ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΒΙΟΜΗΧΑΝΙΚΟΙ ΕΛΕΓΚΤΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΒΙΟΜΗΧΑΝΙΚΟΙ ΕΛΕΓΚΤΕΣ"

Transcript

1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΒΙΟΜΗΧΑΝΙΚΟΙ ΕΛΕΓΚΤΕΣ Δρ. Κωνσταντίνος Αλαφοδήμος Οκτώβριος 010

2

3 ΚΕΦΑΛΑΙΟ 1 ΑΝΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ 1.0 Εισαγωγή Η αυτοματοποίηση της παραγωγής αποτελεί σήμερα την σπουδαιότερη μέθοδο με την βοήθεια της οποίας οι βιομηχανικές επιχειρήσεις βελτιώνουν την παραγωγικότητα τους, στα πλαίσια ενός εντεινόμενου διεθνούς ανταγωνισμού. Παράλληλα οι βιομηχανικές Επιχειρήσεις ενδιαφέρονται, εξίσου με την μείωση του κόστους για την διεύρυνση της ευελιξίας παραγωγής με σκοπό την ταχύτερη και οικονομικότερη παραγωγή εναλλακτικών τύπων προϊόντων. Η ευελιξία αυτή επιβάλλεται λόγω του εντεινόμενου ανταγωνισμού και των συνεχώς μεταβαλλόμενων απαιτήσεων της αγοράς για νέου είδους προϊόντα ή προδιαγραφές. Σήμερα η αποτελεσματική διαχείριση των βιομηχανικών συστημάτων πληροφορικής καθώς και η εισαγωγή εξελιγμένων συστημάτων αυτοματοποίησης, αποτελούν στρατηγικό όπλο πολλών βιομηχανικών επιχειρήσεων για την απόκτηση ενός συγκριτικού πλεονεκτήματος σε μια παγκόσμια οικονομία. Τα τελευταία χρόνια εμφανίστηκαν νέα ολοκληρωμένα συστήματα αυτοματισμού CIM. Oι Η/Υ της βιομηχανικής μονάδος συνδέονται μεταξύ τους σε δίκτυο, έτσι οι παραγγελίες που εισέρχονται στο τμήμα πωλήσεων αυτόματα ενεργοποιούν τη διεργασία παραγωγής. Μέσω του δικτύου επιβλέπονται όλες οι δραστηριότητες παραγωγής προώθησης υλικών, παραγωγής ανταλλακτικών, συναρμολόγησης, δοκιμαστικός έλεγχος προϊόντων, συσκευασία και αποστολή στους πελάτες. Η επιτυχής ολοκλήρωση τέτοιων ολοκληρωμένων δραστηριοτήτων απαιτεί όλα τα στοιχεία που χρησιμοποιούνται στην παραγωγή να είναι ελεγχόμενα με ακρίβεια και πολύ αξιόπιστα. Επομένως το ολοκληρωμένο σύστημα CIM εξαρτάται στην ποιότητα των ηλεκτρονικών συσκευών που χρησιμοποιούνται για έλεγχο της διεργασίας. Στο βιβλίο αυτό γίνεται μια αναδρομή στα συστήματα αυτομάτου ελέγχου και στη συνέχεια περιγράφονται οι συσκευές που χρησιμοποιούνται για τη βελτίωση των συστημάτων αυτομάτου ελέγχου. Τέτοιες συσκευές είναι οι ελεγκτές τύπου PID, οι Προγραμματιζόμενοι Λογικοί Ελεγκτές (PLC) και τα αισθητήρια που χρησιμοποιούνται στους βρόγχους ελέγχου για τη συλλογή των μετρήσεων. 3

4 1.1 Συστήματα Αυτομάτου Ελέγχου. Στα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ο έλεγχος σε δύο περιπτώσεις. Η πρώτη περίπτωση αφορά την απόκλιση της εξόδου που οφείλεται σε μεταβολές του φορτίου ή της ενέργειας εισόδου οι οποίες εμφανίζονται σαν είσοδοι στο σύστημα. Τέτοια συστήματα χρησιμοποιούνται σε έλεγχο διεργασιών. Στη δεύτερη περίπτωση η επιθυμητή τιμή (set-point) θεωρείται είσοδος του συστήματος και η έξοδος οφείλει να την παρακολουθεί. Το σύστημα αυτό αναφέρεται σαν σερβομηχανισμός ελέγχου (servo System). α) Σύστημα απόρριψης διαταραχών Το σύστημα αυτό χρησιμοποιείται στον έλεγχο διεργασίας με στόχο την ρύθμιση (έλεγχο) τη εξόδου. Η χρήση αρνητικής ανάδρασης έχει σαν στόχο να μεταβάλει την ενέργεια εισόδου του συστήματος κατά τέτοιο τρόπο για να εξαλείψει ή να ελαττώσει τις επιδράσεις στην μεταβλητή εξόδου που οφείλονται σε μεταβολές (διαταραχές) στην είσοδο ή στα φορτία της διεργασίας. Εφαρμογές ελέγχου διεργασιών είναι η θέρμανση οικίας, σύστημα ελέγχου στάθμης υγρού, ή έλεγχο ροής. Το κλασικό μπλοκ διάγραμμα συστήματος αυτομάτου ελέγχου δίνεται στο Σχήμα 1.1. Η συνάρτηση μεταφοράς της διεργασίας περιγράφεται από τη G( στην οποία συμπεριλαμβάνονται όλες οι απαραίτητες μονάδες όπως ο ενεργοποιητής (altuator) προσαρμογής ισχύος ή διεργασίας, ο μετατροπέας σημάτων (transduser) και ο μεταδότης, το φίλτρο, ενώ η συνάρτηση μεταφοράς του ελεγκτή δίνεται από τη D(. Σε λειτουργία ανοιχτού βρόγχου C(G(. R(. Οι μεταβολές στην είσοδο R( επιδρούν απευθείας στην μεταβλητή εξόδου της διεργασίας στην C(. R( A( B( G( s C( D( Σχ. 1.1 Μπλοκ Διάγραμμα Συστήματος Αυτομάτου Ελέγχου. 4

5 Αν κλείσει ο διακόπτης s, έχουμε λειτουργία κλειστού βρόγχου και ο ελεγκτής επιδρά στην R(, όσο απαιτείται, για να διατηρήσει την έξοδο της διεργασίας C( σταθερή. Σε κλειστό βρόγχο: αλλά C(G(A( (1) Α(R(-B( () και Β(D(C( (3) αντικαθιστώντας την εξίσωση (3) στην () βρίσκουμε: Α(R(-D(C( και από την (1) βρίσκουμε : C( G([R(-D(C(] G(R(-G(D(C( C( + G(D(C( G(R( C( [1+G(D(] G(R( Επομένως η συνολική συνάρτηση μεταφοράς με αρνητική ανάδραση δίνεται από την εξίσωση: C( R( G( 1+ G( D( β) Σύστημα Σερβομηχανισμού Στο σύστημα σερβομηχανισμού Σχ.1. επιθυμητή τιμή είναι η είσοδος, σε αντίθεση με την πρώτη κατηγορία όπου το set point είναι σταθερό, και εμφανίζεται εσωτερικά στον ελεγκτή και όχι ξεχωριστά. Η έξοδος του σερβοσυστήματος θεωρείται η έξοδος της διεργασίας C(. set point R( E( D( G( C( Σχ. 1. Κλασικό διάγραμμα σερβομηχανισμού. 5

6 Το σερβοσύστημα αναγκάζει την έξοδο C( να παρακολουθεί πιστά την τιμή της εισόδου R( δηλ. το set point. Υποθέτουμε ότι η ενέργεια εισόδου και το φορτίο παραμένουν σταθερά και κατά συνέπεια δεν εμφανίζονται στο μπλοκ διάγραμμα του Σχ. 1.. Ο ελεγκτής ενεργοποιείται ανάλογα με την παρουσία ή όχι του σήματος σφάλματος e επιθυμητή τιμή(r) - μεταβλητή διεργασίας (c). Από το μπλοκ διάγραμμα του Σχ. 1. παρατηρούμε πως ο ελεγκτής δεν βρίσκεται στο βρόγχο ανάδρασης αλλά βρίσκεται σε σειρά με το μπλοκ της διεργασίας. Η συνάρτηση μεταφοράς ανοιχτού βρόγχου δίνεται από την εξίσωση: C( D( G( R( αι η αντίστοιχη κλειστού βρόγχου είναι: C( G( D( R( 1 + G( D( Για τον υπολογισμό του σφάλματος σε σύστημα αυτομάτου ελέγχου με αλγεβρικό τρόπο χρησιμοποιείται το θεώρημα της τελικής τιμής. Υπολογίζεται η τελική τιμή της μεταβλητής εξόδου, στην αποκατάσταση, χωρίς να χρειάζεται η επίλυση της εξίσωσης πραγματικού χρόνου. lim c( t) lim sc( t s 0 1. Σύστημα αυτομάτου ελέγχου χωρίς αντιστάθμιση Το block διάγραμμα ενός συστήματος αυτομάτου ελέγχου στη πιο απλή του μορφή δίνεται στο σχήμα 1.3 : R( p s( s + a) C() f Σχ. 1.3 Σύστημα Αυτομάτου Ελέγχου 6

7 Η συνολική συνάρτηση μεταφοράς κλειστού βρόχου είναι : C( p T ( R( s + as + H εξίσωση αυτή συγκρίνεται με την γενική συνάρτηση μεταφοράς του συστήματος ου βαθμού s ω n + ζω s + ω Επομένως βρίσκουμε ζω n α και ω n p f Από τις δύο σχέσεις συμπεραίνεται ότι n n. ζ p f a / p όπου ζ είναι ο συντελεστής απόσβεσης και ω n είναι η φυσική συχνότητα. Το σήμα σφάλματος υπολογίζεται από τη σχέση: f R( s( s + a) R( Ea( 1 + G( H ( s( s + a) + p f Για είσοδο της μορφής r(t) At βρίσκουμε s( s + a) A Ea ( s ( s( s + a) + Από το θεώρημα τελικής τιμής βρίσκεται το σφάλμα του συστήματος στην αποκατάσταση. e ss aa p f Το σφάλμα της μεταβλητής στην αποκατάσταση πρέπει να είναι μηδέν ή κάτω του % για να είναι αποδεκτό το σύστημα. Σε περίπτωση που το σφάλμα δεν βρίσκεται μέσα στα όρια αυτά πρέπει να προστεθεί βαθμίδα αντιστάθμισης δηλ. ελεγκτής τύπου PID ή αντίστοιχα φίλτρο. Πολλές φορές η συνάρτηση μεταφοράς της διεργασίας είναι άγνωστη. Στην περίπτωση αυτή χρησιμοποιείται ένα μοντέλο προσομοίωσης 1ου βαθμού και από τη καμπύλη χρονικής απόκρισης, σε βηματική μεταβολή της εισόδου, υπολογίζονται οι παράμετροι του μοντέλου. Στο Σχ1.4 δίνονται οι χρονικές τους αποκρίσεις για μοντέλα 1 ης και ας τάξης. Γενικά ένα σύστημα θεωρείται αποδεκτό όταν το περιθώριο κέρδους είναι περίπου 7dB, το περιθώριο φάσεως περίπου ΡΜ 35 ο, το σφάλμα στην αποκατάσταση περίπου 0 (συνήθως μικρότερο του %) και η υπερύψωση που προκαλείται από τη μεταβολή της εισόδου ή την επίδραση διαταραχής να είναι μικρότερη από 10% της τιμής. 7 p f )

8 Η προσθήκη ενός αντισταθμιστή σε σύστημα αυτόματου ελέγχου βελτιώνει την απόδοση και την ευστάθεια του. Τα μοντέλα διεργασίας που βρίσκουν εφαρμογή στη βιομηχανία είναι δύο τύπων : α) 1 ου t d s βαθμού G ( e τs +1 β) ου βαθμού G t s e d ( ( τ s + 1) ( τ s + 1) 1 T t e d s s + ζτs + 1 Όπου t d χρόνος καθυστέρησης, τ σταθερά χρόνου του μοντέλου 1 ου βαθμού. Στο μοντέλο ου βαθμού τ τ 1 +τ Στις προσομοιώσεις οι όροι χρονικής καθυστέρησης αντικαθίστανται με: td s 1 1 oυ t βαθμού : e d S td s 1+ oυ βαθμού : e t d s t t d d s s 6t + 6t d d s + 1 s + 1 Οι καμπύλες των δύο μοντέλων δίνονται στο Σχ.1.4 Σχ.1.4 Καμπύλες απόκρισης (α) 1ου βαθμού (β) ου βαθμού. Το ZOH στις προσομοιώσεις του ψηφιακού ελέγχου αντικαθίσταται από τη σχέση: 8

9 st 1 e T T ZOH: GZOH (,,... s st st ( st ) Συστήματα με αρνητική απόκριση Στο Σχ.1.5 δίνεται η απόκριση συστήματος στάθμης υγρού για βηματική είσοδο. Παρατηρείται πως αρχικά η καμπύλη βρίσκεται στην αντίθετη κατεύθυνση από αυτή που τελικά καταλήγει. Τέτοια συμπεριφορά παρατηρείται σε μικρό αριθμό διεργασιών. (α) (β) Σχ 1.5. (α) Μπλοκ διάγραμμα στάθμης υγρού. (β) Απόκριση εξόδου Tα συστήματα με αρνητική απόκριση απαιτούν ιδιαίτερη προσοχή κατά τον έλεγχο τους. Για Κ Τ 1 < Κ 1 η συνάρτηση μεταφοράς έχει θετικό μηδέν στο s > 0 ( T 1) 1 Η χρονική απόκριση των δύο αντίθετων συστημάτων 1 ου βαθμού δίνεται στο Σχ.1.6. Παρατηρούμε πως αρχικά η διεργασία () αντιδρά πιο γρήγορα από τη διεργασία (1) και προσεγγίζει υψηλότερη τιμή. Τελικά μόλις η (1) προσεγγίσει την τελική της τιμή για Κ 1 >Κ εξαναγκάζει την συνολική απόκριση του συστήματος να μεταφερθεί προς την αντίθετη κατεύθυνση. (α) (β) 9

10 Σχ.1.6 (α) Διάγραμμα δύο αντίθετων συστημάτων 1ου βαθμού. (β) Η συνολική απόκριση 1.4 Αντιστάθμιση συστημάτων αυτομάτου ελέγχου Το πρώτο βήμα στο σχεδιασμό του ελεγκτή είναι η επιλογή του κατάλληλου αλγορίθμου ή δομής του ελεγκτή για βελτίωση της συμπεριφοράς ενός συστήματος αυτομάτου ελέγχου. Αυτό επιτυγχάνεται με την προσθήκη βαθμίδας αντιστάθμισης (ελεγκτής). Στην ενότητα αυτή γίνεται μια σύντομη παρουσίαση μεθόδων αντιστάθμισης που χρησιμοποιούνται στα ΣΑΕ Aντιστάθμιση φάσεως (Phase Compensation) Στην αντιστάθμιση φάσεως εισάγονται δυναμικά στοιχεία στο βρόγχο ελέγχου για να τροποποιηθεί η γωνία φάσεως. Τα τρία κύρια στοιχεία είναι: α) Προπορεία φάσεως (Lead) Η συνάρτηση μεταφοράς είναι : D( 1+sT c /1+asT c (s+z)/s+p a<1 Επιτυγχάνεται: (1) Αύξηση της χρονικής απόκρισης () Αύξηση του κέρδους στις υψηλές συχνότητες (3) Αύξηση της σχετικής ευστάθειας (4) Αύξηση του συνολικού εύρους ζώνης BW (5) Μείωση της Τ s (xρόνος αποκαταστάσεως) (6) Επηρεάζεται από το θόρυβο Συνήθως χρησιμοποιείται για να αυξηθεί η ταχύτητα απόκρισης του συστήματος. β) Υστερήσεως φάσεως - (Lag) H συνάρτηση μεταφοράς είναι D( s+z/s+p 1+1sT c /1+sT c, a<1 Επιτυγχάνεται : 1. Μείωση του σφάλματος αποκατάστασης. Μείωση θορύβου στις υψηλές συχνότητες 3. Μείωση της χρονικής απόκρισης 10

11 4. Μείωση σχετικής ευστάθειας 5. Μείωση του Bw του συστήματος Γενικά χρησιμοποιείται για επιβράδυνση της απόκρισης του συστήματος. Το στοιχείο Lag πλεονεκτεί έναντι του Lead διότι παρέχει στενό εύρος ζώνης (BW) με αποτέλεσμα, τη μείωση του θορύβου. γ) Προπορεία - Υστέρηση (Lag-Lead) Η συνάρτηση μεταφοράς είναι (1+s/α)(1+s/c) D( b/ac/d >1 (1+s/b)(1+s/d) Δίνει προπορεία στις υψηλές συχνότητες και καθυστέρηση στις χαμηλές συχνότητες. Γενικά μειώνεται το e ss και η Τ s και αυξάνεται η χρονική απόκριση δηλ επιτυγχάνεται ένας συνδυασμός των ανωτέρω Ελεγκτές τύπου PID Η προσθήκη του όρου Ι στον ελεγκτή μηδενίζει το σφάλμα σταθερής καταστάσεως e ss, ταυτόχρονα όμως μειώνεται σημαντικά η σχετική ευστάθεια του συστήματος. Ενώ αντίθετα, η προσθήκη του όρου διαφόριση D αυξάνει την σχετική ευστάθεια του συστήματος. α) Αναλογία και Ολοκλήρωση (PI) Η προσθήκη ελεγκτή PI σε σειρά επιδρά στο τμήμα των χαμηλών συχνοτήτων της απόκρισης και μειώνει το σφάλμα e ss ενώ συγχρόνως μειώνεται η σχετική ευστάθεια του συστήματος. β) Αναλογία και διαφόριση (PD) H προσθήκη του ελεγκτή PD σε ένα σύστημα αυτομάτου ελέγχου επιδρά στο τμήμα των υψηλών συχνοτήτων της απόκρισης αυξάνοντας την γωνία προπορεία - υστέρηση της φάσεως με αποτέλεσμα την αύξηση της ευστάθειας και κατά συνέπεια την ταχύτητα απόκρισης. γ) Ελεγκτής τριών όρων (PID) 11

12 Η προσθήκη ελεγκτή PID, σε σειρά με τη συνάρτηση μεταφοράς της διεργασίας, δίνει άριστα αποτελέσματα στις περισσότερες περιπτώσεις. Ο όρος I μειώνει το σφάλμα e ss και ο όρος D του PID αυξάνει τη σχετική ευστάθεια του συστήματος και έτσι αντισταθμίζεται η μείωση που οφείλεται στον όρο Ι. Η εξίσωση του PID έχει την μορφή D( p + d s + i /s c (1+1/T i s+t d ή u(t) p e(t) + i e(t)dt + d de(t)/dt Διόρθωση αναδράσεως (rate feedback) Τοποθετείται φίλτρο ή ελεγκτής στο βρόγχο ανάδρασης με αποτέλεσμα να βελτιώνεται η σχετική ευστάθεια του συστήματος, και με χρήση φίλτρου υψηλών συχνοτήτων διατηρείται το σφάλμα e ss σταθερό Αντικατάσταση πόλων ( Pole - cancellation) Επιλέγονται μηδενικά δηλ. οι ρίζες στο πολυώνυμο του αριθμητή για να εξουδετερωθούν μερικοί ή όλοι οι πόλοι του μοντέλου της διεργασίας (plant) που αντικαθίστανται από τους πόλους του ελεγκτή (controller). Με τη μέθοδο αυτή στόχος είναι: α) Αντικατάσταση των αργών πόλων με γρηγορότερους για να αυξηθεί η απόκριση του συστήματος. β) Αντικατάσταση του κυρίαρχου πόλου με αργό πόλο για να αυξηθεί η ακρίβεια σταθερής κατάστασης του συστήματος. γ) Αντικατάσταση ζεύγους μιγαδικών πόλων με διαφορετικό μιγαδικό ζεύγος για να τροποποιηθεί η μεταβατική απόκριση. Η μέθοδος αυτή είναι γνωστή σαν Deadbeat και χρησιμοποιείται είτε στο διάστημα της συχνότητας (διάγραμμα Bode ) είτε στο διάστημα του χρόνου (τόπος ριζών) Μοντέλο εσωτερικής κατάστασης (State Space Model) Το σύστημα περιγράφεται από σύστημα εξισώσεων σε μορφή πινάκων. Αυτό επιτυγχάνεται με την αναγνώριση και ανάπτυξη σχέσεων μεταξύ των διαφόρων καταστάσεων ή μεταβλητών του μοντέλου. Επιλέγεται η τιμή κέρδους στον βρόγχο ανάδρασης για την μεταφορά των πόλων του συστήματος σε κάποια επιθυμητή θέση στο επίπεδο s ή z. 1

13 Ελεγκτές εσωτερικής κατάστασης (State controller χρησιμοποιούνται για έλεγχο συστημάτων με πολλές μεταβλητές ή καταστάσεις (πολυμεταβλητά συστήματα). Αυτοί οι ελεγκτές δεν υπολογίζονται άμεσα διότι ίσως δεν είναι δυνατό να μετρηθούν όλες οι μεταβλητές εσωτερικής κατάστασης αλλά χρησιμοποιούνται σε συνδυασμό με εκτιμητές (Observer. Οι ελεγκτές του τύπου αυτού επιτρέπουν λεπτομερειακό έλεγχο της συμπεριφοράς του συστήματος Εκτιμητές (Observer model) Συχνά στα συστήματα ελέγχου, ορισμένες από τις μεταβλητές εσωτερικής κατάστασης δεν είναι δυνατόν να μετρηθούν. Χρησιμοποιείται στην περίπτωση αυτή, ένας εκτιμητής (observer ή estimator) για την εκτίμηση των αγνώστων μεταβλητών με την βοήθεια γνωστών μεταβλητών. Oι εκτιμώμενες μεταβλητές και το κατάλληλο κέρδος ανάδρασης μπορούν να χρησιμοποιηθούν στον πλήρη έλεγχο βρόγχου για να τοποθετήσουν τους πόλους σε επιθυμητή θέση. Επομένως χρησιμοποιούνται εκτιμητές σε συνδυασμό με ελεγκτές εσωτερικής κατάστασης στις περιπτώσεις που ορισμένες μεταβλητές εσωτερικής κατάστασης είναι άγνωστες Βέλτιστος Έλεγχος Βέλτιστος Έλεγχος χρησιμοποιείται στις περιπτώσεις που απαιτείται ελαχιστοποίηση συγκεκριμένης απόδοσης ή κριτηρίου κόστους (χρόνος και ενέργεια). Χρησιμοποιώντας το συγκεκριμένο κριτήριο ή συνάρτηση, σχεδιάζεται κατάλληλος κανόνας ελέγχου που υλοποιείται με ελεγκτή που είναι γνωστός σαν τετραπλός γραμμικός ρυθμιστής LQR (Linear Quadratic Regulator) Φίλτρα Κalman Το μοντέλο με παρατηρητή χρησιμοποιείται σε ένα σύστημα που υπάρχει επακριβής μέτρηση εσωτερικών μεταβλητών. Όμως, η παρουσία θορύβου ή αβεβαιότητας στα στοχαστικά συστήματα, κάνει δύσκολη την επακριβή μέτρηση. Επομένως, το φίλτρο alman είναι ένα μοντέλο παρατηρητή που χρησιμοποιείται σε στοχαστικά συστήματα με θόρυβο Προσαρμοστικός Έλεγχος 13

14 Ο προσαρμοστικός έλεγχος χρησιμοποιείται σε συστήματα με ελλειπή πληροφόρηση σχετικά με τις παραμέτρους της διεργασίας με αποτέλεσμα το μαθηματικό μοντέλο (συνάρτηση μεταφοράς) να είναι άγνωστο. Επίσης, χρησιμοποιείται σε συστήματα των οποίων οι παράμετροι της διεργασίας ή του μοντέλου μεταβάλλονται με την πάροδο του χρόνου, με αποτέλεσμα ο ελεγκτής να αδυνατεί να βελτιώσει το σύστημα. Ο προσαρμοστικός έλεγχος λειτουργεί σε πραγματικό χρόνο (real time) και τις μεταβολές του μοντέλου και ξανασχεδιάζει τον ελεγκτή για βέλτιστη απόδοση δηλαδή έχουμε ένα σύστημα βέλτιστου ελέγχου. 1.5 Προδιαγραφές καλής λειτουργίας και σχεδίασης ΣΑΕ Προδιαγραφές καλής λειτουργίας Κύριος στόχος του συστήματος ελέγχου είναι η εξουδετέρωση των διαταραχών και παράλληλα η διατήρηση του συστήματος σε ευστάθεια. Στην πραγματικότητα χωρίς διαταραχές δεν θα υπήρχε ανάγκη για συστήματα με αναδραστικό έλεγχο. Τα κέρδη ανάδρασης σε ένα βρόγχο ελέγχου επενεργούν για εξουδετέρωση των διαταραχών. Για παράδειγμα, αν μία διαταραχή είναι σταθερή τότε η ενέργεια της ολοκλήρωσης θα μηδενίσει το σφάλμα σταθερής κατάστασης. Όμως, αν η διαταραχή είναι άλλης μορφής τότε χρειάζεται να ληφθούν επιπλέον μέτρα. Δηλαδή πρέπει να ληφθεί υπ όψιν η προέλευση της διαταραχής και να αυξηθεί το κέρδος. Αν η διαταραχή ασκείται εκτός βρόγχου ελέγχου και επηρεάζει την είσοδο αναφοράς ή τη μέτρηση, τότε η προσθήκη προσωτροφοδοτικού βρόγχου θα ελαχιστοποιήσει την επίδραση της διαταραχής. Αν η διαταραχή ασκείται μέσα στο βρόγχο και επηρεάζει τη διεργασία, τότε το κέρδος πρέπει να αυξηθεί σε υψηλή τιμή. Πρέπει να ληφθεί ιδιαίτερη προσοχή για ευαισθησία σε μεταβολές των παραμέτρων, ειδικά όταν η διεργασία παρουσιάζει σταδιακά μεταβαλλόμενες παραμέτρους που οφείλονται σε επιδράσεις ή ολισθήσεις (drift). Η ελαχιστοποίηση αυτών των επιδράσεων είναι παρόμοια με αυτή των διαταραχών. Όμως, μερικοί τύποι ελεγκτών π.χ. φίλτρα (deadbeat) που αντικαθιστούν τους πόλους έχουν μεγαλύτερη ευαισθησία στις μεταβολές των παραμέτρων και πρέπει να αποφεύγεται η χρήσης τους. Σε αυτή τη περίπτωση πρέπει να χρησιμοποιηθεί προσαρμοστικός έλεγχος. Μερικές φορές κρίνεται απαραίτητο να μηδενισθεί η ενέργεια ελέγχου ή άλλη παράμετρος του συστήματος. Τεχνικές βέλτιστου 14

15 ελέγχου μπορούν να χρησιμοποιηθούν για τον υπολογισμό των κανόνων ελέγχου και την μετακίνηση των πόλων στο σύστημα. Αυτό αναφέρεται σαν βέλτιστος έλεγχος και εκτιμητές καταστάσεων. Γενικά συστήματα με μικρή απόκριση ή μεγάλο εύρος (BW) απαιτούν μεγαλύτερη προσπάθεια ελέγχου. Για τον επιτυχή σχεδιασμό ενός συστήματος ελέγχου, είναι σημαντικό να καθορίζονται πρώτα τα κριτήρια απόδοσης. Η καθιέρωση των προδιαγραφών καλής λειτουργίας δεν είναι μια εύκολη εργασία και συνήθως απαιτεί κάποια εμπειρία. Απ την άλλη μεριά, αν οι προδιαγραφές καλής λειτουργίας είναι υπερβολικά αυστηρές, η πολυπλοκότητα και το κόστος του συστήματος ελέγχου θα γίνει απαγορευτικό. Επίσης εάν οι προδιαγραφές καλής λειτουργίας είναι χαλαρές, το σύστημα ελέγχου δεν είναι δυνατόν να λειτουργήσει ικανοποιητικά. Οι παράγοντες που απαιτούν προσεκτική μελέτη είναι το κόστος, η αξιοπιστία, το μέγεθος και βάρος, η ταχύτητα απόκρισης, η ευστάθεια, η ακρίβεια, και η ευκολία στην λειτουργία και στην συντήρηση. Αυτοί οι παράγοντες συζητούνται εν συντομία παρακάτω. α. Επιλογή hardware Τα συστήματα αναδραστικού ελέγχου μπορεί να χρησιμοποιούν μηχανικό, ηλεκτρικό, υδραυλικό, πνευματικό, ή έναν συνδυασμό εξαρτημάτων για αισθητήρια, ενεργοποιητές, ανιχνευτές λαθών, και για εφαρμογή του κανόνα ελέγχου. Στην ρομποτική και στην αυτοματοποιημένη παραγωγή, οι DC ηλεκτρικοί κινητήρες χρησιμοποιούνται ως ενεργοποιητές όταν οι απαιτήσεις σε ιπποδύναμη είναι μικρές. Όταν όμως η απαιτούμενη ισχύς είναι μεγάλη, υδραυλικοί ενεργοποιητές προτιμούνται λόγω καλύτερης αναλογίας ιπποδύναμης προς βάρος. Λόγω του πλεονεκτήματος αυτού,τα ηλεκτροϋδραυλικά συστήματα ελέγχου χρησιμοποιούνται στα αεροσκάφη και στους πυραύλους. Τα πνευματικά συστήματα συνήθως χρησιμοποιούνται στον πετροχημικό έλεγχο διεργασίας λόγω της σχετικής ασφάλειας όσον αφορά τον κίνδυνο πυρκαγιάς και εκρήξεως. Πεπιεσμένος αέρας μπορεί να τροφοδοτηθεί από μια απομακρυσμένη θέση. Τα πνευματικά συστήματα είναι αργής απόκρισης σε σύγκριση με τα ηλεκτρικά και τα υδραυλικά συστήματα, αλλά αυτό δεν αποτελεί σοβαρό μειονέκτημα στον έλεγχο διεργασιών επειδή οι περισσότερες διεργασίες είναι από τη φύση τους αργής απόκρισης. β. Σταθερή λειτουργία με επαρκές όριο σταθερότητας 15

16 Τα συστήματα αναδραστικού ελέγχου είναι επιρρεπή σε αστάθεια. Στα ενεργά συστήματα ελέγχου, μια συμπληρωματική πηγή ισχύος είναι διαθέσιμη σε ένα ή περισσότερα σημεία του συστήματος αναδραστικού ελέγχου έτσι ώστε υπάρχει η πιθανότητα για αστάθεια. Σε έναν ασταθή τρόπο λειτουργίας, μια γρήγορη και καταστρεπτική απόκριση του συστήματος μπορεί να καταστήσει το σύστημα άχρηστο. Σε μερικές περιπτώσεις, μη γραμμικότητες όπως ο κόρος, μπορεί να περιορίζει την ανάπτυξη της ασταθούς απόκρισης και να δίνει εύρος ή αυτοδιεγειρούμενες ταλαντώσεις, οι οποίες καλούνται οριακοί κύκλοι. Γι αυτό, απαιτείται όχι μόνο το σύστημα ελέγχου πρέπει να λειτουργεί με σταθερό τρόπο, αλλά επίσης ένα επαρκές όριο σταθερότητας πρέπει να καθοριστεί για να προσαρμόσουμε τις μεταβολές των παραμέτρων. γ. Επιτρεπτή μεταβατική απόκριση Στους ρυθμιστές και στους σερβομηχανισμούς, είναι επιθυμητό να συγκρίνουμε το σήμα εισόδου και την απόκριση της ελεγχόμενης εξόδου ως συναρτήσεις του χρόνου για να προσδιορίσουμε την ταχύτητα και την απόκλιση της απόκρισης απ αυτή της εισόδου. Η προδιαγραφή μιας επιτρεπτής μεταβατικής απόκρισης είναι συνήθως βασισμένη σε ένα βηματικό σήμα εισόδου, το σήμα ελέγχου. Τυπικά κριτήρια λειτουργίας που χρησιμοποιούνται για να χαρακτηρίσουν την απόκριση μετάβασης σε μία βηματική είσοδο, περιλαμβάνουν χρονική καθυστέρηση και αύξηση χρόνου για την αρχική ταχύτητα της απόκρισης μέγιστη υπερύψωση για την απόκλιση, και ο απαραίτητος χρόνος αποκατάστασης μέχρι να ηρεμήσει μέσα σε καθορισμένα όρια, επί της τελικής της τιμής στην αποκατάσταση. δ. Προδιαγραφές περιοχής συχνότητας Οι προδιαγραφές στην περιοχή συχνότητας βασίζονται σε ένα ημιτονοειδές σήμα εισόδου, ως σήμα ελέγχου. Τα κριτήρια λειτουργίας που χρησιμοποιούνται για να χαρακτηρίσουν την απόκριση συχνότητας είναι η υπερύψωση και το εύρος ζώνης κορυφής. Η υπερύψωση σχετίζεται με το μέγεθος της μέγιστης υπερύψωσης και του χρόνου ηρεμίας της απόκρισης σε μεταβατική κατάσταση. Το εύρος ζώνης, είναι ένα μέτρο ικανότητας του συστήματος να αποβάλλει τον θόρυβο από το σήμα. ε. Απόρριψη διαταραχής Σε έναν ρυθμιστή, μια καλή ιδιότητα απόρριψης διαταραχής αναφέρεται στην ακρίβεια της σταθερής κατάστασης όπου το σφάλμα μεταξύ του σήματος εισόδου και της ελεγχόμενης εξόδου είναι μικρό και 16

