Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος"

Transcript

1 Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013 του.σ.) σας αποστέλλουµε τις παρακάτω οδηγίες σχετικά µε τη διδακτέα ύλη των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου. Συγκεκριµένα: Μαθηµατικά ΓΕΝΙΚΑ Η προτεινόµενη διαχείριση της ύλης των Μαθηµατικών της Α Λυκείου έχει σκοπό να υποστηρίξει τον εκπαιδευτικό στην προσπάθεια υλοποίησης των στόχων του ΑΠΣ, αναδεικνύοντας µέσα από συγκεκριµένες αναφορές και παραδείγµατα, το πνεύµα της διδασκαλίας που το διέπει. Στόχος είναι ο εκπαιδευτικός να βοηθηθεί να σχεδιάσει ο ίδιος κατάλληλες για την τάξη του διδακτικές παρεµβάσεις συµβατές µε το ΑΠΣ. Ο προτεινόµενος διδακτικός χρόνος για το κάθε κεφάλαιο είναι ενδεικτικός για να βοηθήσει τον εκπαιδευτικό στο διδακτικό του σχεδιασµό, ώστε να ολοκληρωθεί η ύλη µέσα στη σχολική χρονιά. Η διδακτική διαχείριση που προτείνεται δίνει τη δυνατότητα ορισµένα τµήµατα της διδακτέας ύλης να µπορούν να ολοκληρωθούν και οι αντίστοιχοι διδακτικοί στόχοι να επιτευχθούν, σε χρόνο µικρότερο από τον χρόνο που θα απαιτείτο µε µια παραδοσιακή διδακτική προσέγγιση. Για παράδειγµα, η παράγραφος που αφορά στη µελέτη της συνάρτησης f(x) = αx 2 +βx+γ µπορεί, µε µια καλά σχεδιασµένη δραστηριότητα και κατάλληλη διδακτική διαχείριση, να ολοκληρωθεί πλήρως µέσα στον προβλεπόµενο χρόνο µε τρόπο συµβατό µε το ΑΠΣ. Αντίθετα, σε άλλες περιπτώσεις είναι σαφές ότι ο διατιθέµενος χρόνος δεν είναι επαρκής για να γίνει η διδακτική διαχείριση ολόκληρης της διδακτέας ύλης µιας ενότητας σύµφωνα µε το πνεύµα διδασκαλίας που διέπει το ΑΠΣ. Σε αυτές τις περιπτώσεις ο εκπαιδευτικός, λαµβάνοντας υπόψη τις ιδιαιτερότητες της τάξης του και τον διατιθέµενο χρόνο, θα πρέπει να οργανώσει µε τέτοιο τρόπο τη διδασκαλία ώστε να αναδείξει στον καλύτερο δυνατό βαθµό τα στοιχεία που αναφέρονται στο ΑΠΣ. Για παράδειγµα, κατά τη διδασκαλία των κριτηρίων ισότητας τριγώνων ένας εκπαιδευτικός µπορεί να επιλέξει να εµπλέξει τους µαθητές της τάξης του σε µια δραστηριότητα που οδηγεί στην εικασία και στην απόδειξη του 2 ου κριτηρίου ισότητας τριγώνων, ενώ αντίθετα να παραλείψει την απόδειξη του 3 