ν Ω Ν Ω Ε Ν Ν ανφυ χ εία 29/09/2010 α ε α χ β β ία/ ε α 2έη h πώ υ α ό α ε ε α υ:...... Α.Μ.... 1. αν αν π Ν π Νπ Ν1atm (a) Ν1 kgr H 2 O α α Ν-7 ο C; (b) Ν1 t H 2 O α α Ν+7 ο

Διαβάστε περισσότερα