17 βρίσκεται μέσα σε αποδεκτά όρια υπό την επίδραση των διαταραχών. Για παράδειγμα, στην περίπτωση του ρυθμιστή ταχύτητας για ένα αυτοκίνητο, το σφάλμα απαιτείται να είναι μέσα σε επιτρεπτά όρια όταν το αυτοκίνητο ταξιδεύει ανηφορικά ή κατηφορικά. Σε έναν σερβομηχανισμό, η ορθή απόρριψη παρεμβολής, αναφέρεται στην ικανότητα του συστήματος να διατηρεί το σφάλμα μικρό όσο το σήμα εισόδου του μεταβάλλεται. Για παράδειγμα, στην καθοδήγηση μιας ρουκέτας, οι επιπτώσεις των παρεμβολών λόγω του αέρα πρέπει να ελαχιστοποιηθούν για να κρατήσουν την ρουκέτα κοντά στην επιθυμητή τροχιά. στ. Ευαισθησία σε μεταβολές των παραμέτρων Η απόδοση ενός συστήματος ελέγχου εξαρτάται από τις τιμές των παραμέτρων του, οι οποίες μπορεί να μεταβάλλονται λόγω φθοράς και γήρανσης των στοιχείων και μεταβολές στο περιβάλλον. Ένας στόχος σχεδιασμού είναι να ελαχιστοποιηθεί η επίδραση από μεταβολές των παραμέτρων. Ένα σύστημα το οποίο έχει πολύ καλή απόρριψη παρεμβολών και χαμηλή ευαισθησία σε μεταβολές των παραμέτρων, ονομάζεται εύρωστο (robust). ζ. Δείκτης απόδοσης Στον σχεδιασμό συστημάτων ελέγχου με την τεχνική του βέλτιστου ελέγχου (optimal control), στόχος είναι να βελτιστοποιήσουμε έναν συντελεστή ποιότητας ο οποίος ονομάζεται δείκτης απόδοσης. Ο δείκτης απόδοσης περιλαμβάνει τις μεταβλητές - κλειδιά του συστήματος ελέγχου που επιθυμούμε να βελτιστοποιήσουμε. Στόχος μπορεί να είναι η ελαχιστοποίηση του χρόνου, των καυσίμων, της ενέργειας ελέγχου, του σφάλματος και συνδυασμού αυτών. Η θεωρία του βέλτιστου ελέγχου είναι ωστόσο, πέρα από τα όρια αυτού του βιβλίου αν και μια γενική περιγραφή, δίνεται στο κεφάλαιο που αναφέρεται στις τεχνικές μοντέρνου ελέγχου Διαδικασία σχεδίασης Η διαδικασία που ακολουθείται στη σχεδίαση με δοκιμή/σφάλμα, της δοκιμής και τροποποίησης έχει σοβαρά μειονεκτήματα και μια αναλυτική διαδικασία σχεδίασης είναι σαφώς προτιμότερη. Μια επισκόπηση της αναλυτικής διαδικασίας για τη σχεδίαση συστημάτων ελέγχου είναι χρήσιμη, πριν εξετάσουμε τις συγκεκριμένες τεχνικές που αναπτύσσονται και παρατίθενται στα επόμενα κεφάλαια. 17

18 Είναι δύσκολο να περιγράψεις μια μοναδική διαδικασία σχεδίασης. Στην πράξη υπάρχουν πολλές αντιφασκούμενες απαιτήσεις, οι οποίες αν και δεν είναι συμβατές,συνήθως συμβιβάζονται αλλά απαιτείται επανάληψη. Για παράδειγμα, εάν επιθυμείται υψηλή ακρίβεια, τότε το κόστος θα είναι υψηλό. Θα δούμε αργότερα ότι ένα υψηλό περιθώριο ευστάθειας περιορίζει την ικανότητα απόρριψης του θορύβου. Μια προτεινόμενη μέθοδος σχεδίασης δίνεται ως ακολούθως: α. Προδιαγραφές καλής απόδοσης Τα κριτήρια καλής απόδοσης μελετούνται πρώτα, και οι αποδεκτές προδιαγραφές καθιερώνονται. Οι συνήθως χρησιμοποιούμενες προδιαγραφές έχουν αναφερθεί πιο πριν. β. Εννοιολογικός σχεδιασμός Τα στοιχεία του συστήματος ελέγχου, όπως ο αισθητήρας, ο ενεργοποιητής, και το hardware για την υλοποίηση του κανόνα ελέγχου, επιλέγονται από ηλεκτρικά, ηλεκτρονικά, υδραυλικά, πνευματικά ή συνδυασμούς αυτών με βάση αυτών που αναφέρθηκαν παραπάνω. Η ακρίβεια, η ανάλυση και το μέγεθος των στοιχείων, απαιτούν προσεκτική μελέτη. Ένα όμως σχηματικό διάγραμμα του εννοιολογικού σχεδίου είναι τώρα έτοιμο. γ. Μαθηματική μοντελοποίηση Ένα μαθηματικό μοντέλο του συνολικού συστήματος ελέγχου, αποκτάται έτσι ώστε το σχηματικό διάγραμμα του εννοιολογικού σχεδίου παριστάνεται από ένα σύνολο εξισώσεων. Διαφορετικοί τύποι μαθηματικών μοντέλων που μπορούν να χρησιμοποιηθούν εξετάζονται λεπτομερειακά στην ελληνική και διεθνή βιβλιογραφία. δ. Εγκυρότητα μοντέλου και αναγνώριση μοντέλων Συνήθως πολλές απλοποιήσεις και υποθέσεις γίνονται για την απόκτηση των μοντέλων. Γι αυτό το λόγο, η πειραματική επαλήθευση και αναγνώριση των τιμών των παραμέτρων είναι απαραίτητη. Η μέθοδος απόκρισης συχνότητας είναι η πιο κατάλληλη για την πειραματική επαλήθευση του μοντέλου και αναγνώριση των παραμέτρων των μοντέλων τα οποία περιγράφονται από γραμμικές διαφορικές εξισώσεις με σταθερούς συντελεστές. Σ αυτό το στάδιο, το συνολικό σύστημα ελέγχου δεν είναι διαθέσιμο για έλεγχο, αλλά το σύστημα που θα ελεγχθεί, είναι συνήθως γνωστό. Επίσης οι πειραματικές αποκρίσεις συχνότητας των περισσοτέρων στοιχείων είναι συνήθως διαθέσιμες από τους κατασκευαστές τους. 18

19 ε. Ανάλυση του μαθηματικού μοντέλου Η απόδοση ενός συστήματος ελέγχου αναλύεται χρησιμοποιώντας το μαθηματικό του μοντέλο. Η ευστάθεια και ένα επαρκές περιθώριο ευστάθειας, η ταχύτητα απόκρισης, και η απόρριψη διαταραχών είναι μερικά από τα κριτήρια καλής απόδοσης στ. Τροποποίηση και επαναλήψεις Οι ανεξάρτητες παράμετροι βελτιστοποιούνται, ο κανόνας ελέγχου τροποποιείται, και επαναλήψεις εκτελούνται μεταξύ των προηγουμένων βημάτων έως ότου ικανοποιηθούν οι προδιαγραφές και η απόδοση είναι ικανοποιητική. ζ. Κατασκευή και έλεγχος Το τελευταίο βήμα είναι η κατασκευή και η δοκιμή του ολοκληρωμένου συστήματος ελέγχου, ή του προτύπου, για να επιβεβαιωθεί ότι η πραγματική λειτουργία είναι όπως προβλέπεται από το μαθηματικό της μοντέλο. 1.6 Αντισταθμιστής PID σε Σύστημα ου Βαθμού Η βελτίωση της ευστάθειας των Συστημάτων Ελέγχου επιτυγχάνεται με την προσθήκη ειδικών βαθμίδων που ονομάζονται αντισταθμιστές ή ελεγκτές. Προκειμένου να οδηγηθούμε στο τελικό συμπέρασμα ότι η προσθήκη βαθμίδας ελεγκτή σε ένα σύστημα ΣΑΕ πάντοτε βελτιώνει την ευστάθεια, τεκμηριώνεται με ένα γενικό παράδειγμα. Δίνεται η συνάρτηση μεταφοράς συστήματος ου βαθμού της μορφής G( s ( s + a + 1 jb) ( s + a και η αντίστοιχη συνάρτηση του PID ελεγκτή D( p + s i + d ( s s jb) + cs + d) ( s + e)( s s s + Παρατηρούμε ότι η προσθήκη του ελεγκτή προσθέτει ένα πόλο στο s0 και δυο μηδέν στα σημεία -e και -f. f ) 19

20 Επομένως η νέα συνάρτηση μεταφοράς του ανοιχτού συστήματος έχει την μορφή: 1 ( s + e) ( s + f ) D( G( s ( s + a jb) ( s + a + jb) Ο τόπος των ριζών της G(, χωρίς τον ελεγκτή δίνεται στο Σχ.1.7(α) ενώ στο Σχ. 1.7(β) ο τόπος των ριζών ανοιχτού συστήματος G(D( που περιλαμβάνει και την συνάρτηση μεταφοράς του PID ελεγκτή. Παρατηρούμε ότι υπάρχει μία μετακίνηση των πόλων προς τα αριστερά με αποτέλεσμα να αυξάνεται η ευστάθεια του συστήματος. Επομένως συμπεραίνεται πως η προσθήκη ενός ελεγκτή PID πάντοτε βελτιώνει την συμπεριφορά ενός συστήματος ου Βαθμού. Σχ1.7 Τόπος των ριζών : (α) χωρίς αντιστάθμιση (β) με αντιστάθμιση 0

21 1.7 Αναλογικοί Ελεγκτές PID Η ενότητα αυτή αναφέρεται στους τύπους ελεγκτών PID που χρησιμοποιούνται στον έλεγχο διεργασιών Στο γενικό περίγραμμα Σ.Α.Ε (Σχ. 1.8) η διαταραχή d (επίσης ονομάζεται φορτίο) μεταβάλλεται απρόβλεπτα και σκοπός μας είναι να διατηρηθεί η έξοδος y στην επιθυμητή τιμή. Η τιμή y m του αισθητηρίου μέτρησης (έξοδος διεργασίας) συγκρίνεται με την επιθυμητή τιμή y sp και υπολογίζεται το σφάλμα ε y sp - y m d y sp ε(t) Ελεγκτής c(t) Στοιχείο Ελέγχου m(t) Διεργασία y y m Στοιχείο Μέτρησης Σχ1.8 Κλειστός βρόγχος ελέγχου διεργασίας Η τιμή του ε στέλνεται στον ελεγκτή και στη συνέχεια ο ελεγκτής μεταβάλλει το σήμα m στην έξοδο του τελικού στοιχείου ελέγχου ώστε η τιμή της ε να μηδενιστεί. Συνήθως το τελικό στοιχείο ελέγχου είναι μία βαλβίδα ελέγχου. Οι διάφοροι τύποι αναλογικών ελεγκτών διαφέρουν ως προς τον τρόπο που σχετίζεται το ε(t) με το c(t). Το σήμα εξόδου του ελεγκτή μπορεί να είναι πνευματικό για πνευματικούς ελεγκτές ή ηλεκτρικό για ηλεκτρονικούς ελεγκτές. Υπάρχουν τρεις βασικοί τύποι ελεγκτών P(Αναλογία), PI(Αναλογία- Ολοκλήρωση), PID(Αναλογία -Ολοκλήρωση- Διαφόριση) α) Ελεγκτής P (αναλογία) c(t) c ε(t) όπου c είναι το κέρδος αναλογίας Επομένως η συνάρτηση D( c 1

