ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟ ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟ ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ"

Transcript

1 ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟ ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Γιώργου Τσαπακίδη Εκείνο που σου προσράπτουν τα Χελιδόνια είναι η άνοιξη που δεν έφερες. Οδυσσέας Ελύτης Για ένα περίεργο λόγο τα Μαθηματικά που διδάσκονται στη δευτεροβάθμια Ελληνική εκπαίδευση και ιδίως στο Λύκειο, είναι τόσο αυτοαναφερόμενα, ώστε να βγάζει κανείς το συμπέρασμα ότι δεν έχουν καμία σχέση με την πραγματικότητα, ότι αρχίζουν από το τίποτε, ακροβατούν στο κενό και καταλήγουν στο πουθενά, πράγμα που γίνεται φανερό όχι μόνο από τα θέματα των Πανελλαδικών Απολυτήριων Εξετάσεων της Γ Λυκείου, αλλά και από τα πολλά <<βοηθητικά>> βιβλία Μαθηματικών που κυκλοφορούν στην αγορά. Αλλά η ισχύς των Μαθηματικών έγκειται στο ότι : << όποιος τα αγνοεί δεν μπορεί να γνωρίσει τις άλλες επιστήμες,ούτε τα αντικείμενα του κόσμου μας και το χειρότερο είναι ότι αυτοί οι που τα αγνοούν δε συνειδητοποιούν την ίδια την άγνοιά τους και επομένως δεν μπορούν να τη θεραπεύσουν >> Roger Bacon ( ) Μελετώντας βιβλία και άρθρα διδακτικής των Μαθηματικών ή παρακολουθώντας σεμινάρια, ημερίδες, συνέδρια ή διαλέξεις ανάλογου περιεχομένου, είναι εύκολο να διακρίνει κανείς τη μόνιμη επωδό τους : διδάξετε τα Μαθηματικά με τις εφαρμογές τους στις επιστήμες, την τεχνολογία και την πραγματική ζωή. <<Λόγια για λόγια κι άλλα λόγια ;>> (Γιώργος Σεφέρης). ΠΡΟΒΛΗΜΑΤΑ 1. Έχει παρατηρηθεί ότι η ένταση του φωτός x μέτρα

2 κάτω από την επιφάνεια της θάλασσας μειώνεται με ρυθμό ανάλογο της έντασης του σ αυτό το σημείο. Δύτες και υποβρύχιοι ψαροντουφεκάδες παρατήρησαν ότι σε βάθος 10 μέτρων από την επιφάνεια του Αιγαίου το φως χάνει περίπου το μισό της έντασης του. Με δεδομένο ότι είναι αδύνατο ένας ψαροντουφεκάς να ξεχωρίσει τα ψάρια όταν η ένταση του φωτός στο βάθος που βρίσκεται είναι το ένα δέκατο της έντασης του επιφανειακού φωτός, μέχρι πιο βάθος θα μπορεί να ψαρέψει ; Λύση Έστω ότι η ένταση του φωτός σε x μέτρα κάτω από την επιφάνεια του Αιγαίου είναι (x) μονάδες και στην επιφάνεια 0 μονάδες. Σύμφωνα με το πρόβλημα θα είναι : Επειδή (x)>0 η (1) γράφεται : (1), όπου κ θετική σταθερά αναλογίας. ( ) (2) Είναι,άρα (3). Από τα δεδομένα του προβλήματος έχουμε : κ, άρα (4) Θέλουμε να υπολογίσουμε το x, όταν Έτσι ένα ψαροτουφεκάς μπορεί να ψαρέψει το πολύ σε βάθος 33 μέτρων κάτω από την επιφάνεια του Αιγαίου..

3 2. Δίνονται : η συνάρτηση ζήτησης : Q-90+2P=0 η συνάρτηση μέσου κόστους (κόστος ανά μονάδα προϊόντος) Ενός προϊόντος, όπου : Q η ποσότητα ζήτησης του προϊόντος P η τιμή μονάδας του προϊόντος. Να βρείτε το επίπεδο Q ζήτησης του προϊόντος, που α. μεγιστοποιεί τα έσοδα β. ελαχιστοποιεί το οριακό κόστος γ. μεγιστοποιεί τα καθαρά κέρδη του προϊόντος. Λύση Επειδή το μέσο κόστος ανά μονάδα προϊόντος είναι, το κόστος για Q προϊόντα θα είναι : α. Έσοδα =ποσότητα x τιμή (αφού Q-90+2P=0) Q E (Q) E(Q) max Άρα τα έσοδα μεγιστοποιούνται, όταν η ζήτηση ανέρχεται σε 45 μονάδες προϊόντος.

4 β. Οριακό Κόστος = παράγωγος της συνάρτησης κόστους Q 0 79/6 90 c (Q) c (Q) min Άρα το οριακό κόστος ελαχιστοποιείται όταν η ζήτηση είναι μονάδες προϊόντος. γ. Κέρδος = Έσοδα-Κόστος { Q 0 K (Q) K(Q) min max Άρα τα κέρδη μεγιστοποιούνται όταν η ζήτηση είναι 25 μονάδες προϊόντος. Σημείωση: Η μονάδα προϊόντος μπορεί να είναι : κιλό, τόνος, τεμάχιο κ.τ.λ. 3. Ο διευθυντής ενός πολυκαταστήματος ηλεκτρικών ειδών εκτιμά ότι στο επόμενο χρόνο θα πουλήσει 2000 τηλεοράσεις πλάσματος. Η τιμή αγοράς μιας τηλεόρασης κοστίζει στο πολυκατάστημα 360 και το κόστος αποθήκευσης της είναι 4. Για κάθε παραγγελία τηλεοράσεων το πολυκατάστημα χρεώνεται με 40

5 . Υποθέτουμε ότι σε κάθε παραγγελία το πολυκατάστημα παραλαμβάνει το ίδιο πλήθος τηλεοράσεων και ότι οι μισές από αυτές αποθηκεύονται.ποιο πρέπει να είναι το πλήθος το παραγγελιών που πρέπει να κάνει το πολυκατάστημα, ώστε το κόστος των τηλεοράσεων να είναι ελάχιστο; Λύση. Αν x είναι το πλήθος των τηλεοράσεων που παραλαμβάνει το πολυκατάστημα σε μια παραγγελία, τότε το πλήθος των παραγγελιών θα είναι. Τιμή αγοράς τηλεοράσεων : 2000χ360= Κόστος παραγγελιών : Κόστος αποθήκευσης : Ολικό κόστος των 2000 τηλεοράσεων : x K (x) K(x) min Επομένως για να έχει ελάχιστο κόστος το πολυκατάστημα, πρέπει να κάνει παραγγελίες των 200 τηλεοράσεων η κάθε μια. 4. Όταν η φωτεινότητα x μιας πηγής φωτός αυξάνεται το μάτι μας αντιδρά μειώνοντας το εμβαδόν Ε της κόρης του, συμφώνα με τον πειραματικό τύπο:

6 όπου το Ε το μετράμε σε mm 2 και το x σε ανάλογες μονάδεςφωτεινότητας. α. Μπορούμε από τον τύπο να βγάλουμε το συμπέρασμα ότι το Ε μειώνεται καθώς το x αυξάνεται; β. Παρ όλη τη συνεχή μείωση του Ε, καθώς το x αυξάνεται, δείξτε ότι το Ε δεν μπορεί να γίνει μικρότερο από κάποια σταθερή τιμή. γ. Καθώς το x αυξάνεται ο ρυθμός μεταβολής του Ε αυξάνεται ή μειώνεται ; δ. Έχει μέγιστη ή ελάχιστη τιμή το Ε; ε. Ποια είναι η γραφική παράσταση του Ε ως συνάρτηση του x; Λύση α. Για κάθε x>0 είναι : < 0, επομένως το Ε μειώνεται καθώς το x αυξάνεται. β. Είναι Έτσι καθώς το x αυξάνεται το Ε δεν πρόκειται να γίνει μικρότερο από 6mm 2. γ. ( ) άρα καθώς το x αυξάνεται ο ρυθμός μεταβολής του Ε αυξάνεται. δ. Επειδή E(0)=40, και η Ε(x) είναι γνησίως φθίνουσα στο [0, ), το σύνολο τιμών της Ε(x) είναι το (6,40], επομένως το Ε έχει μέγιστη τιμή 40 για x=0 και δεν έχει ελάχιστη τιμή. ε. Από τα προηγούμενα έχουμε τον πινάκα μεταβολής: x 0 + E (x) - E (x) + E(x) 40 6

7 Από τον πινάκα μεταβολής, έχουμε τη γραφική παράσταση : E(x) x 5. Στο διπλανό σχήμα φαίνεται μια πιθανή y τροχιά της προσγείωσης ενός αεροπλάνου, για την οποία ισχύουν οι συνθήκες : h Όταν αρχίζει η προσγείωση το αεροπλάνο βρίσκεται σε ύψος h και η οριζόντια απόσταση του από το σημείο 0 x l προσγείωσης είναι l. Υποθέτουμε ότι η τροχιά προσγείωσης του αεροπλάνου περιγράφεται από τη συνάρτηση της μορφής : +β. α. y(0)=; y(l)=; β. y (0)=; y (l)=; γ. Δείξτε ότι : [ ]. δ. Ποιος ο ρυθμός μεταβολής του ύψους του αεροπλάνου, όταν η οριζόντια απόσταση του από το σημείο προσγείωσης είναι x 1, με 0<x 1 <l ;

8 ε. Σε ποιο σημείο αλλάζει η καμπυλότητα της τροχιάς του αεροπλάνου ; Λύση α. y(0)=0 y(l)=h β. y (0)=0 (αφού η ταχύτητα του αεροπλάνου στο 0 είναι 0) y (l)=0 (γιατί η εφαπτομένη της y στο x 0 =l είναι παράλληλη στον x x) γ. y(0)=0 δ=0 y (0)=0 γ=0 άρα y(x)=αx 3 +βx 2 Άρα. δ. Είναι [ ] [ ] Άρα ο ρυθμός μεταβολής του y για x=x 1 είναι [ ] ε. Είναι [ ] Ο πινάκας προσήμου της y (x) είναι ο : x 0 l y (x) y(x) Σ.Κ

9 Επομένως η καμπυλότητα της τροχιάς αλλάζει στο σημείο της με τετμημένη x=l /2 6. Ποιο είναι το μήκος της ακτίνας του ατόμου του υδρογόνου ; Λύση Θα στηριχτούμε σε δυο βασικές αρχές της ατομικής Φυσικής : 1 η ΑΡΧΗ ΤΗΣ ΑΠΡΟΣΔΙΟΡΙΣΤΙΑΣ Werner Heisenberg Το γινόμενο των αβεβαιοτήτων της ( ) θέσης και της ορμής ενός σωματιδίου δεν μπορεί να γίνει μικρότερο από το Γερμανός Φυσικός Βραβείο μισό της σταθερής του Planck, έτσι : Nobel ή προσεγγιστικά: ( =1,0055x J.s) 2 η ΑΡΧΗ ΕΛΑΧΙΣΤΗΣ ΕΝΕΡΓΕΙΑΣ Τα ηλεκτρόνια ενός ατόμου οφείλουν να κινούνται σε τροχιακά με την ελάχιστη ενέργεια, ώστε να αποκτήσουν τη μέγιστη σταθερότητα στη θεμελιώδη κατάσταση. Υποθέτουμε ότι r είναι η ακτίνα του ατόμου του υδρογόνου, το οποίο αποτελείται από ένα πρωτόνιο και ένα ηλεκτρόνιο. υ Το ηλεκτρόνιο περιφερόμενο γύρω από το πρωτόνιο έχει κινητική και δυναμική ενέργεια. Η μέση κινητική ενέργεια του ηλεκτρονίου είναι : ( ) (αφού p=m.υ) (γιατί από την αρχή της απροσδιοριστίας έχουμε r.p ). Η μέση δυναμική ενέργεια του ηλεκτρονίου είναι :

10 (αφού είναι το δυναμικό του ηλεκτρικού πεδίου που δημιουργεί το πρωτόνιο που έχει ηλεκτρικό φορτίο e και κ είναι η σταθερή της δύναμης Coulomb). Επομένως η μέση ολική ενέργεια του ηλεκτρονίου στο τυχαίο σημείο της τροχιάς του είναι : r E (r) E(r) min Άρα το ηλεκτρόνιο του ατόμου του υδρογόνου έχει ελάχιστη ενέργεια όταν : η ακτίνα του είναι : (1) Για: =1,0055x J.s (Σταθερά Planck διαιρεμένη με το 2π) (Σταθερός συντελεστής του νόμου Coulomb) kg (Μάζα ηλεκτρονίου) C (φορτίο ηλεκτρονίου)

11 (διηλεκτρική σταθερά) η (1) δινει r 0,5 Å ΒΙΒΛΙΟΓΡΑΦΙΑ 1. T.M. Apostol, Calculus I, John Wiley & Sons, Inc., U.S.A, F. Ayres E. Mentelson,Calculus, Schaum s outline, The Mc Graw-Hill, U.S.A, Π.Μ. Βλάμος, Παράγωγος Συνάρτησης, Εκδόσεις V, Αθήνα, Π.Μ. Βλάμος-Γ.Μ. Κοντογεώργης, Μαθηματικά Μοντέλα στη Δευτεροβάθμια Εκπαίσευση, Εκδόσεις V, Αθήνα 5. G.W. Bluman, Problem Book for First Year Calculus, Springer-Verlag, New York, B. Crowell, Calculus, Light Matter, California, P.A. Foerster, Calculus, Second Edition, Key Curriculum Press, U.S.A, R. Larson-B.H. Edwards, Calculus, Ninth Edition, Brooks/Coll, U.S.A, M. Spivak, Διαφορικός και Ολοκληρωτικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, J. Stewart, Calculus, Concepts & Contexts, Thomson Brooks/Coll, U.S.A, G. B. Thomas, Απειροστικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, Μ. Τουμάσης-Γ. Τσαπακίδης, Θέματα Μαθηματικών Γ Λυκείου, Γενικής Παιδείας, Σαββάλας, Αθήνα, 2007.

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 13 Απριλίου 2014 Ώρα: 10:00-13:00 Οδηγίες: Το δοκίμιο αποτελείται από έξι (6) σελίδες και έξι (6) θέματα. Να απαντήσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΥΛΗ Οτιδήποτε έχει μάζα και καταλαμβάνει χώρο Μάζα είναι η ποσότητα αδράνειας ενός σώματος, μονάδα kilogram (kg) (σύνδεση( δύναμης & επιτάχυνσης) F=m*γ Καταστάσεις της ύλης Στερεά,

Διαβάστε περισσότερα

εκποµπής (σαν δακτυλικό αποτύπωµα)

εκποµπής (σαν δακτυλικό αποτύπωµα) Το πρότυπο του Bοhr για το άτοµο του υδρογόνου (α) (β) (γ) (α): Συνεχές φάσµα λευκού φωτός (β): Γραµµικό φάσµα εκποµπής αερίου (γ): Φάσµα απορρόφησης αερίου Κάθε αέριο έχει το δικό του φάσµα εκποµπής (σαν

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική γενικής παιδείας Εξεταστέα Ύλη : Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Στις παρακάτω ερωτήσεις να βρείτε τη σωστή απάντηση: Α. Σύμφωνα με το

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÎÕÓÔÑÁ

Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÎÕÓÔÑÁ 1 Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1- και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 1. Ο ραδιενεργός

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB Η δύναμη που ασκείται μεταξύ σημειακών ηλεκτρικών φορτιών 1, είναι ανάλογη του γινομένου των φορτίων, και αντιστρόφως

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΚΛΙΜΑΚΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΑΡΧΗ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ

ΚΛΙΜΑΚΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΑΡΧΗ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΚΛΙΜΑΚΕΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΑΡΧΗ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ Στα επόμενα θα δούμε πως η αρχ της αβεβαιότητας (απροσδιοριστίας) του Heisenberg, θέτει ένα κάτω όριο στην ελάχιστη κινητικ ενέργεια που μπορεί να έχει ένα

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Το αδιέξοδο στην διδασκαλία της επιταχυνόμενης κίνησης φορτισμένων σωματιδίων μέσα σε Ο.Η.Π.

Το αδιέξοδο στην διδασκαλία της επιταχυνόμενης κίνησης φορτισμένων σωματιδίων μέσα σε Ο.Η.Π. Το αδιέξοδο στην διδασκαλία της επιταχυνόμενης κίνησης φορτισμένων σωματιδίων μέσα σε Ο.Η.Π. Προβληματισμός για το αδιέξοδο ή ένας αδιέξοδος προβληματισμός ; Όταν διδάσκω στην Β Λυκείου την επιταχυνόμενη

Διαβάστε περισσότερα

Al + He X + n, ο πυρήνας Χ είναι:

Al + He X + n, ο πυρήνας Χ είναι: ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 10 IOYNIOY 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

2015 ii. iii. 8 ii. iii. 9

2015 ii. iii. 8 ii. iii. 9 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την ηµιτελή πρόταση.