ου κριτηρίου ισότητας, η οποία, αν και παρουσιάζει µαθηµατικό ενδιαφέρον, κρίνει ότι δεν θα προσφέρει ιδιαίτερα στην τάξη του, γιατί θα προκαλέσει σηµαντική δυσκολία. Άλλος εκπαιδευτικός µπορεί να κρίνει διαφορετικά, γιατί θεωρεί ότι η τάξη του έχει άλλες δυνατότητες. Το σηµαντικό σε κάθε περίπτωση είναι να επιδιωχθεί η εννοιολογική κατανόηση µέσα από την ανάπτυξη ουσιαστικής µαθηµατικής δραστηριότητας των ίδιων των µαθητών στην τάξη και όχι απλά η εξάσκηση σε τεχνικές. Γεωµετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωµετρίας στην Α Λυκείου εστιάζει στο πέρασµα από τον εµπειρικό στο θεωρητικό τρόπο σκέψης, µε ιδιαίτερη έµφαση στη µαθηµατική απόδειξη. Οι µαθητές έχουν έρθει σε επαφή µε στοιχεία θεωρητικής γεωµετρικής σκέψης και στο Γυµνάσιο, όπου έχουν αντιµετωπίσει ασκήσεις που απαιτούν θεωρητική απόδειξη. Στην Α Λυκείου, πρέπει αυτή η εµπειρία των µαθητών να αξιοποιηθεί µε στόχο την περαιτέρω ανάπτυξη της θεωρητικής τους σκέψης. Η διατύπωση ορισµών γεωµετρικών εννοιών είναι κάτι δύσκολο για τους µαθητές, ακόµα και αυτής της τάξης, καθώς απαιτεί τη συνειδητοποίηση των κρίσιµων και ελάχιστων ιδιοτήτων που απαιτούνται για τον καθορισµό µιας έννοιας. Επίσης οι µαθητές χρειάζεται να διερευνούν ιδιότητες και σχέσεις των γεωµετρικών εννοιών και να δηµιουργούν εικασίες τις οποίες να προσπαθούν να τεκµηριώσουν. Η αντιµετώπιση της µαθηµατικής απόδειξης απλά ως περιγραφή µιας σειράς λογικών βηµάτων που παρουσιάζονται από τον εκπαιδευτικό, δεν είναι κατάλληλη ώστε να µυηθούν οι µαθητές στη σηµασία και την κατασκευή µιας απόδειξης. Αντίθετα, είναι σηµαντικό να εµπλακούν οι µαθητές σε αποδεικτικές διαδικασίες, να προσπαθούν να εντοπίζουν τη βασική αποδεικτική ιδέα, µέσω πειραµατισµού και διερεύνησης, και να χρησιµοποιούν µετασχηµατισµούς και αναπαραστάσεις, που υποστηρίζουν την ανάπτυξη γεωµετρικών συλλογισµών. Η κατασκευή από τους µαθητές αντιπαραδειγµάτων και η συζήτηση για το ρόλο τους είναι µια σηµαντική διαδικασία, ώστε να αρχίσουν να αποκτούν µια πρώτη αίσθηση της σηµασίας του αντιπαραδείγµατος στα Μαθηµατικά. Η απαγωγή σε άτοπο είναι επίσης µια µέθοδος που συχνά συναντούν οι µαθητές στην απόδειξη αρκετών

2 θεωρηµάτων. Ο ρόλος του «άτοπου» στην τεκµηρίωση του αρχικού ισχυρισµού αλλά και το κατά πόσο η άρνηση του συµπεράσµατος οδηγεί τελικά στην τεκµηρίωσή του, δηµιουργούν ιδιαίτερη δυσκολία στους µαθητές. Σε όλα τα παραπάνω ουσιαστικό ρόλο µπορεί να παίξει η αξιοποίηση λογισµικών υναµικής Γεωµετρίας. II. ιδακτέα Ύλη Από το βιβλίο «Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάµου Π., Κατσούλη Γ., Μαρκάτη Σ., Σίδερη Π. (έκδοση 2013) Κεφ.1 ο : Εισαγωγή στην Ευκλείδεια Γεωµετρία 1.1 Το αντικείµενο της Ευκλείδειας Γεωµετρίας 1.2 Ιστορική αναδροµή στη γένεση και ανάπτυξη της Γεωµετρίας Κεφ.3 ο : Τρίγωνα 3.1 Είδη και στοιχεία τριγώνων ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήµατος) ο Κριτήριο ισότητας τριγώνων ο Κριτήριο ισότητας τριγώνων 3.5 Ύπαρξη και µοναδικότητα καθέτου (εκτός της απόδειξης του θεωρήµατος) 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων 3.7 Κύκλος - Μεσοκάθετος ιχοτόµος 3.8 Κεντρική συµµετρία 3.9 Αξονική συµµετρία 3.10 Σχέση εξωτερικής και απέναντι γωνίας (εκτός της απόδειξης του θεωρήµατος) 3.11 Ανισοτικές σχέσεις πλευρών και γωνιών 3.12 Tριγωνική ανισότητα 3.13 Κάθετες και πλάγιες 3.14 Σχετικές θέσεις ευθείας και κύκλου 3.15 Εφαπτόµενα τµήµατα 3.16 Σχετικές θέσεις δύο κύκλων 3.17 Απλές γεωµετρικές κατασκευές 3.18 Βασικές κατασκευές τριγώνων Κεφ.4 ο : Παράλληλες ευθείες 4.1. Εισαγωγή 4.2. Τέµνουσα δύο ευθειών - Ευκλείδειο αίτηµα 4.3. Κατασκευή παράλληλης ευθείας 4.4. Γωνίες µε πλευρές παράλληλες 4.5. Αξιοσηµείωτοι κύκλοι τριγώνου 4.6. Άθροισµα γωνιών τριγώνου 4.7. Γωνίες µε πλευρές κάθετες 4.8. Άθροισµα γωνιών κυρτού ν-γώνου Κεφ.5 ο : Παραλληλόγραµµα - Τραπέζια 5.1. Εισαγωγή 5.2. Παραλληλόγραµµα 5.3. Ορθογώνιο 5.4. Ρόµβος 5.5. Τετράγωνο 5.6. Εφαρµογές στα τρίγωνα 5.7. Βαρύκεντρο τριγώνου (εκτός της απόδειξης του θεωρήµατος) 5.8. Το ορθόκεντρο τριγώνου 5.9. Μια ιδιότητα του ορθογώνιου τριγώνου Τραπέζιο Ισοσκελές τραπέζιο Αξιοσηµείωτες ευθείες και κύκλοι τριγώνου Κεφ.6 ο : Εγγεγραµµένα σχήµατα 6.1. Εισαγωγικά Ορισµοί 6.2. Σχέση εγγεγραµµένης και αντίστοιχης επίκεντρης 6.3. Γωνία χορδής και εφαπτοµένης 6.4. Βασικοί γεωµετρικοί τόποι στον κύκλο. 6.5 Το εγγεγραµµένο τετράπλευρο 2

3 6.6 Το εγγράψιµο τετράπλευρο (εκτός της απόδειξης του θεωρήµατος) ΙΙΙ. ιαχείριση διδακτέας ύλης Κεφάλαιο 1 ο (Προτείνεται να διατεθούν 1 διδακτική ώρα) Στόχος του κεφαλαίου αυτού είναι η διάκριση και επισήµανση των διαφορετικών χαρακτηριστικών της Πρακτικής Γεωµετρίας, που οι µαθητές διδάχθηκαν σε προηγούµενες τάξεις, και της Θεωρητικής Γεωµετρίας που θα διδαχθούν στο Λύκειο. Κάποια ζητήµατα που θα µπορούσαν να συζητηθούν για την ανάδειξη των πλεονεκτηµάτων της Θεωρητικής Γεωµετρίας έναντι της Πρακτικής, είναι: Η αδυναµία ακριβούς µέτρησης, η ανάγκη µέτρησης αποστάσεων µεταξύ απρόσιτων σηµείων, η αναξιοπιστία των εµπειρικών προσεγγίσεων (προτείνεται η δραστηριότητα που αντιστοιχεί στο στόχο ΕΓ1 του ΑΠΣ). Για να αποκτήσουν οι µαθητές µια πρώτη αίσθηση των βασικών αρχών της ανάπτυξης της Ευκλείδειας Γεωµετρίας ως αξιωµατικoύ συστήµατος, προτείνεται να εµπλακούν σε µια συζήτηση σχετικά µε τη σηµασία και το ρόλο των όρων «πρωταρχική έννοια», «ορισµός», «αξίωµα», «θεώρηµα», «απόδειξη». Στοιχεία της ιστορικής εξέλιξης της Γεωµετρίας µπορούν να αποτελέσουν ένα πλαίσιο αναφοράς στο οποίο θα αναδειχθούν τα παραπάνω ζητήµατα. Κεφάλαιο 2 ο εν θα διδαχθεί, αφού οι µαθητές στο Γυµνάσιο έχουν διδαχθεί τις βασικές έννοιες του κεφαλαίου αυτού. Αν κατά την κρίση του διδάσκοντος το επίπεδο της τάξης απαιτεί να επαναληφθούν ορισµένα σηµεία αυτού του κεφαλαίου, µπορεί να αφιερωθούν 1-2 ώρες για αυτή την επανάληψη. Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 19 διδακτικές ώρες) Οι µαθητές έχουν διαπραγµατευθεί το µεγαλύτερο µέρος του περιεχοµένου των παραγράφων αυτών στο Γυµνάσιο. Προτείνεται να δοθεί έµφαση σε κάποια νέα στοιχεία όπως: α) Η σηµασία της ισότητας των οµόλογων πλευρών στη σύγκριση τριγώνων. β) Η διαπραγµάτευση παραδειγµάτων τριγώνων µε τρία κύρια στοιχεία τους ίσα, τα οποία δεν είναι ίσα (δυο τρίγωνα µε ίσες δυο πλευρές και µια µη περιεχόµενη γωνία αντίστοιχα ίση, όπως στις δραστηριότητες.5 και.7 του ΑΠΣ). γ) Ο σχεδιασµός σχηµάτων µε βάση τις λεκτικές διατυπώσεις των γεωµετρικών προτάσεων (ασκήσεων, θεωρηµάτων) και αντίστροφα. δ) Η διατύπωση των γεωµετρικών συλλογισµών των µαθητών. ε) Η ισότητα τριγώνων, ως µια στρατηγική απόδειξης ισότητας ευθυγράµµων τµηµάτων ή γωνιών (σχόλιο σελ.38). στ) Ο εντοπισµός κατάλληλων τριγώνων για σύγκριση σε «σύνθετα» σχήµατα (προτείνεται η δραστηριότητα.6 του ΑΠΣ). ζ) Η σηµασία της «βοηθητικής γραµµής» στην αποδεικτική διαδικασία (πόρισµα I της.3.2). Προτείνεται να ενοποιηθούν σε µια πρόταση οι προτάσεις που ταυτίζουν τη διχοτόµο, τη διάµεσο και το ύψος από τη κορυφή ισοσκελούς τριγώνου (πόρισµα I σελ.37, πόρισµα I σελ.40, πόρισµα I σελ.45). Μαζί µε την πρόταση αυτή προτείνεται να γίνει η διαπραγµάτευση της εφαρµογής 2 της σελ.55, για την απόδειξη της οποίας αρκούν τα κριτήρια ισότητας τριγώνων. Επίσης, σαν µια ενιαία πρόταση, µπορεί να ζητηθεί από τους µαθητές να δείξουν ότι σε ίσα τρίγωνα τα δευτερεύοντα στοιχεία τους (διάµεσος, ύψος, διχοτόµος) που αντιστοιχούν σε οµόλογες πλευρές είναι επίσης ίσα (π.χ. άσκηση 1i Εµπέδωσης σελ. 43, άσκηση 4 Εµπέδωσης σελ.48). Ενιαία µπορούν να αντιµετωπιστούν, ως αντίστροφες προτάσεις, τα πορίσµατα ΙV της 3.2 και ΙΙΙ, ΙV της 3.4 που αναφέρονται στις σχέσεις των χορδών και των αντίστοιχων τόξων. Με στόχο την ανάδειξη της διδακτικής αξίας των γεωµετρικών τόπων προτείνεται τα πορίσµατα ΙΙΙ της 3.2 και ΙΙ της 3.4, που αφορούν στη µεσοκάθετο τµήµατος, καθώς και το θεώρηµα ΙV της 3.6, που αφορά στη διχοτόµο γωνίας, να διδαχθούν ενιαία ως παραδείγµατα βασικών γεωµετρικών τόπων. Συγκεκριµένα, προτείνεται οι µαθητές πρώτα να εικάσουν τους συγκεκριµένους γεωµετρικούς τόπους και στη συνέχεια να τους αποδείξουν (προτείνονται οι δραστηριότητες.8,.9 και.10 του ΑΠΣ)

4 Η ύλη των παραγράφων αυτών είναι νέα για τους µαθητές. Να επισηµανθεί στους µαθητές ότι η τριγωνική ανισότητα αποτελεί κριτήριο για το πότε τρία ευθύγραµµα τµήµατα αποτελούν πλευρές τριγώνου (προτείνεται η δραστηριότητα.12 του ΑΠΣ). Επίσης, προτείνονται οι ασκήσεις 4 και 6 (Αποδεικτικές), που διαπραγµατεύονται: την απόσταση σηµείου από κύκλο και σχέσεις χορδών και τόξων αντίστοιχα Τα συµπεράσµατα της 3.14 είναι γνωστά στους µαθητές από το Γυµνάσιο. Οι αιτιολογήσεις, όµως, προέρχονται από τα θεωρήµατα της Το περιεχόµενο της 3.16 δεν είναι γνωστό στους µαθητές και χρειάζεται και για τις γεωµετρικές κατασκευές που ακολουθούν (προτείνονται οι.14 και.15 του ΑΠΣ) και 3.18 Η διαπραγµάτευση των γεωµετρικών κατασκευών συµβάλλει στην κατανόηση των σχηµάτων από τους µαθητές µε βάση τις ιδιότητές τους καθώς και στην ανάπτυξη της αναλυτικής και συνθετικής σκέψης η οποία µπορεί να αξιοποιηθεί και σε εξωµαθηµατικές γνωστικές περιοχές. Προτείνεται να γίνουν κατά προτεραιότητα τα προβλήµατα 2 και 4 της 3.17 και τα προβλήµατα 2 και 3 της Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) Το σηµαντικότερο θέµα στις παραγράφους αυτές αποτελεί το «αίτηµα παραλληλίας» το οποίο καθορίζει τη φύση της Γεωµετρίας στην οποία αναφερόµαστε. Η σηµασία του «αιτήµατος παραλληλίας», για τη Γεωµετρία την ίδια και για την ιστορική της εξέλιξη, µπορεί να διαφανεί από στοιχεία που παρέχονται στο ιστορικό σηµείωµα της σελ. 90 καθώς επίσης και στη δραστηριότητα.16 του ΑΠΣ. Οι µαθητές είναι σηµαντικό να αναγνωρίσουν την αδυναµία χρήσης του ορισµού και τη σηµασία των προτάσεων της 4.2 (που προηγούνται του «αιτήµατος παραλληλίας») ως εργαλεία για την απόδειξη της παραλληλίας δύο ευθειών. Προτείνεται να διερευνήσουν οι µαθητές τη σχέση του θεωρήµατος της 4.2 και της Πρότασης I της σελ. 77, µε στόχο να αναγνωρίσουν ότι το ένα είναι το αντίστροφο του άλλου. 4.5 Προτείνεται, πριν τη διαπραγµάτευση των θεωρηµάτων της παραγράφου, να συζητηθεί η δραστηριότητα.17 του ΑΠΣ. Επίσης, να επισηµανθεί η στρατηγική που χρησιµοποιείται στις αποδείξεις των θεωρηµάτων σχετικά µε πώς δείχνουµε ότι τρεις ευθείες διέρχονται από το ίδιο σηµείο, γιατί δεν είναι οικεία στους µαθητές Προτείνεται το θεώρηµα της 4.6 να συνδεθεί µε τα πορίσµατα της σελ. 53, ώστε οι µαθητές να αναγνωρίσουν ότι το συµπέρασµα του θεωρήµατος είναι ισχυρότερο από τα πορίσµατα και ότι αυτό οφείλεται στη χρήση του «αιτήµατος παραλληλίας» στην απόδειξή του. Το ίδιο ισχύει και για το πόρισµα (i) της σελ. 83 σε σχέση µε το Θεώρηµα της σελ Προτείνεται οι µαθητές, χρησιµοποιώντας το άθροισµα των γωνιών τριγώνου, να βρουν το άθροισµα των γωνιών τετραπλεύρου, πενταγώνου κ.α., να εικάσουν το άθροισµα των γωνιών ν-γώνου και να αποδείξουν την αντίστοιχη σχέση (προτείνεται η δραστηριότητα που αντιστοιχεί στο στόχο ΠΕ4 του ΑΠΣ). ίνεται έτσι η δυνατότητα σύνδεσης Γεωµετρίας και Άλγεβρας. Να επισηµανθεί, επίσης, η σταθερότητα του αθροίσµατος των εξωτερικών γωνιών ν- γώνου. Κεφάλαιο 5 ο (Προτείνεται να διατεθούν 17 διδακτικές ώρες) Να επισηµανθεί ότι καθένα από τα κριτήρια για τα παραλληλόγραµµα περιέχει τις ελάχιστες ιδιότητες που απαιτούνται για είναι ισοδύναµο µε τον ορισµό του παραλληλογράµµου (προτείνεται η δραστηριότητα.18 του ΑΠΣ). Προτείνεται να ζητηθεί από τους µαθητές να διερευνήσουν αν ένα τετράπλευρο µε τις δυο απέναντι πλευρές παράλληλες και τις άλλες δυο ίσες είναι παραλληλόγραµµο. Για την εφαρµογή των ιδιοτήτων των παραλληλογράµµων στην επίλυση προβληµάτων µπορεί να αξιοποιηθεί η δραστηριότητα.19 του ΑΠΣ Να επισηµανθεί ότι κάθε ένα από τα κριτήρια για να είναι ένα τετράπλευρο ορθογώνιο ή ρόµβος ή τετράγωνο περιέχει τις ελάχιστες ιδιότητες που απαιτούνται για να είναι ισοδύναµο µε τον ορισµό του ορθογωνίου ή του ρόµβου ή του τετραγώνου αντίστοιχα. Επιδιώκεται οι 4