22 PB 100/ c όπου 1 PB 500 β) Ελεγκτής PI Είναι γνωστός ως ελεγκτής αναλογίας και ολοκλήρωσης c(t) c ε(t) + c /τ i t 0 ε(t)dt όπου τ i είναι η σταθερά χρόνου ολοκλήρωσης ή χρόνος αποκατάστασης (reset time) Συνήθως η τιμή της τ i κυμαίνεται 0.1 τ i 50 min Επομένως D( c (1 + 1/ τ i * γ) Ελεγκτής PID Είναι συνήθως γνωστός ως ελεγκτής αναλογίας ολοκλήρωσης διαφόρισης. H έξοδος του ελεγκτή c(t) δίνεται από την εξίσωση c(t) c ε(t) + c /τ i όπου τ d η σταθερά χρόνου διαφόρισης Επομένως D( c (1 + 1/ τ i * s + τ d* t 0 de ε(t)dt + c * τ d dt Οι τιμές των Κ c, Τ i και Τ d υπολογίζονται με διάφορες μεθόδους αναλυτικές ή εμπειρικές που περιγράφονται στη συνέχεια Σχεδιασμός ελεγκτών με τη μέθοδο απόκριση συχνότητας Η μέθοδος απόκριση συχνότητας είναι ένα χρήσιμο εργαλείο για τον σχεδιασμό ελεγκτών ανάδρασης. Δίνεται η δυνατότητα να μελετηθεί η ευστάθεια των συστημάτων κλειστού βρόγχου με τη χρήση των διαγραμμάτων BODE και Nyquist τα οποία βρίσκονται από την συνάρτηση μεταφοράς ανοιχτού βρόγχου και επίσης να επιλεχθούν οι πιο κατάλληλες τιμές για τις μεταβαλλόμενες τιμές των παραμέτρων του ελεγκτή. Στην ενότητα αυτή περιγράφονται μόνο τα κριτήρια BODE. Το κριτήριο ευστάθειας BODE είναι μια ορθολογική μέθοδος συντονισμού των ελεγκτών ανάδρασης για την αποφυγή αστάθειας σε ένα κλειστό σύστημα βρόγχου. Από τα διαγράμματα BODE της συνάρτησης μεταφοράς ανοιχτού βρόγχου του συστήματος, που δίνεται

23 στο Σχ. 1.9, βρίσκονται δυο σημαντικά χαρακτηριστικά η συχνότητα θλάσης ω c0 και το σημείο όπου το κέρδος της G Τ (jω) είναι μονάδα δηλ. AR1. Σχ Περιθώρια κέρδους και φάσης Ένα σύστημα ελέγχου είναι ευσταθές αν η τιμή του μέτρου ΑR της συνάρτησης μεταφοράς ανοιχτού βρόγχου G(jω) του συστήματος, για ωω c0, είναι μικρότερο της μονάδας και ασταθές αν το μέτρο είναι μεγαλύτερο της μονάδας. Αν Α είναι η συγκεκριμένη τιμή της ΑR για ωω c0 τότε: για Α<1 το σύστημα είναι ευσταθές και για Α>1 το σύστημα είναι ασταθές Από τα διαγράμματα του Σχ βρίσκονται επίσης το περιθώριο κέρδους ΠΚ ή GΜ και το περιθώριο φάσεως ΠΦ ή PM Το περιθώριο κέρδους ορίζεται από τη σχέση GM 1 A Για ευσταθές σύστημα πρέπει Α<1 ή GM>1, συνήθως η τιμή GM είναι περίπου -3 ή 8db 3

24 Το περιθώριο φάσεως ορίζεται από τη σχέση PM180 ο φ 1, όπου φ1 G T ( jω) Στην πράξη το PM πρέπει να είναι μεγαλύτερο από 30 ο (PM>30 ο ) Τα περιθώρια κέρδους και φάσεως αποτελούν τα κριτήρια ασφαλείας στο σχεδιασμό συστημάτων αυτομάτου ελέγχου. Επομένως για τον υπολογισμό των παραμέτρων του PID ελεγκτή πρώτα επιλέγεται το επιθυμητό περιθώριο φάσεως PM και στη συνέχεια υπολογίζονται οι τιμές των παραμέτρων Μέθοδος Zeigler-Nichols α) Γνωστό μοντέλο διεργασίας Η περίπτωση αυτή εφαρμόζεται όταν η συνάρτηση μεταφοράς G( της διεργασίας είναι γνωστή. Διάφοροι τρόποι υπολογισμού των παράμετρων του PID ελεγκτή στηρίζονται στις εξισώσεις που αναπτύχθηκαν εμπειρικά από τους Ziegler-Nichols και αναφέρονται παρακάτω. 1. Οι παράμετροι των όρων ολοκλήρωσης και διαφόρισης τοποθετούνται στη χαμηλότερη δυνατή τιμή (δηλαδή τα Τ i, Τ d ) και τo κέρδος c αυξάνεται σταδιακά μέχρι να παρατηρηθεί ταλάντωση σταθερού εύρους στην έξοδο (Σχ 1.10). Το κέρδος σε αυτή την περίπτωση ονομάζεται κρίσιμο Κ κρισ και η περίοδος Τ 0 υπολογίζεται από την κυματομορφή με παλμογράφο, στη συνέχεια από τις παρακάτω εξισώσεις υπολογίζονται οι παράμετροι του PID ελεγκτή: PID: p 0.6 κρ. ή Κ c 0.6 κρ. i p/t o Τ i 0.5T o T o / Κ d 0.15Κ p T o T d 0.15T o T o /8 PI: p 0.50 κρ. Κ c 0.50 κρ. i 1. p / To T i 0.83T o T o /1. P: p 0.5 κρ. 4

25 Σχ1.10 Κυματομορφή εξόδου διεργασίας. Οι παράμετροι Κ κρισ και Τ 0 μπορούν εναλλακτικά να υπολογιστούν και από τα διαγράμματα BODE (απόκριση στο πεδίο της συχνότητας) του Σχ Κρίσιμο κέρδος: Κ κρ 1/Α ω Κρίσιμη περίοδος: Τ 0 π/ω 0 ω Σχ Διαγράμματα Bode. Από το διάγραμμα φάσης υπολογίζεται η συχνότητα θλάσης ω o και από την καμπύλη εύρους υπολογίζεται το Α που αντιστοιχεί στο ω o, και υπολογίζονται Κ κρ. 1/Α και Τ ο π/ω o. Στη συνέχεια υπολογίζονται οι τιμές του Κ c, Τ i και T d από τις εξισώσεις Ζ-Ν. Επισημάνεται πως οι τιμές αυτές χρειάζονται περαιτέρω ρύθμιση για να επιτύχουμε τέλεια απόκριση, αποτελούν όμως ένα πρώτο αποδεκτό ζεύγος τιμών. 5

26 3. Οι τιμές των παραμέτρων του PID ελεγκτή μπορούν επίσης να υπολογιστούν και με αλγεβρικό τρόπο. Αρχικά βρίσκεται η συχνότητα θλάσης ή κρίσιμη συχνότητα ω o που αντιστοιχεί στο σημείο όπου η καμπύλη φάσεως τέμνει ή προσεγγίζει τις -180 ο και δίνεται από την σχέση : -180 ο G( sjω G(jω) Επιλέγονται τιμές του ω μέχρις ότου βρεθεί μία και μοναδική τιμή του ω που ονομάνεται ω o και ικανοποιεί την εξίσωση. Από την εξίσωση κερδών της G( : 0log A 0log G( sjω,για ω ω o βρίσκεται η τιμή του Α Στη συνέχεια υπολογίζονται τα Τ o και Κ κρ από τις σχέσεις : Τ o π/ω o και Κ κρ. 1/Α Τέλος οι τιμές των παραμέτρων του PID υπολογίζοναι από τις εξισώσεις Ziegler-Nichols (πίνακας 1.). β) Άγνωστο μοντέλο διεργασίας Στην περίπτωση αυτή, πρώτα βρίσκεται η άγνωστος G( της διεργασίας και στη συνέχεια βρίσκονται οι παράμετροι του PID ελεγκτή. Το μοντέλο της αγνώστου διεργασίας υπολογίζεται από την καμπύλη απόκρισης στο πεδίο του χρόνου της μεταβλητής εξόδου C(, σε βηματική μεταβολή της εισόδου R(. (α) Εφαρμόζεται βηματική μεταβολή μοναδιαίας τιμής στην είσοδο της διεργασίας και ταυτόχρονα καταγράφεται η μεταβλητή στην έξοδο C. Από τις τιμές αυτές σχηματίζεται η καμπύλη απόκρισης στο πεδίο του χρόνου της αγνώστου διεργασίας. (β) Από την χρονική απόκριση ανοιχτού βρόγχου υπολογίζοται, κατά προσέγγιση, οι παράμετροι της αγνώστου συνάρτησης μεταφοράς G(. Συνήθως επιλέγεται μοντέλο προσομοίωσης 1ου βαθμού με καθυστέρηση της μορφής : st1 G( e 1+ st (γ) Οι τιμές των παραμέτρων Κ, Τ 1, Τ της G( βρίσκονται γραφικά από την κυματομορφή βηματικής απόκρισης στο πεδίο του χρόνου που εικονίζεται στο Σχ.1.1 6

27 (δ) Οι μέσες τιμές των παραμέτρων του ελεγκτή PID υπολογίζονται αν είναι γνωστές οι Κ, Τ 1, Τ της G(. (ε) Τέλος με ρύθμιση γύρω από τις μέσες τιμές επιλέγονται οι τελικές τιμές για τον έλεγχο της μεταβλητής C. ΔyΚ*Δx y x Σχ.1.1 Βηματική απόκριση ανοιχτού βρόγχου Επομένως με προσομοίωση μοντέλου 1ου βαθμού και για συνάρτηση μεταφοράς του PID 1 D( c ( T s 1 T s ) υπολογίζονται οι παράμετροι του ελεγκτή PID από τις εξισώσεις του Zeigler - Nichols του πίνακα 1.1. d PID PI P όπου S T ΠΙΝΑΚΑΣ 1.1 Κ c T i T d 1. ST 1 T 1 0.5T ST 1 3Τ 1 1 ST 1 είναι η κλίση της καμπύλης απόκρισης Μέθοδος Cohen - Coon Οι Cohen-Coon ανέπτυξαν μια μέθοδο παραπλήσια αυτής των Zeigler - Nichols για τον υπολογισμό του μοντέλου αγνώστου διεργασίας. Η προσομοίωση με μοντέλο 1ου βαθμού χρησιμοποιείται είτε η συνάρτηση μεταφοράς είναι γνωστή είτε είναι άγνωστος. 7

28 Το σύστημα ελέγχου του διαγράμματος Σχ ανοίγεται στο σημείο 1 και εισάγεται η βηματική διέγερση A/s στον ανοιχτό βρόγχο του υπόλοιπου διαγράμματος δηλ. εισάγεται στην είσοδο της βαλβίδος, και συγχρόνως καταγράφεται η έξοδος. Επιλέγεται το άνοιγμα του βρόγχου στο σημείο 1 για να μην συμπεριλαμβάνεται η συνάρτηση μεταφοράς D( του ελεγκτή που προκαλεί ημιτονοειδή απόκριση. Η καμπύλη που σχηματίζεται από τις τιμές συναρτήσει του χρόνου ονομάζεται βηματική απόκριση του συστήματος στο πεδίο του χρόνου. R( 1 A/s L( D( G βαλβ. ( G( Β( ή Υ( H( Σχ Κύκλωμα ανοιχτού βρόγχου Υποθέτουμε ένα κατ εκτίμηση μοντέλο προσομοίωσης πρώτου βαθμού με συνάρτηση μεταφοράς της μορφής G εκτ -t e d s ( s τ + 1 Οι παράμετροι του μοντέλου κέρδος (), σταθερά απόκρισης (t d ) και σταθερά της διεργασίας (τ) υπολογίζονται με δύο τρόπους: α) Από την καμπύλη απόκρισης στο πεδίο του χρόνου του Σχ.1.14 η οποία ονομάζεται και καμπύλη εκτίμησης υπολογίζονται οι παράμετροι του μοντέλου προσομοίωσης Κ, t d και τ. B Κ, όπου Β είναι η τελική τιμή της εξόδου στην αποκατάσταση και A A το αντίστοιχο σήμα στην είσοδο 1 που προκαλεί τη μεταβολή. B C B τ, όπου S είναι η κλίση της καμπύλης και t d η S T t σταθερά καθυστέρησης. και α t d /τ Oι παράμετροι του ελεγκτή PID υπολογίζονται από τις εξισώσεις του πίνακα 1.,. 8