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ ο Α. α Έστω μια συνάρτηση, η οποία είναι συνεχής σε ένα διάστημα Δ. Να αποδείξετε ότι, αν > σε κάθε εσωτερικό σημείο του Δ, τότε η είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ η εξεταστική περίοδος από 9//5 έως 9//5 γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ

Διαβάστε περισσότερα

ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ

ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ 682 ΤΟ ΚΒΑΝΤΟΜΗΧΑΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΤΟΜΟΥ Παπαχρήστου Βασίλειος Χημικός, MSc στη διδακτική της Χημείας vasipa@in.gr ΠΕΡΙΛΗΨΗ Το παρόν CD-Rom αποτελείται από τέσσερις ενότητες: Η πρώτη ενότητα αναφέρεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 05 2 0 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ Ένα επαναλαμβανόμενο περιοδικά φαινόμενο, έχει μία συχνότητα επανάληψης μέσα στο χρόνο και μία περίοδο. Επειδή κάθε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων 3.1.1 Ο Νόμος του Coulomb Στη φύση εμφανίζονται δύο ειδών φορτία. Θετικό (+) και αρνητικό

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Νόμος του Coulomb Έστω δύο ακίνητα σημειακά φορτία, τα οποία βρίσκονται σε απόσταση μεταξύ τους. Τα φορτία αυτά αλληλεπιδρούν μέσω δύναμης F, της οποίας

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56) ΓΕΝΙΚEΣ AΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κώστας Βακαλόπουλος, Κώστας Παπαϊωάννου, Θανάσης Χριστόπουλος Άσκηση ( λ) λ λ 5 Δίνεται η συνάρτηση F(x) x λx. α) Να βρεθεί η F (x). Ν(Β) Άρα: Β = {5}, οπότε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

δ. διπλάσιος του αριθµού των νετρονίων του πυρήνα του ατόµου.

δ. διπλάσιος του αριθµού των νετρονίων του πυρήνα του ατόµου. 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών

Μαθηματικά Κατεύθυνσης Γ Λυκείου. Για το Θέμα Α: Ορισμοί. Συλλογή Από. Πανελλήνιες Επαναληπτικές Ομογενών Μαθηματικά Κατεύθυνσης Γ Λυκείου Για το Θέμα Α: Ορισμοί Συλλογή Από Πανελλήνιες Επαναληπτικές Ομογενών 2014.Π 1. Έστω µια συνάρτηση f συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Πότε λέµε ότι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Φυσικών της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Φυσικών της Ώθησης 1 Τετάρτη, 20 Μα ου 2015 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α 1 Για τις επόμενες τέσσερες ερωτήσεις από την Α1 έως

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης! ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΗΜΕΡΟΜΗΝΙΑ:... /... / 01, ΤΜΗΜΑ :... ΒΑΘΜΟΣ:... ΘΕΜΑ 1 Να επιλέξετε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( ) ( ) ( ) β. g( x) Όταν ο τύπος της συνάρτησης περιέχει παρονομαστές αυτοί πρέπει να είναι διάφοροι του Άρα: μηδενός ( ) ( )

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( ) ( ) ( ) β. g( x) Όταν ο τύπος της συνάρτησης περιέχει παρονομαστές αυτοί πρέπει να είναι διάφοροι του Άρα: μηδενός ( ) ( ) . Δίνεται η συνάρτηση: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ( x) = 3x + 5x α. Να βρείτε το πεδίο ορισμού της. β. Να υπολογίσετε τις τιμές:, και α. Το πεδίο ορισμού της συνάρτησης είναι: Α= β. = 3 + 5 = ( ) = 3 ( ) + 5 ( )

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα Δ

ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ. Θέμα Δ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Θέμα Δ 4_2149 Άτομο υδρογόνου βρίσκεται σε κατάσταση όπου η στροφορμή του είναι ίση με 3,15 10-34 J s. Δ1) Σε ποια στάθμη βρίσκεται το ηλεκτρόνιο; Δ2) Αν το άτομο έφθασε στην προηγούμενη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Κεφάλαιο 5: Στατικός Ηλεκτρισμός

Κεφάλαιο 5: Στατικός Ηλεκτρισμός Κεφάλαιο 5: Στατικός Ηλεκτρισμός Ο Θαλής ο Μιλήσιος (600 π.χ) παρατήρησε ότι αν τρίψουμε το ήλεκτρο (κεχριμπάρι) με ένα στεγνό μάλλινο ύφασμα αποκτά την ιδιότητα να έλκει μικρά κομματάκια από χαρτί, τρίχες

Διαβάστε περισσότερα