5 µαθητές να αναγνωρίζουν τα είδη των παραλληλογράµµων (ορθογώνιο, ρόµβος, τετράγωνο) µε βάση τα αντίστοιχα κριτήρια και όχι µε βάση κάποια πρότυπα σχήµατα που συνδέονται µε την οπτική γωνία που τα κοιτάµε. Να δοθεί έµφαση στην άρση της παρανόησης που δηµιουργείται σε µαθητές, ότι ένα τετράγωνο δεν είναι ορθογώνιο ή ένα τετράγωνο δεν είναι ρόµβος. Προτείνεται να ζητηθεί από τους µαθητές να διερευνήσουν: αν ένα τετράπλευρο µε ίσες διαγώνιες είναι ορθογώνιο και αν ένα τετράπλευρο µε κάθετες διαγώνιες είναι ρόµβος, καθώς και να αξιοποιήσουν τις ιδιότητες των παραλληλογράµµων στην επίλυση προβληµάτων (δραστηριότητες.20,.21 και.22 του ΑΠΣ) Προτείνεται να ζητηθεί από τους µαθητές να εικάσουν σε ποια γραµµή ανήκουν τα σηµεία που ισαπέχουν από δυο παράλληλες ευθείες και στη συνέχεια να αποδείξουν ότι η µεσοπαράλληλή τους είναι ο ζητούµενος γεωµετρικός τόπος. Προτείνεται, επίσης, η διαπραγµάτευση της Εφαρµογής 1 της σελ Προτείνεται να ζητηθεί από τους µαθητές να διερευνήσουν τα είδη των τριγώνων που το ορθόκεντρο είναι µέσα ή έξω από το τρίγωνο. Θα µπορούσαν να αναζητηθούν εναλλακτικές αποδείξεις για τα θεωρήµατα που αφορούν στις ιδιότητες του ορθογωνίου τριγώνου Εκτός από το συγκεκριµένο αντικείµενο των παραγράφων αυτών, προτείνεται να εµπλακούν οι µαθητές στην επίλυση προβληµάτων που συνδυάζουν γεωµετρικά θέµατα από όλο το κεφάλαιο. Προτείνεται επίσης να συζητηθεί µε τους µαθητές η ταξινόµηση των τετραπλεύρων του σχολικού βιβλίου (σελ. 120) και, κατά την κρίση του εκπαιδευτικού, η συσχέτιση µε άλλες ταξινοµήσεις όπως αναφέρονται στο ιστορικό σηµείωµα των σελ. 118, 119. Κεφάλαιο 6 ο (Προτείνεται να διατεθούν 3 διδακτικές ώρες) Στην απόδειξη του Θεωρήµατος της σελ. 123, προτείνεται να διερευνηθεί πρώτα η περίπτωση που η µία πλευρά της εγγεγραµµένης γωνίας είναι διάµετρος, από την οποία φαίνεται η βασική ιδέα για την απόδειξη και των άλλων δύο περιπτώσεων. Από την 6.4 προτείνεται µόνο να ζητηθεί από τους µαθητές να εικάσουν το σύνολο των σηµείων του επιπέδου που «βλέπουν» ένα δεδοµένο ευθύγραµµο τµήµα υπό ορθή γωνία (µπορεί να βοηθηθούν από κατάλληλο λογισµικό), και στη συνέχεια να αποδείξουν ότι ο ζητούµενος γεωµετρικός τόπος είναι κύκλος µε διάµετρο το δοθέν ευθύγραµµο τµήµα (να συνδεθεί η απόδειξη µε το πόρισµα (ii) της σελ. 124) Προτείνεται, ως εισαγωγή στο πρόβληµα εγγραψιµότητας ενός τετραπλεύρου σε κύκλο, οι µαθητές να διερευνήσουν ποια από τα γνωστά τετράπλευρα (παραλληλόγραµµο, ορθογώνιο, ρόµβος, τετράγωνο, τραπέζιο) είναι εγγράψιµα, βασιζόµενοι στις ιδιότητες των εγγεγραµµένων τετραπλεύρων (π.χ., ο ρόµβος δεν είναι εγγράψιµος σε κύκλο, γιατί αν ήταν εγγράψιµος θα έπρεπε να έχει τις απέναντι γωνίες του παραπληρωµατικές). Η διερεύνηση θα µπορούσε να επεκταθεί και σε τυχαία τετράπλευρα (και µε τη βοήθεια λογισµικού), ώστε οι µαθητές να εικάσουν τα κριτήρια εγγραψιµότητας. 5

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου 2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά Αρχαία Ελληνικά A. Εισαγωγή Σελ 18 20 (1. Η ΖΩΗ ΤΟΥ 2. ΤΟ ΕΡΓΟ ΤΟΥ ΕΝΔΙΑΦΕΡΟΝΤΑ ΚΑΙ ΙΔΕΕΣ (Ως : «Η «αθηναϊκή συμμαχία» είχε μετατραπεί σε αθηναϊκή ηγεμονία («ἀρχή»)» στο μέσον της σελίδας 20). Σελ. 21-22

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Εισαγωγικό κεφάλαιο Κεφ.1ο: Πιθανότητες Κεφ.2ο: Οι Πραγματικοί Αριθμοί Κεφ.

Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Εισαγωγικό κεφάλαιο Κεφ.1ο: Πιθανότητες Κεφ.2ο: Οι Πραγματικοί Αριθμοί Κεφ. Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 0) Εισαγωγικό κεφάλαιο E.. Σύνολα Κεφ. ο : Πιθανότητες. Δειγματικός Χώρος-Ενδεχόμενα.

Διαβάστε περισσότερα

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β --- ΠΡΟΣ: Ταχ. /νση: Ανδρέα

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-- Αρ. πρωτ. : 3837/Γ

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ  ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 1.. 2.. 1.,. ( ) ( ) (2 ).. ( ) (5 ),,. ; ; 2.,,. 3.,.,,. (,,,, ). : ), ) ),, ),...1 16692 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 4. 5.. 6. (,, ). 1.,

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. IOANNIS SPILIOPOULOS 016.09.16 06:3:5 HPARCA Certification Services for Citizens CN=IOANNIS SPILIOPOULOS C=GR O=Elliniki Dimosia Dioikisi - Hellenic Public Administration E=ispiliopoulos@minedu.gov.gr

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-11-01 Αρ.

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός) Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )

γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω

Διαβάστε περισσότερα

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :

5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) : 5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ 2015-16 ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Για το μάθημα της Νέας Ελληνικής Γλώσσας της Α τάξης Ημερησίου Γενικού Λυκείου ως διδακτικά

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ΠΡΟΣ: Βαθµός

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 09-10-2015 Αρ. Πρωτ. 159253/Δ2 ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Η παρούσα σύνοψη παρουσιάζει τις προτάσεις του σχολικού βιβλίου που διδάχτηκαν την φετινή χρονιά,συνοπτικά δίχως αποδείξεις και με διαφορετική σειρά

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες

Διαβάστε περισσότερα

ΤΑΞΗ Α ΜΑΘΗΜΑΤΑ ΥΛΗ ΕΞΕΤΑΣΕΩΝ 2016 ΘΡΗΣΚΕΥΤΙΚΑ Οι ενότητες 2,3,5,6,7,8,10,11,12,13,14,16,18,19,21,22,23,24,25,29,30,37.

ΤΑΞΗ Α ΜΑΘΗΜΑΤΑ ΥΛΗ ΕΞΕΤΑΣΕΩΝ 2016 ΘΡΗΣΚΕΥΤΙΚΑ Οι ενότητες 2,3,5,6,7,8,10,11,12,13,14,16,18,19,21,22,23,24,25,29,30,37. 1 ΤΑΞΗ Α ΜΑΘΗΜΑΤΑ ΥΛΗ ΕΞΕΤΑΣΕΩΝ 2016 ΘΡΗΣΚΕΥΤΙΚΑ Οι ενότητες 2,3,5,6,7,8,10,11,12,13,14,16,18,19,21,22,23,24,25,29,30,37. ΝΕΟΕΛ. ΓΛΩΣΣΑ Από το βιβλίο Έκφραση-Έκθεση, Τεύχος Α, της Α τάξης Γενικού Λυκείου

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

1 η εκάδα θεµάτων επανάληψης

1 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και

Διαβάστε περισσότερα