29 Σχ Βηματική απόκριση β) Εναλλακτικά, οι παράμετροι Κ, τ και t d του μοντέλου μπορούν επίσης να υπολογιστούν και από την χρονική καμπύλη απόκρισης C του Σχ.1.15 που σχηματίζεται από μοναδιαίας τιμής βηματική μεταβολή στην είσοδο του ενεργοποιητή ή της διεργασίας (Σχ. 1.13). Στη συνέχεια, από την καμπύλη βηματικής απόκρισης στο πεδίο του χρόνου της διεργασίας, υπολογίζονται οι παράμετροι Κ, t d και τ της διεργασίας, για συνάρτηση μεταφοράς 1 ου t d s e βαθμού, G ( από τις εξισώσεις: τs +1, 1.5( t ) C m 1 τ t , t d 1.5 t 0.8 t0. 63, 3 t a d τ Σχ Βηματική απόκριση Cohen-Coon Στη συνέχεια υπολογίζονται οι παράμετροι του ελεγκτή με τη βοήθεια των εξισώσεων του πίνακα 1.. 9

30 Παρατηρήσεις: 1. Οι υπολογιζόμενες τιμές του ελεγκτή με τη βοήθεια των εξισώσεων του Πίνακα 1. στηρίζονται στην προϋπόθεση ότι το υποτιθέμενο μοντέλο 1 ης τάξης περιγράφει ικανοποιητικά την απόκριση ανοιχτού βρόγχου της διεργασίας. Αν η περιγραφή είναι κακή,τότε οι τιμές του Cohen-Coon αποτελούν μία πρώτη εκτίμηση και απαιτείται περαιτέρω διόρθωση.. Η απόκριση ανοιχτού βρόγχου έχει σχεδόν πάντοτε τη μορφή της κυματομορφής του Σχ ή 1.15 (overdamped) διότι σχεδόν όλες οι φυσικές διεργασίες υγρών περιγράφονται ικανοποιητικά από σύστημα 1 ης τάξεως. Η απόκριση φθίνουσα ταλάντωση (underdamped) προκαλείται κυρίως από την παρουσία αναδραστικού ελεγκτή στο μπλοκ διάγραμμα. Επομένως το άνοιγμα του βρόγχου επιλέγεται σε σημείο που τίθεται εκτός ο ελεγκτής D( Σχ Από τις εξισώσεις του Πίνακα 1. που δίνουν τις τιμές του c για τους τρείς ελεγκτές P, PI, PID παρατηρούνται τα εξής: α) Το κέρδος του PI ελεγκτή είναι μικρότερο από το αντίστοιχο του P ελεγκτή διότι ο όρος ολοκλήρωσης κάνει το σύστημα πιο ευαίσθητο και επομένως η τιμή του Κc πρέπει να είναι πιο μικρή. β) Η προσθήκη του όρου D στον ελεγκτή κάνει το σύστημα πιο σταθερό και έτσι επιτρέπεται η χρήση υψηλότερων τιμών στον όρο c του PID ελεγκτή (υψηλότερη από τις αντίστοιχες των P και PI ) Μέθοδος τροποποίησης (modified method) Στην περίπτωση αυτή μεταβάλλεται το κέρδος c μέχρι η έξοδος να έχει τη μορφή φθίνουσας ταλάντωσης (Σχ. 1.16) με εύρος στη δεύτερη περίοδο ίση με το 1/4 του εύρους της πρώτης. Υπολογίζονται το κέρδος Α και η περίοδος Τ 0. Από τις εξισώσεις υπολογίζονται οι παράμετροι: Κ c 1 /A, T i T o /1.5, T d T o /6 Σχ Καμπύλη Τροποποίησης. 30

31 Στον Πίνακα 1. αναφέρονται συγκεντρωτικά οι εξισώσεις όλων των παραπάνω περιπτώσεων που χρησιμοποιούνται στον υπολογισμό των παραμέτρων των ελεγκτών P, PI, PID. ΠΙΝΑΚΑΣ 1. Εξισώσεις Συντονισμού των Παραμέτρων PID Τύπος ελεγκτή Ziegler- Nichols Original Method Mέθοδος τροποποίησης Cohen-Coon Method a t d τ Αναλογία (Proportion al) c 0.5 κρ. Προσαρμόζεται το κέρδος για να έχουμε στη δεύτερη περίοδο το 1/4 του εύρους που αντιστοιχεί στη πρώτη περίοδο. c 1 1 ( ) a Αναλογία και Ολοκλήρω ση (Proportion al & Integral) PID Proportion al, Integral, derivative c 0.50 κρ. T i T o /1. (min) Κ c 0.6 κρ. T i T o / (min) T d T o /8 (min) Προσαρμόζεται το κέρδος για να έχουμε στη δεύτερη περίοδο το 1/4 του εύρους που αντιστοιχεί στη πρώτη περίοδο. T i T o (min) Προσαρμόζεται το κέρδος για να έχουμε στη δεύτερη περίοδο το 1/4 του εύρους που αντιστοιχεί στη πρώτη περίοδο. T i T o /1.5 (min) T d T o /6 (min) c α 3.33α α Τi τ 1 +.α Τ Τ i d c α.5a + 0.5a τ a 0.37a τ a 31

32 1.8 Παραδείγματα Συντονισμού Ελεγκτή PID Παράδειγμα 1 Να συντονισθεί ο ελεγκτής D( του μπλόκ διαγράμματος (Σχ. 1.17) για επιθυμητό κέρδος PM 30 o y s ( D( c G f ( G m 1( G p ( 0.1s e 0.5s + 1 y( 1 Σχ Διάγραμμα συστήματος Περιθώριο Κέρδους ΠΚ ή GM1/A Περιθώριο Φάσης ΠΦ ή PM180 o φ, όπου φ αντιστοιχεί σε ω για AR 1 Επομένως G ( Ολ για 0.1s ce 0.5s + 1 s jω, G ( jω) Ολ jω0.1 c e jω c άρα G ( jω) AR ( 0.5ω ) + 1 και φ tan ω 0. 1ω Για ευστάθεια πρέπει c ΑR1 άρα 1 ( 0.5ω ) + 1 ( ) 0.5ω Επομένως για PM30 o θ φ 180 tan 0.5ω 0. 1ω c Βρίσκεται ότι για ω1.1 rad/min ικανοποιείται η παραπάνω σχέση Οπότε το κέρδος ( 0.5*1.5) c 3

33 Παράδειγμα Δίνεται η συνάρτηση μεταφοράς διεργασίας 1 G ( (5s + 1)(s + 1)(10s + 1) Nα υπολογιστούν οι τιμές των παραμέτρων του ελεγκτή με τη μέθοδο Ziegler-Nichols και Cohen-Coon. α) Μέθοδος Ziegler-Nichols 1) Βρίσκουμε την συχνότητα θλάσης ω co που αντιστοιχεί σε θ -180 ο από την εξίσωση των φάσεων: o tan ( 5ω ) + tan ( ω ) + tan ( 10ω ) 180 C0 C0 C0 Από την εξίσωση σχηματίζεται πίνακας για διάφορες τιμές του ω οι οποίες επιλέγονται αυθαίρετα. ω θ ο α) Επιλέγεται ω ,1-8, , άρα θ 1-8,86 ο 0, -130, 0,4-178,1 0,41-179,6 0,5 >-191,88 β) Επιλέγεται ω , άρα θ -130, ο γ) Επιλέγεται ω , άρα θ 3-191,88 ο δ) Επιλέγεται ω , άρα θ 4-178,1 ο ε) Επιλέγεται ω , άρα θ 5-179,6 ο που είναι περίπου ίση με -180 ο Επομένως επιλέγεται η συχνότητα ω 0.41 / min και π π T sec ω 0.41 C0 C 0 rad ) Από την εξίσωση των κερδών βρίσκεται η τιμή του Α και στη συνέχεια το κρίσιμο κέρδος κρισ. 33

34 0logA 0log log + 0log (5ω ) + 1 (ωco) + 1 (5ωco) + 1 co loga 0log + 0log + 0log log A log + log + log log A A log ( 1.094) Κρισ Επομένως 6 Για κρισ. 1.6 και T βρίσκουμε με τη βοήθεια των εξισώσεων του Πίνακα 1. τις παραμέτρους του PID ελεγκτή. α) Για P: C C p 6.3 β) Για PI: T i C γ) Για PID: 0.45κρισ. 0.45*1.6 T C 0.6* T Ti 7.57 T Td β) Μέθοδος Cohen Coon 5.67 Αρχικά υπολογίζεται από την καμπύλη απόκρισης στο πεδίο του χρόνου (Σχ.1.18), για μοντέλο 1 ου παράμετροι της άγνωστης G(. 34 Βαθμού -t e d s G( τ s + 1, οι

35 Σχ1.18 Απόκριση της εξόδου στο πεδίο του χρόνου σε μοναδιαία μεταβολή της εισόδου. B 1 t d.5, 1. 0, S tan , 1. 0 A B και τ 0 S B Οπότε η άγνωστη διεργασία περιγράφεται από την εξήσωση: -.5s 1e G( 0s d Επίσης a τ t Στη συνέχεια από τις εξισώσεις Cohen Coon του πίνακα 1. υπολογίζονται οι παράμετροι του ελεγκτή για όλες τις περιπτώσεις: 1 1 a α) Για P: c β) Για PI: T i c a 3.33a a τ 1+.a

36 γ) Για PID: T T i d c a.5a + 0.5a τ a 0.37a τ a (γ) Εναλλακτική μέθοδος Cohen Coon Από την κυματομορφή απόκρισης στο πεδίο του χρόνου (Σχ.1.18) βρίσκουμε τις τιμές των παραμέτρων Κ, τ, t d. y 1, t και t x τ 1.5( t0.63 t 0.8 ) 1.5( ) 15 t t d 1.5( t.8 ) 1.5(7.5 ) 1.5(1.666) 3 3.5s 1e ' Αρα G( 15s + 1 εποµέ νως 0.5 Σχ1.18 Απόκριση της εξόδου στο πεδίο του χρόνου σε μοναδιαία μεταβολή της εισόδου. Επίσης από τις εξισώσεις του Πίνακα 1. για την περίπτωση του PID βρίσκουμε τις τιμές των παραμέτρων c, T i, T d. t.5 Οπότε d a τ 15 36

37 T T i d c a.5a + 0.5a τ a (0.1667) + 0.5(0.1667) (0.1667) 0.37a 0.37(0.1667) τ a 1+ 0.(0.1667) ( 0.059) Στο Σχ δίνονται οι καμπύλες απόκρισης κλειστού βρόγχου, σε βηματική μεταβολή του set point και του φορτίου (διαταραχή) συστήματος με PID ελεγκτή με συντονισμό Z-N και C-C. Οι τιμές των παραμέτρων με τη μέθοδο Z-N είναι λίγο καλύτερες από τις αντίστοιχες τιμές της μεθόδου C-C, πλην όμως δεν υπάρχει ένας γενικός κανόνας που να αξιολογεί τη μία μέθοδο έναντι της άλλης. Το συμπέρασμα είναι ότι και οι δύο μέθοδοι μας δίνουν μία πρώτη καλή εκτίμηση τιμών των παραμέτρων του PID. (α) (β) Σχ Έλεγχος με PID με Cohen-Coon και Ziegler-Nichols: (α) Μεταβολή του set point (β) Μεταβολή φορτίου. Παράδειγμα 3 Δίνεται η καμπύλη χρονικής απόκρισης του συστήματος (Σχ. 1.0). Να υπολογιστούν οι παράμετροι του PID με τη μεθοδο Ziegler-Nichols. Από τη καμπύλη παρατηρούμε μεταβολή στην είσοδο της διεργασίας από 45% στο 55% σε t7sec. δηλ. Δm Δco 55% - 45% 10%. Επομένως μεταβολή στην έξοδο του ελεγκτή Δm( που είναι και είσοδος της διεργασίας) της τάξης του 10% προκαλεί μία μεταβολή στην έξοδο της διεργασίας της τάξης του 15%. ΔC ΔPV 65% - 50% 15% 37

38 Τ 1 Τ Σχ. 1.0 Βηματική απόκριση συστήματος Η εφαπτομένη γραμμή που διέρχεται από το σημείο επαφής με το ευθύγραμμο τμήμα της καμπύλης απόκρισης προεκτεινόμενη προς τα άνω και κάτω, τέμνει την αρχική τιμή της μεταβλητής εξόδου στο σημείο Α (αρχική τιμή μεταβλητής 50%) που αντιστοιχεί σε χρόνο 9.6 sec και την τελική τιμή της μεταβλητής στο σημείο Β (τελική τιμή μεταβλητής 65%) που αντιστοιχεί σε χρόνο 14.6sec. Επομένως: Τ 1 9.6sec-7sec.6sec Τ 14.6sec-9.6sec 5.0sec PV y 15% 1.5 C0 x 10% Αρα : 1.5e G ( 5s s Η κλίση υπολογίζεται από το τρίγωνο ΑΒΓ του Σχ. 1.0 και χρήση της σχέσης : S T Στη συνέχεια υπολογίζονται οι παράμετροι του PID ελεγκτή: 38

39 c 1. ST 1 1. (0.3)(.6) και το εύρος αναλογίας : 100% PB c % T i x Τ 1 x.6 5.sec T d 0.5 x Τ 1 0.5x.6sec 1.3sec Παράδειγμα 4 Στο Σχ. 1.1 δίνεται σύστημα ελέγχου ροής με συνάρτηση μεταφοράς G( Y ( M ( 0.5s 1.68e ( ( Οι σταθερές χρόνου χωρητικότητας 1.1 και 0.1 min σχετίζονται με το σωλήνα (Perspex column) και το κανάλι καθυστέρησης (Delay channel) αντίστοιχα, ενώ η χρονική καθυστέρηση 0.5 min σχετίζεται με το κανάλι καθυστέρησης. Για να υπολογισθούν οι τιμές των παραμέτρων του PID χρειάζονται τα διαγράμματα BODE. Πρέπει όμως πρώτα να αναφερθούμε στον όρο χρονικής καθυστέρησης e -0.5s του συστήματος. Στα διαγράμματα Bode υλοποιείται σαν: e -0.5jω 0 log dB και e -0.5jω ω 39

40 Reservoir Tank Valve Delay Channel Set point U(t) PID Controler m(t) M( Precisor Perspex Column y(t) Y( Flow Meter Sump Tank Orifice Flowmeter Pump Σχ.1.1 Σύστημα ελέγχου ροής Επομένως η γωνία της χρονικής καθυστέρησης είναι γραμμική σε σχέση με το ω και σχεδιάζεται σαν λογαριθμική αυξανόμενη γωνία. Εναλλακτικά για τον όρο καθυστέρησης, χρησιμοποιείται προσομοίωση ου βαθμού (σειρά Pade) e e e 0.15 jω 0.5 jω jω jω jω + 1 (0.15 jω) 1 (0.15 jω) Από τα διαγράμματα Bode του Σχ.1.(β) βρίσκουμε c 1. ή Αναλογική ζώνη PB83% Τ i 1.5min Τ d 0.5min ή Χρόνος ενέργειας ολοκληρώματος 0.8min ή Xρόνος ενέργειας παραγώγου 0.5min 40

41 Σχ1. Διαγράμματα Bode. (α) χωρίς αντιστάθμιση (β) με αντιστάθμιση Παραπλήσιες τιμές μπορούν να υπολογισθούν χρησιμοποιώντας τους παραπάνω εμπειρικούς τρόπους. Στο Σχ.1.3(α) δίνεται η χρονική απόκριση της διεργασίας χωρίς αντιστάθμιση PID (m(t)1) και στο Σχ. 1.3(β) η χρονική απόκριση με αντιστάθμιση PID σε βηματική μεταβολή της εισόδου (u(t)1). Επομένως οι PID ελεγκτές, με κάποιο περιορισμό, μπορούν να χρησιμοποιηθούν για έλεγχο σε πολλά συστήματα ροής υγρών και τουρμπομηχανικής. (α) (β) Σχ.1.3 Χρονικές αποκρίσεις συστήματος. (α) χωρίς PID m(t) 1. (β) με PID u(t) 1 41

42 4

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.)

Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) ΚΕΣ 01 Αυτόµατος Έλεγχος Εισαγωγή στα Συστήµατα Αυτοµάτου Ελέγχου (Σ.Α.Ε.) Νικόλας Τσαπατσούλης Λέκτορας Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Βιβλιογραφία

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου

ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου ΣΥΓΧΡΟΝΗ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ 1 ΑΥΤΟΜΑΤΗ ΓΕΜΙΣΤΙΚΗ 2 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΡΥΘΜΙΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΑΥΤΟΜΑΤΩΝ ΛΕΙΤΟΥΡΓΕΙΩΝ Ο αυτοματισμός περιλαμβάνει σχεδόν κάθε μηχανισμό ή συσκευή που ελαττώνει το ποσό

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 2 Ενότητα 2.1 ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να περιγράφετε ένα απλό σύστημα Αυτοματισμού Να διακρίνετε ένα Ανοικτό από ένα Κλειστό σύστημα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΙΑΦΟΡΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1 1-1 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε BJT s 1 και ιπλή Έξοδο Ανάλυση µε το Υβριδικό Ισοδύναµο του Τρανζίστορ 2 Ανάλυση µε βάση τις Ενισχύσεις των Βαθµίδων CE- 4

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων Εισαγωγή Κατηγοριοποίηση αισθητήρων Χαρακτηριστικά αισθητήρων Κυκλώματα διασύνδεσης αισθητήρων 1 2 Πωλήσεις αισθητήρων 3 4 Ο άνθρωπος αντιλαμβάνεται τη φύση με τα αισθητήρια όργανά του υποκειμενική αντίληψη

Διαβάστε περισσότερα

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων.

Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Κεφάλαιο 3 Κατηγορίες και Βασικές Ιδιότητες Θερμοστοιχείων. Υπάρχουν διάφοροι τύποι μετατροπέων για τη μέτρηση θερμοκρασίας. Οι βασικότεροι από αυτούς είναι τα θερμόμετρα διαστολής, τα θερμοζεύγη, οι μετατροπείς

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

ΘΕΜΑ «Μελέτη Αναλογικών, Ψηφιακών και Προγραμματιζόμενων Ελεγκτών»

ΘΕΜΑ «Μελέτη Αναλογικών, Ψηφιακών και Προγραμματιζόμενων Ελεγκτών» ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΘΕΜΑ «Μελέτη Αναλογικών, Ψηφιακών και Προγραμματιζόμενων Ελεγκτών» Υπεύθυνος Καθηγητής: Φραγκιαδάκης Νικόλαος Όνομα φοιτητή:

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος Ενότητα: Σημειώσεις Εργαστηρίου Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

Στα βασικά χαρακτηριστικά τους περιλαμβάνουν: - Νέο ηλεκτρονικό χειριστήριο ελέγχου Touch Pilot - Εξαιρετικά αποδοτικούς εναλλάκτες θερμότητας

Στα βασικά χαρακτηριστικά τους περιλαμβάνουν: - Νέο ηλεκτρονικό χειριστήριο ελέγχου Touch Pilot - Εξαιρετικά αποδοτικούς εναλλάκτες θερμότητας Μηνιαία έκδοση Νοέμβριος 2012 τεύχος 64 Μονάδες θέρμανσης με κορυφαία ενεργειακή αποδοτικότητα Υδρόψυκτοι Ψύκτες Νερού με τεχνολογία inverter Οι υδρόψυκτες μονάδες νερού 30XW-V/ 30XWHV αποτελούν μια ιδιαίτερα

Διαβάστε περισσότερα

Synco 100 Ελεγκτές απευθείας τοποθέτησης

Synco 100 Ελεγκτές απευθείας τοποθέτησης SIEMENS Synco 100 Ελεγκτές απευθείας τοποθέτησης Hvac Products Αναρίθµητες µελέτες αναφέρουν ότι το κόστος λειτουργίας ενός κτιρίου αντιστοιχεί στο 40% έως 60% του κόστους κατασκευής. Σχεδόν κάθε κτίριο

Διαβάστε περισσότερα

ΕΝΙΣΧΥΤΗΣ ΤΑΞΗΣ Α ME TO MULTISIM

ΕΝΙΣΧΥΤΗΣ ΤΑΞΗΣ Α ME TO MULTISIM ΜΑΘΗΜΑ : ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΝΙΣΧΥΤΗΣ ΤΑΞΗΣ Α ME TO MULTISIM Σκοπός: Η Εξέταση λειτουργίας του ενισχυτή κοινού εκπομπού και εντοπισμός βλαβών στο κύκλωμα με τη χρήση του προγράμματος προσομοίωσης

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

β) Τι θα συμβεί στην απολαβή τάσης και την απόκριση συχνότητας του ενισχυτή στο σχ.1β αν υπάρξει διακοπή στο σημείο που δεικνύεται με το αστέρι;

β) Τι θα συμβεί στην απολαβή τάσης και την απόκριση συχνότητας του ενισχυτή στο σχ.1β αν υπάρξει διακοπή στο σημείο που δεικνύεται με το αστέρι; ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Τ.Ε.Ι. ΑΘΗΝΑΣ Μάθημα: Ενισχυτικές Διατάξεις Εισηγητής: Γιώργος Χλούπης Ακαδημαϊκό Έτος 2013-14 Εξάμηνο Χειμερινό Σημειώσεις : ανοικτές Διάρκεια εξέτασης: 2 ώρες Ημ. εξέτασης:

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια 1

Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια 1 Τελεστικοί Ενισχυτές-Ι.Σ. Χαλκιάδης διαφάνεια. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ (Τ.Ε. ή OpAmps) ιαφορικοί Ενισχυτές: ενισχυτές που έχουν δυο εισόδους και µια έξοδο. Τελεστικοί Ενισχυτές (Τ.Ε.): διαφορικοί ενισχυτές

Διαβάστε περισσότερα

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun)

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun) Άσκηση Η3 Επαλληλία κινήσεων (Μετρήσεις με παλμογράφο) Εκτροπή δέσμης ηλεκτρονίων Όταν μια δέσμη ηλεκτρονίων εισέρχεται με σταθερή ταχύτητα U0=U,0 (παράλληλα στον άξονα z) μέσα σε έναν πυκνωτή, του οποίου

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Αυτοματισμοί και

Διαβάστε περισσότερα

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0. Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................

Διαβάστε περισσότερα

Συστήματα και Μέθοδοι Δόνησης

Συστήματα και Μέθοδοι Δόνησης ΠΩΣ ΝΑ ΕΠΙΛΕΞΕΤΕ ΗΛΕΚΤΡΟΔΟΝΗΤΗ ITALVIBRAS Συστήματα και Μέθοδοι Δόνησης Τα συστήματα στα οποία χρησιμοποιείται η δόνηση μπορούν να χωριστούν στις εξής κατηγορίες: Συστήματα ελεύθερης ταλάντωσης, τα οποία

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Ο ψηφιακός ελεγκτής Vario Hydro προορίζεται για τον έλεγχο εγκαταστάσεων με υδροθερμικά τζάκια που είναι η κύρια ή βοηθητική πηγή ενέργειας.

Ο ψηφιακός ελεγκτής Vario Hydro προορίζεται για τον έλεγχο εγκαταστάσεων με υδροθερμικά τζάκια που είναι η κύρια ή βοηθητική πηγή ενέργειας. VARIOhydro Ψηφιακός Ελεγκτής Υδροθερμικών Τζακιών Γενικά Ο ψηφιακός ελεγκτής Vario Hydro προορίζεται για τον έλεγχο εγκαταστάσεων με υδροθερμικά τζάκια που είναι η κύρια ή βοηθητική πηγή ενέργειας. Η χρήση

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

Οι μετατροπείς συχνότητας της ΑΒΒ καθιστούν τις αντλίες ευφυείς

Οι μετατροπείς συχνότητας της ΑΒΒ καθιστούν τις αντλίες ευφυείς Έξυπνη άντληση Οι μετατροπείς συχνότητας της ΑΒΒ καθιστούν τις αντλίες ευφυείς Οι αυξανόμενες απαιτήσεις για νερό που προκύπτουν από την παγκόσμια αστικοποίηση και οι σχετικές οδηγίες της ΕΕ, καθιστούν

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC

ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ: ΣΤΟΧΟΙ

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ

ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Ενότητα 2.3 Κεφάλαιο 2 ΠΝΕΥΜΑΤΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να αναφέρετε την αρχή λειτουργίας των πνευματικών αυτοματισμών. Να περιγράφετε τα δομικά στοιχεία

Διαβάστε περισσότερα

R 1. Σχ. (1) Σχ. (2)

R 1. Σχ. (1) Σχ. (2) Ηλ/κά ΙΙ, Σεπτ. 05 ΘΕΜΑ 1 ο (2,5 µον.) R 1 (Ω) R B Ρελέ R2 R3 Σχ. (1) Σχ. (2) Φωτεινότητα (Lux) Ένας επαγγελµατίας φωτογράφος χρειάζεται ένα ηλεκτρονικό κύκλωµα για να ενεργοποιεί µια λάµπα στο εργαστήριό

Διαβάστε περισσότερα

Κάμερες CCTV Ευαισθησία Ανάλυση Αντιστάθμιση οπίσθιου φωτισμού (BLC, Back Light Control) Ισορρόπηση χρώματος Συντελεστής Gamma

Κάμερες CCTV Ευαισθησία Ανάλυση Αντιστάθμιση οπίσθιου φωτισμού (BLC, Back Light Control) Ισορρόπηση χρώματος Συντελεστής Gamma Κάμερες CCTV Ευαισθησία Η ευαισθησία μιας κάμερας CCD, είναι η μέτρηση της απόδοσής της σε συνθήκες χαμηλού φωτισμού. Οι περισσότεροι κατασκευαστές δηλώνουν τη στάθμη ευαισθησίας των καμερών τους, ως μια

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο.

1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο. ΙΑΚΟΠΗ ΡΕΥΜΑΤΟΣ ΣΕ ΠΗΝΙΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τάξη και τµήµα: Ηµεροµηνία: Όνοµα µαθητή: 1. Να σχεδιάσετε το κύκλωµα διακοπής ρεύµατος σε πηνίο. 2. Η ένταση του ρεύµατος που µετράει το αµπερόµετρο σε συνάρτηση

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463

Εισαγωγή. www.arnos.gr κλικ στη γνώση info@arnos.co.gr. ΣΟΛΩΜΟΥ 29 ΑΘΗΝΑ 210.38.22.157 495 Fax: 210.33.06.463 Εισαγωγή Η ελαχιστοποίηση του περιβαλλοντικού κόστους μπορεί να χρησιμοποιηθεί ως κριτήριο για τον προσδιορισμό της βέλτιστης τιμής της συγκέντρωσης C του ρυπαντή στο περιβάλλον ή στο σημείο εκροής από

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

Μελέτη Μετασχηματιστή

Μελέτη Μετασχηματιστή Μελέτη Μετασχηματιστή 1. Θεωρητικό μέρος Κάθε φορτίο που κινείται και κατά συνέπεια κάθε αγωγός που διαρρέεται από ρεύμα δημιουργεί γύρω του ένα μαγνητικό πεδίο. Το μαγνητικό πεδίο B με την σειρά του ασκεί

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

6.3 Αποτελέσματα Δοκιμαστικής Λειτουργίας, Αξιολόγηση και Προτάσεις Βελτίωσης και Έρευνας

6.3 Αποτελέσματα Δοκιμαστικής Λειτουργίας, Αξιολόγηση και Προτάσεις Βελτίωσης και Έρευνας 25SMEs2009 ΠΑΡΑΔΟΤΕΑ ΕΝΟΤΗΤΑΣ ΕΡΓΑΣΙΩΝ 6: ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ ΔΟΚΙΜΑΣΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ 6.3 Αποτελέσματα Δοκιμαστικής Λειτουργίας, Αξιολόγηση και Προτάσεις Βελτίωσης και Έρευνας Σελίδα 1 REVISION HISTORY

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα

ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ - Λύσεις ασκήσεων στην ενότητα 1. Να αναφέρετε τρεις τεχνολογικούς τομείς στους οποίους χρησιμοποιούνται οι τελεστικοί ενισχυτές. Τρεις τεχνολογικοί τομείς που οι τελεστικοί ενισχυτές

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Ε-News Τεύχος. Συμμετοχή της AHI-Carrier στην έκθεση Climatherm 2012. Mάρτιος 2012

Ε-News Τεύχος. Συμμετοχή της AHI-Carrier στην έκθεση Climatherm 2012. Mάρτιος 2012 Ε-News Τεύχος 59 Mάρτιος 2012 Συμμετοχή της AHI-Carrier στην έκθεση Climatherm 2012 Εντυπωσιακή ήταν η συμμετοχή της AHI Carrier Νότιας Ανατολικής Ευρώπης Α.Ε. στην έκθεση CLIMATHERM, που πραγματοποιήθηκε

Διαβάστε περισσότερα

οποία όταν συνδέονται µε µία πηγή τάσης ηµιτονοειδούς µορφής άγουν ρεύµα µη ηµιτονοειδούς µορφής. Το φαινόµενο αυτό έχει ως αποτέλεσµα

οποία όταν συνδέονται µε µία πηγή τάσης ηµιτονοειδούς µορφής άγουν ρεύµα µη ηµιτονοειδούς µορφής. Το φαινόµενο αυτό έχει ως αποτέλεσµα ΕΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΜΕ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΑΣΗΣ ΕΝΤΑΣΗΣ ΡΕΥΜΑΤΟΣ Η προσέγγιση βάσει της τεχνογνωσίας της SEMAN Α.Ε. Η µη γραµµική φύση των σύγχρονων ηλεκτρικών φορτίων καθιστά συχνά αναγκαία

Διαβάστε περισσότερα

Ενεργειακή απόδοση...

Ενεργειακή απόδοση... ... μέσω προϊόντων ελέγχου πιστoποιημένων από τον eu.bac Michael Rader Product Marketing Manager CentraLine c/o Honeywell GmbH 05 I 2008 Τα οικιστικά αστικά και επαγγελματικά κτίρια είναι υπεύθυνα για

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Προηγμένες Τεχνολογίες Εξοικονόμησης Ενέργειας και Μείωσης Απωλειών Σε Συστήματα Μεταβλητής Ροής Ψυκτικού Μέσου

Προηγμένες Τεχνολογίες Εξοικονόμησης Ενέργειας και Μείωσης Απωλειών Σε Συστήματα Μεταβλητής Ροής Ψυκτικού Μέσου Προηγμένες Τεχνολογίες Εξοικονόμησης Ενέργειας και Μείωσης Απωλειών Σε Συστήματα Μεταβλητής Ροής Ψυκτικού Μέσου Eισαγωγή Λόγω των κλιματικών αλλαγών, η εξοικονόμηση ενέργειας έιναι πλέον ένα απο τα βασικά

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε.

Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 485 Η ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ COACH 5 ΣΤΗΝ ΔΙΔΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΤΟΥ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΟΜΕΑ ΤΩΝ Τ.Ε.Ε. Μπουλταδάκης Στέλιος Εκπαιδευτικός

Διαβάστε περισσότερα

Συστήματα μεταβλητής πολλαπλής εισαγωγής. Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα

Συστήματα μεταβλητής πολλαπλής εισαγωγής. Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα Συστήματα μεταβλητής πολλαπλής εισαγωγής Τα συστήματα μεταβλητής πολλαπλής εισαγωγής παρουσιάζουν τα τελευταία χρόνια ραγδαία αύξηση στους κινητήρες παραγωγής. Χρησιμοποιούνται ως μέσα βελτίωσης της ροπής

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΙΑΧΩΡΙΣΤΙΚΩΝ ΟΡΙΩΝ SPLIT RANGE CONTROL

ΕΛΕΓΧΟΣ ΙΑΧΩΡΙΣΤΙΚΩΝ ΟΡΙΩΝ SPLIT RANGE CONTROL ΕΛΕΓΧΟΣ ΙΑΧΩΡΙΣΤΙΚΩΝ ΟΡΙΩΝ SPLIT RANGE CONTROL Νερό ψύξης εµβόλων µηχανής 0.2-0.58 bar 0.62-1.0 bar T X Μ.V. D.V. P+I 1 2 Επιστόµιο προθερµαν τήρα Επιστόµιο ψύξης Τοσήµα εξόδου οδηγείται στους δύο τοποθετητές.

Διαβάστε περισσότερα

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ 1 Ποιότητα και Ποιοτικός Έλεγχος Ο όρος «ποιότητα» συχνά χρησιµοποιείται χωρίς την πραγµατική της έννοια. ηλαδή δεν προσδιορίζεται αν το προϊόν στο οποίο αναφέρεται

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

UTECO ABEE ΒΙΟΜΗΧΑΝΙΚΟΣ & ΝΑΥΤΙΛΙΑΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ

UTECO ABEE ΒΙΟΜΗΧΑΝΙΚΟΣ & ΝΑΥΤΙΛΙΑΚΟΣ ΑΥΤΟΜΑΤΙΣΜΟΣ IMAGO F3000 Συνοπτική περιγραφή Αυτοί οι ελεγκτές διαδικασίας χτίζονται σε ένα σχεδιασμό επεκτάσιμης μονάδας, και είναι κατάλληλοι για τον έλεγχο ρύθμιση λειτουργίας, ψησίματος, καπνίσματος και ελέγχου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα