ΚΕΦΑΛΑΙΟ 3: ιατύπωση σκεδαζόµενου πεδίου στο FDTD

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 3: ιατύπωση σκεδαζόµενου πεδίου στο FDTD"

Transcript

1 ΚΕΦΑΛΑΙΟ 3: ιατύπωση σκεδαζόµενου πεδίου στο FDTD H µέθοδος πεπερασµένων διαφορών στο πεδίο του χρόνου (Finite Difference Time Domain method είναι µια από τις πιο γνωστές και εύχρηστες αριθµητικές µεθόδους για την επίλυση πολύπλοκων - από πλευράς γεωµετρίας προβληµάτων του Η/Μ πεδίου. Πρόκειται για µια διαδικασία κατά την οποία η συνεχής περιοχή που εκτείνεται το πεδίο αντικαθίσταται από ένα πλέγµα, στους κόµβους του οποίου προσδιορίζονται διακεκριµένες τιµές των ζητούµενων πεδιακών µεγεθών. Οι υπολογισµοί περιλαµβάνουν δύο φάσεις: πρώτον τον καθορισµό του συστήµατος των εξισώσεων πεπερασµένων διαφορών και δεύτερον την αριθµητική επίλυση του συστήµατος αυτού. Στο παρόν κεφάλαιο οι εξισώσεις πεπερασµένων διαφορών σχηµατίζονται από τις εξισώσεις απόκλισης του Maxwell µε βάση τη µέθοδο διαχωρισµού του Η/Μ πεδίου σε προσπίπτον και σκεδαζόµενο. 3. Εξισώσεις Μaxwell Ξεκινάµε εξετάζοντας τις διαφορικές εξισώσεις του Maxwell στο πεδίο του χρόνου σε ένα γραµµικό µέσο. Β/ t (3. H D/ t + J (3.2 D ρ (3.3 όπου B 0 (3.4 D ε Ε (3.5

2 Β µ Η (3.6 Αυτές είναι όλες οι πληροφορίες που χρειάζονται για γραµµικά, ισότροπα υλικά, ώστε να προσδιοριστεί πλήρως η συµπεριφορά του πεδίου στο χρόνο, αρκεί να είναι γνωστή η αρχική κατανοµή του πεδίου και να ικανοποιεί τις εξισώσεις Maxwell. Θεωρούµε το πεδίο και τις πηγές ίσα µε µηδέν στην αρχή του χρόνου. Το αρχικό σηµείο για τον σχηµατισµό των τυποποιηµένων εξισώσεων της µεθόδου πεπερασµένων διαφορών (FDTD είναι οι εξισώσεις (3.,(3.2. Τις ξαναγράφουµε στη µορφή που χρησιµοποιούνται στη µέθοδο FDTD : H/ t /µ ( (σ*/µ Η (3.7 Ε/ t (σ/ε Ε + /ε ( H (3.8 όπου έχουµε θέσει J σ Ε για διηλεκτρικά µε απώλειες και έχουµε συµπεριλάβει την πιθανότητα µαγνητικών υλικών µε απώλειες προσθέτοντας έναν όρο µαγνητικής αγωγιµότητας σ*. Εύκολα µπορεί να αποδειχθεί πως µπορούµε να θεωρήσουµε µόνο τις εξισώσεις απόκλισης καθώς οι εξισώσεις κλίσης περιέχονται σ αυτές ( ( B/ t0 ( B/ t 0 B constant ( H 0 ( D/ t + J ( D/ t + J 0 ( D/ t ρ/ t 0 (από την εξίσωση συνέχειας J + ρ/ t 0 / t [( D ρ] 0 D ρ constant. όπου χρησιµοποιήσαµε τη διανυσµατική ταυτότητα A 0. Επειδή τα πεδία και οι πηγές αρχικά τίθενται ίσα µε µηδέν στους υπολογισµούς, για t 0 είναι :

3 Β 0 D ρ 0 Εποµένως, Β και ( D ρ πρέπει να είναι µηδέν για κάθε χρονική στιγµή και οι εξισώσεις απόκλισης είναι αρκετές για τους υπολογισµούς. Η µέθοδος FDTD ασχολείται µόνο µε τα ηλεκτροµαγνητικά µεγέθη Ε και Η και όχι τα D και Β. Να σηµειωθεί όµως πως ενώ οι εξισώσεις κλίσης δεν αποτελούν τµήµα της διατύπωσης FDTD, µπορούν να χρησιµοποιηθούν για τον έλεγχο της υπολογισθείσας απόκρισης του πεδίου. Τα D ε Ε και Β µ Η (όπου Ε και Η τα µεγέθη που υπολογίσθηκαν πρέπει να ικανοποιούν τις εξισώσεις κλίσης. Και οι τέσσερις χαρακτηριστικές παράµετροι ε, µ, σ, σ* συµπεριλαµβάνονται στη µέθοδο, έτσι ώστε οποιοδήποτε γραµµικό ισότροπο υλικό µπορεί να περιγραφεί. 3.2 Ανάπτυξη µεθόδου διαχωρισµού του πεδίου σε προσπίπτον και σκεδαζόµενο Τα πεδία µπορούν να εκφραστούν ως εξής : Ε Ε total + (3.9 H H total H + H (3.0 Την ανάπτυξη της µεθόδου διαχωρισµού του πεδίου σε προσπίπτον και σκεδαζόµενο αιτιολογούν οι παρακάτω λόγοι:. Οι συνιστώσες του προσπίπτοντος πεδίου προσδιορίζονται αναλυτικά µέσα στο χώρο του προβλήµατος, ενώ του πεδίου σκέδασης υπολογιστικά. 2. Μόνο το σκεδαζόµενο πεδίο πρέπει να απορροφηθεί στα εξωτερικά όρια της περιοχής του προβλήµατος, από κάποια οριακή συνθήκη. Αυτό είναι πολύ σηµαντικό γιατί τα σκεδαζόµενα πεδία, µπορούν πιο εύκολα - απ ότι το ολικό πεδίο - να απορροφηθούν µε χρήση της συνοριακής συνθήκης (Outer Radiation Boundary Condition O.R.B.C..

4 3. Ο διαχωρισµός επιτρέπει περαιτέρω εµβάθυνση στη διαδικασία αλληλεπίδρασης πεδίου και αντικειµένου σκέδασης. Το κύµα σκέδασης αναπτύσσεται πάνω στην επιφάνεια και το εσωτερικό του αντικειµένου σκέδασης, ως αποτέλεσµα του προσπίπτοντος πεδίου, έτσι ώστε να ικανοποιούνται οι οριακές συνθήκες στην επιφάνεια και στο εσωτερικό του αντικειµένου. Οι οριακές συνθήκες προϋποθέτουν Ε µέσα στο σκεδαστή όταν αυτός είναι τέλειος αγωγός. Αν δεν έχουµε τέλειο αγωγό το πεδίο σκέδασης εξαρτάται από τα χαρακτηριστικά µεγέθη του εκάστοτε υλικού και υπόκειται στις αντίστοιχες εξισώσεις Maxwell. Εκτός του µέσου ικανοποιούνται οι εξισώσεις Maxwell για τον ελεύθερο χώρο. Το προσπίπτον πεδίο θεωρούµε ότι διαδίδεται στον ελεύθερο χώρο (ακόµα και όταν περνά διαµέσου του σκεδαστή και ορίζεται ως το πεδίο που θα υπήρχε στο χώρο απουσία του σκεδαστή. Mε συνδυασµό του προσπίπτοντος πεδίου και του πεδίου σκέδασης µπορούµε να συνάγουµε το ολικό πεδίο. Επίσης αν θέλουµε τις εξισώσεις FDTD του συνολικού πεδίου, µπορούµε να τις πάρουµε από τις εξισώσεις του πεδίου σκέδασης, θέτοντας το προσπίπτον πεδίο ίσο µε µηδέν και εφαρµόζοντας αρχικές συνθήκες στο πεδίο σκέδασης (που τώρα είναι και το ολικό πεδίο. Τόσο το προσπίπτον όσο και το πεδίο σκέδασης πρέπει να ικανοποιούν τις εξισώσεις Maxwell ανεξάρτητα το ένα από το άλλο (υποθέτουµε εδώ γραµµικά υλικά. Το προσπίπτον πεδίο διαδίδεται στον ελεύθερο χώρο. Ο ελεύθερος χώρος µπορεί να γενικευτεί σε ένα οµοιόµορφο µέσο αν αυτό είναι απαραίτητο. Ωστόσο θα υποθέσουµε ελεύθερο χώρο για απλότητα. Ενώ το προσπίπτον πεδίο θεωρούµε ότι οδεύει στον ελεύθερο χώρο σε ολόκληρη την περιοχή του προβλήµατος, το ολικό πεδίο διαδίδεται σε ελεύθερο χώρο έξω από το σκεδαστή και σε υλικό µέσα σε αυτόν. Στο υλικό του σκεδαστή το ολικό πεδίο ικανοποιεί τις εξισώσεις : total µ 0 Η total / t (3. H total ε 0 total / t (3.2 ενώ το προσπίπτον πεδίο ικανοποιεί τις εξισώσεις ελεύθερου χώρου:

5 µ 0 H / t (3.3 H ε 0 / t (3.4 Ξαναγράφοντας το συνολικό πεδίο σαν άθροισµα προσπίπτοντος και σκεδαζόµενου και αφαιρώντας το προσπίπτον λαµβάνουµε τις εξισώσεις που διέπουν το σκεδαζόµενο πεδίο µέσα στο σκεδαστή: ( (H + + H µ (H ε ( + H + / σ* (H / + σ( + + H (3.5 (3.6 H µ H ε / σ* H / + σ + [(µ H / σ* H ] (3.7 [(ε / + σ ] (3.8 Έξω από το σκεδαστή, στον ελεύθερο χώρο, το συνολικό πεδίο είναι: ( + µο (H +H / t (3.9 (H +H εο ( + / t (3.20 και αφαιρώντας πάλι το προσπίπτον πεδίο λαµβάνουµε τις εξισώσεις για το σκεδαζόµενο πεδίο στον ελεύθερο χώρο: -µο H / t (3.2 H εο / t (3.22 Παρατηρούµε ότι οι εξισώσεις αυτές µπορούν να προκύψουν από τις (3.7,(3.8 µε τις αλλαγές: µ µ0 ε ε0

6 σ 0 σ* 0 Στη διατύπωση των ξεχωριστών πεδίων χρειάζεται µόνο ένα ζεύγος εξισώσεων, αυτό του σκεδαζόµενου πεδίου : µ 0 H / t (3.3 H ε 0 / t (3.4 Λύνουµε τις παραπάνω εξισώσεις ως προς την παράγωγο των Η και Ε: H σ* H µ σ* H µ (µ H µ ( µ (3.23 σ ε σ ε (ε ε t ( H ε (3.24 χώρου Έξω από τον σκεδαστή το πεδίο σκέδασης ικανοποιεί τις εξισώσεις ελευθέρου H / / µ o( (3.25 / / ε o( H (3.26 Αναλύοντας τις παραπάνω διανυσµατικές εξισώσεις παίρνουµε :

7 x Hz y Hy z (3.27α y Hx z sca t H x (3.27β z Hy x Hx y (3.27γ Hx y z z y (3.27δ Hy z x x z (3.27ε Hz x y y x (3.27στ' Για λόγους απλότητας θα χειριστούµε µόνο το ζευγάρι x και H y το οποίο µπορεί να χρησιµοποιηθεί κα µόνο του σε µια µονοδιάστατη ανάλυση εκποµπής µε διάδοση κατά τη διεύθυνση του άξονα z, όταν βέβαια µιλάµε για ΤΕΜ διάδοση. Αντικαθιστώντας τις παραγώγους µε διαφορές προκύπτει: x,n x t,(n Hz y,(n0.5 Hy z,(n0.5 (3.28 Hy,(n+ 0.5 Hy t,(n0.5 z x,n x z,n (3.29 Με τις παραπάνω εξισώσεις ολοκληρώνεται η διατύπωση των εξισώσεων κλίσης του Μ µε βάση τη µέθοδο διαχωρισµού του πεδίου σε προσπίπτον και σκεδαζόµενο.

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της FDTD

ΚΕΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της FDTD ΚΦΑΛΑΙΟ 4ο : Θεωρητική προσέγγιση της DTD 4.. ισαγωγή Από τις τρεις µεθόδους πρόβλεψης των επενεργειών της ηλεκτροµαγνητικής ακτινοβολίας πειραµατική αναλυτική υπολογιστική- η υπολογιστική είναι η νεότερη

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

«ΜΕΛΕΤΗ ΙΑΤΑΞΕΩΝ ΦΩΤΟΝΙΚΩΝ ΚΡΥΣΤΑΛΛΩΝ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ»

«ΜΕΛΕΤΗ ΙΑΤΑΞΕΩΝ ΦΩΤΟΝΙΚΩΝ ΚΡΥΣΤΑΛΛΩΝ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ» ΠΡΟΣΚΛΗΣΗ ΕΝ ΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΕΚΠΟΝΗΣΗ Ι ΑΚΤΟΡΙΚΗΣ ΙΑΤΡΙΒΗΣ «ΜΕΛΕΤΗ ΙΑΤΑΞΕΩΝ ΦΩΤΟΝΙΚΩΝ ΚΡΥΣΤΑΛΛΩΝ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ» Υπεύθυνος Καθηγητής: κ. Θωµάς Σφηκόπουλος Υπεύθυνος Επιστηµονικός Συνεργάτες:

Διαβάστε περισσότερα

Το μαθηματικό μοντέλο της FDTD (1)

Το μαθηματικό μοντέλο της FDTD (1) (Fe Dfferece - Tme Doma) Το μαθηματικό μοντέλο της FDTD () Η FDTD αποτελεί μια από τις πιο δημοφιλείς μεθόδους για την αριθμητική επίλυση των εξισώσεων του Mawell. Το μαθηματικό της μοντέλο βασίζεται στη

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,

Διαβάστε περισσότερα

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 7 xpeiments ae the only means o knowledge. Anyothe is poety and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Σε µια πρώτη παρουσίαση του θέµατος δίνονται οι εξισώσεις του Maxwell στο

Διαβάστε περισσότερα

Η ΒΑΘΜΩΤΗ ΚΑΙ ΙΑΝΥΣΜΑΤΙΚΗ ΕΞΙΣΩΣΗ HELMHOLTZ

Η ΒΑΘΜΩΤΗ ΚΑΙ ΙΑΝΥΣΜΑΤΙΚΗ ΕΞΙΣΩΣΗ HELMHOLTZ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Η ΒΑΘΜΩΤΗ ΚΑΙ ΙΑΝΥΣΜΑΤΙΚΗ ΕΞΙΣΩΣΗ HELMHOLTZ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΑ ΕΦΑΡΜΟΣΜΕΝΑ

Διαβάστε περισσότερα

11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ

11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

t Τερµατικά επίπεδα (αυθαίρετα) V = V + V Συνολική τάση I = I I ΠΙΝΑΚΕΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ & ΑΓΩΓΙΜΟΤΗΤΑΣ

t Τερµατικά επίπεδα (αυθαίρετα) V = V + V Συνολική τάση I = I I ΠΙΝΑΚΕΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ & ΑΓΩΓΙΜΟΤΗΤΑΣ ΠΙΝΑΚΕΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ & ΑΓΩΓΙΜΟΤΗΤΑΣ Θύρα (port) > ΓΜ ή Κ/Ο που υποστηρίζει ένα & µόνο ρυθµό (Wheeler, 950). Φυσικές Θύρες Ηλεκτρικές Θύρες t Τερµατικά επίπεδα (αυθαίρετα) n + + ( n, n) ( n, n) +

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Ενεργός Διατοµή (Cross section)

Ενεργός Διατοµή (Cross section) Ενεργός Διατοµή (Cross section) σ = # αλληλεπδράσεων / µ. Χρ. / σωµάτιο στόχου προσπίπτουσα ροή σ, µπορεί να θεωρηθεί ως η ενεργός επιφάνεια του στόχου, δηλ. το άθροισµα των ενεργών επιφανειών των σωµατίων

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:

Διαβάστε περισσότερα

Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό;

Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό; Είναι πλεονάζων ο Νόµος του Gauss στον Ηλεκτροµαγνητισµό; Κώστας Παπαχρήστου Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων Όπως γνωρίζουµε, οι εξισώσεις του Maxwell περιγράφουν τη συµπεριφορά (δηλαδή,

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ηλεκτρικό Δυναμικό Δομή Διάλεξης Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο Ιδιότητες ηλεκτρικού δυναμικού (χρησιμότητα σε υπολογισμούς, σημείο αναφοράς, αρχή υπέρθεσης) Διαφορικές

Διαβάστε περισσότερα

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο.

Είδη κυµάτων. Ηλεκτροµαγνητικά κύµατα. Σε κάποιο φυσικό µέσο προκαλείται µια διαταραχή. Το κύµα είναι η διάδοση της διαταραχής µέσα στο µέσο. Κεφάλαιο T2 Κύµατα Είδη κυµάτων Παραδείγµατα Ένα βότσαλο πέφτει στην επιφάνεια του νερού. Κυκλικά κύµατα ξεκινούν από το σηµείο που έπεσε το βότσαλο και αποµακρύνονται από αυτό. Ένα σώµα που επιπλέει στην

Διαβάστε περισσότερα

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Αναστασιάδου Μηνοδώρα Τατιανή Ιατρόπουλος Βησσαρίων. Δρ. Αναστασίου Χρήστος. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Τ. Ε. Ι. Κεντρικής Μακεδονίας

Αναστασιάδου Μηνοδώρα Τατιανή Ιατρόπουλος Βησσαρίων. Δρ. Αναστασίου Χρήστος. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Τ. Ε. Ι. Κεντρικής Μακεδονίας Εφαρμογή της Μεθόδου των Βοηθητικών Πηγών (Method of Auxiliary Sources - MAS) στην Ανάλυση Ηλεκτρομαγνητικής Σκέδασης από Διηλεκτρικές, Τοπικά Μη-λείες Επιφάνειες Σπουδαστές: Αναστασιάδου Μηνοδώρα Τατιανή

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ

β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ Ασκ. 5 (σελ 354) Το πλάτος του μαγνητικού πεδίου ενός ηλεκτρομαγνητικού κύματος ειναι 5.4 * 10 7 Τ. Υπολογίστε το πλάτος του ηλεκτρικού πεδίου, αν το κύμα διαδίδεται (a) στο κενό και (b) σε ένα μέσο στο

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Στάσιµο σε χορδή µε ακλόνητα άκρα

Στάσιµο σε χορδή µε ακλόνητα άκρα Στάσιµο σε χορδή µε ακλόνητα άκρα Τεντωµένη ελαστική χορδή έχει µήκος L και τα δύο άκρα της Ζ και Η είναι στερεωµένα σε ακλόνητα σηµεία, ενώ η χορδή διατηρείται οριζόντια. Διεγέρτης θέτει το µέσο (Ο) της

Διαβάστε περισσότερα

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΓΕΙΑΣ Υ ΡΑΥΛΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΥΠΟΓΕΙΑΣ Υ ΡΑΥΛΙΚΗΣ ΑΣΚΗΣΕΙΣ ΥΠΟΓΕΙΑΣ Υ ΡΑΥΛΙΚΗΣ Άνοιξη 2007 Εισαγωγή Σκοπός της παρούσης ενότητας ασκήσεων είναι η αφοµοίωση των εισαγωγικών παραδόσεων του µαθήµατος «Υπόγεια Υδραυλική», της σύνδεσης της ύλης παραδόσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 21-7722479 - e-mail:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ

ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ : Φυσικής και Εφαρμοσμένων Μαθηματικών Μάθημα : Εφαρμοσμένα Μαθηματικά Διδάσκων: Αν. καθηγητής Χρ. Σχοινάς Προαιρετική

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

Μέθοδος Πεπερασµένων Στοιχείων. Το πρόβληµα

Μέθοδος Πεπερασµένων Στοιχείων. Το πρόβληµα Μέθοδος Πεπερασµένων Στοιχείων Περίληψη: Η µέθοδος των πεπερασµένων στοιχείων χρησιµοποιείται για την επίλυση προβληµάτων συνοριακών τιµών διαφορικών εξισώσεων κυρίως στην µηχανική (δοµική ανάλυση). Η

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: PHYS215 Π. Παπαγιάννης

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: PHYS215 Π. Παπαγιάννης ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: PHYS215 Π. Παπαγιάννης Αν. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Έμμεσα ιοντίζουσα ακτινοβολία: Πότε ισούται το

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ 1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r . (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r Φ Ε da Ε A Το επιφανειακό ολοκλήρωµα υπολογίζεται πάνω στην επιφάνεια Α, ενώ Ε είναι η τιµή

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 5 Μαθηµατικό Παράρτηµα Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις διαφορών

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΞΙΣΩΣΗ Η/Μ ΚΥΜΑΤΟΣ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ

Διαβάστε περισσότερα

Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας. Βιολογικές επιδράσεις. Ακτινοπροστασία

Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας. Βιολογικές επιδράσεις. Ακτινοπροστασία Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας Βιολογικές επιδράσεις Ακτινοπροστασία Π. Παπαγιάννης Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr PHYS215

Διαβάστε περισσότερα

Όταν χαλά η γλώσσα, χαλάει η σκέψη

Όταν χαλά η γλώσσα, χαλάει η σκέψη Όταν χαλά η γλώσσα, χαλάει η σκέψη (γ µέρος) Πριν από καιρό έγραφα σε κάποιο βιβλίο... «... Η ανησυχία µου, εκτός των άλλων, βρίσκεται και στο γεγονός ότι στο σχολικό βιβλίο και κατά συνέπεια στα εξωσχολικά

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

Thanasis Kehagias, 2009

Thanasis Kehagias, 2009 Μέρος II Αναλυτικη Γεωµετρια 33 34 Το παρον τευχος περιεχει συντοµη ϑεωρια, λυµενες και αλυτες ασκησεις Αναλυτικης Γεωµετριας. Κατα τη γνωµη µου, για τους περισσοτερους ανθρωπους, ο µονος τροπος εξοικειωσης

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι. Η μέθοδος των ειδώλων Περιγραφή της μεθόδου Σημειακό φορτίο και αγώγιμο επίπεδο Φορτίο μεταξύ δύο αγωγίμων ημιεπιπέδων Σημειακό φορτίο έξω από γειωμένη σφαίρα Σημειακό φορτίο

Διαβάστε περισσότερα

Σύζευξη σπιν-σπιν J = 0 J 0

Σύζευξη σπιν-σπιν J = 0 J 0 Σύζευξη σπιν-σπιν Ας υποθέσουµε ότι έχουµε δύο πυρήνες Α και Χ, οι οποίοι είτε συνδέονται απ ευθείας µε έναν δεσµό είτε η σύνδεσή γίνεται µε περισσότερους δεσµούς. A X J = 0 J 0 Α Χ Α Χ Το σπάσιµο των

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα