Οδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες"

Transcript

1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : X. Παπαδόπουλος Λ. Καικτσής Οδοντωτοί τροχοί Εισαγωγή Σκοπός : Μετάδοση περιστροφικής κίνησης, ισχύος και ροπής από έναν άξονα σε έναν άλλον. Οι άξονες μπορεί να είναι παράλληλοι, κάθετοι, υπό τυχαία γωνία ή ασύμβατοι. Με κατάλληλη επιλογή των διαμέτρων των τροχών επιτυγχάνεται αλλαγή της ταχύτητας περιστροφής του κινούμενου άξονα Ο λόγος των στροφών του κινητήριου τροχού προς τις στροφές του κινούμενου τροχού ονομάζεται σχέση μετάδοσης, i Είδη οδοντωτών τροχών Είδη οδοντωτών τροχών Μετωπικοί τροχοί με ευθύγραμμους οδόντες Μετωπικοί τροχοί με ελικοειδείς οδόντες (Άξονες παράλληλοι και τροχοί κυλινδρικοί) (Άξονες παράλληλοι και τροχοί κυλινδρικοί) Απλοί σε κατασκευή και πλέον συνηθισμένοι τροχοί Λειτουργία με μικρότερα επίπεδα ταλαντώσεων και θορύβου ειδικά σε υψηλές ταχύτητες Οι οδόντες δημιουργούν γωνία σε σχέση με τον άξονα του τροχού (γωνία ελικώσεως, β0) Θορυβώδης λειτουργία και μεγάλα δυναμικά φορτία στους οδόντες Ομαλότερη κατανομή φορτίσεων στους οδόντες Χρήση απλών ακτινικών εδράνων Δημιουργία αξονικής δύναμης κατά τη λειτουργία. Ανάγκη παραλαβής της από κατάλληλα έδρανα

2 Είδη οδοντωτών τροχών Είδη οδοντωτών τροχών Κωνικοί τροχοί με ευθείς ή ελικοειδείς οδόντες και κάθετους άξονες Σύστημα ατέρμονος κοχλία - τροχού Μετάδοση κίνησης και μεταφορά ισχύος μεταξύ τεμνόμενων ατράκτων (90ο) Μετατροπή κατεύθυνσης της κίνησης Με ευθεία ή πλάγια οδόντωση Υψηλή σχέση μετάδοσης Είδη οδοντωτών τροχών Πλανητικά συστήματα Στεφάνη Πλανήτες Βραχίονας Ήλιος Μικρότεροι σε όγκο και βάρος για την ίδια σχέση μετάδοσης σε σχέση με τους συνήθεις μειωτήρες στροφών λόγω του διαχωρισμού της μεταφερόμενης ισχύος Οι άτρακτοι εισόδου και εξόδου βρίσκονται σε ευθυγραμμία (οικονομία χώρου) Λόγω συμμετρίας μεταφέρεται σχεδόν μόνο στρεπτική ροπή (χωρίς ακτινικές δυνάμεις) επομένως απαιτούνται ελαφρύτερα έδρανα. Παράγουν γενικά μικρότερο θόρυβο Διατάξεις μειωτήρων στροφών

3 Διατάξεις μειωτήρων στροφών Κατασκευή οδόντων Κοπή με εργαλείο μορφής Κοπή με οδοντωτό κανόνα ή τροχό Κοπή με κοπτικό εργαλείο Hob Βασική γεωμετρία οδοντωτών τροχών Βασική γεωμετρία οδοντωτών τροχών Πάχος οδόντος, βήμα, t Προφίλ δοντιού Εξειλιγμένη καμπύλη Κύκλος ποδός, f Αρχικός κύκλος, 0 Κύκλος κεφαλής, k Βασικός κύκλος, Ύψος κεφαλής hk Αρχικοί κύκλοι, 01, 0 Ύψος ποδός hf k 0 0 f Αριθμός οδόντων, z Περιστροφική ταχύτητα, n (RM)

4 Υπολογισμός σχέσης μετάδοσης 01 0 Συνεργαζόμενος Τροχός (κορώνα) Υπολογισμός σχέσης μετάδοσης βήμα,t n π n u1 π n π n u π t Z π t Z π 0 Πινιόν u u u π n π n c 1 Σχέση μετάδοσης i n n t Z π t Z π Z t1 t i Z Τυποποίηση - Υπολογισμός moule Προφίλ οδόντων 01 0 t t Z1 π Z1 π Μέτρο Οδοντώσεως (moule) t m π Εξειλιγμένη καμπύλη Τυλίγουμε το νήμα Κύλινδρος και μη ελαστικό νήμα στον κύλινδρο Πινιόν Συνεργαζόμενος τροχός 01 m Z1 Τράβηγμα Τυποποιημένες τιμές moule σε mm (Κωστόπουλος, Σελ. 1.41) Ξετυλίγουμε το νήμα ώστε να είναι πάντα τεντωμένο Παρακολουθούμε την κίνηση του άκρου του νήματος. Η τροχιά της κίνησης του άκρου είναι η εξειλιγμένη καμπύλη

5 Εξειλιγμένη καμπύλη Προφίλ οδόντων Προφίλ οδόντων Εξειλιγμένη καμπύλη Γωνία τομής με κύκλο κεφαλής 0,0 θ x c,y c θ s s x,y x y c c ( θ ) cos( θ ) ( θ ) sin ( θ ) ( θ ) c + sin ( θ ) ( θ ) cos( θ ) x x s y y s θ s π θ π c ( θ ) cos ( θ) + θ sin ( θ) ( θ ) sin ( θ) θ cos( θ) x y 0,0 θ s + s k s θ + θ k θ + 1 k k θ + 1 k ( ) k θ 1 k θ 1 Σχεδιασμός οδοντωτών τροχών Σχεδιασμός οδοντωτών τροχών α α 0 cos ( a) 0 ( ) ( a) 0 cos

6 Συνεργασία οδοντωτών τροχών Γραμμή πίεσης Βασικές σχέσεις Αρχικός κύκλος Βασικές γεωμετρικές σχέσεις m Z 0 Κύκλος κεφαλής Κύκλος ποδός k m ( Z + ) 0 + m f m ( Z.5 ) 0.5 m Βασικός κύκλος m Z cos( a) cos( a) Βήμα Διάκεντρο Ύψος κεφαλής Ύψος ποδός t m π ( ) m Z + Z a k 0 hk 0 f hf 1 0 Moule Αριθμός οδόντων Γωνία εξειλιγμένης m Z a 0 o Μετωπικοί τροχοί με ευθεία οδόντωση 0 Υπολογισμός αντοχής οδόντωσης â 0 u

7 Μετωπικοί τροχοί με ευθεία οδόντωση Περιφερειακή δύναμη Μετωπικοί τροχοί με πλάγια οδόντωση αρχικός κύκλος u M M M u u a ˆ â 0 tan Ακτινική δύναμη ( aˆ ) tan ( aˆ ) 0 u 0 u u u u κεφαλή οδόντος â 0 aˆ, ˆ β 0 0 Μετωπικοί τροχοί με πλάγια οδόντωση u aˆt â 0 ˆβ 0 xz ˆβ 0 a cos cos Περιφερειακή δύναμη M M M ( aˆ ) u u 01 0 Συνολική δύναμη xz ( ˆ β u ) cos( aˆ 0) cos( ˆ β0) 0 xz Ακτινική δύναμη tan ( ˆ sin a0) sin ( ˆ a0) u cos u ( aˆ ) 0 ( ˆ β0 ) Δυναμική καταπόνηση 1 περιστροφή tan Αξονική δύναμη ( ˆ a β0) tan ( ˆ a u β0) u

8 Υπολογισμός ελέγχου σε δυναμική αντοχή σε κάμψη Καταπονήσεις a Επιφανειακή πίεση Διάτμηση Θλίψη Κάμψη a 0 σ max σ επ Διάτμηση : πολύ χαμηλότερη σε σχέση με θλίψη κάμψη Θλίψη + Κάμψη: ο συνδυασμός οδηγεί σε μέγιστη ορθή θλιπτική τάση σ max Υπολογισμός μέγιστης αναπτυσσόμενης ορθής τάσης λόγω κάμψης για το δόντι Υπολογισμός επιτρεπόμενης τιμής της τάσης Πρέπει να ισχύει η ανισότητα φόρτισης οδόντος, qk Υπολογισμός ελέγχου σε δυναμική αντοχή σε κάμψη Περιφερειακή δύναμη φόρτισης οδόντος u qk bm Πλάτος οδόντος Κωστόπουλος, Σχ. 3, Σελ 4.17 σ max u qk bm moule Ο συντελεστής Προσοχή: Η σχέση ισχύει μόνο για ευθεία οδόντωση και παραλαβή της δύναμης από ένα δόντι qk είναι συνάρτηση της μετατόπισης των κέντρων των οδοντωτών τροχών και του αριθμού των οδόντων του τροχού

9 Στην πραγματικότητα περισσότερα του ενός δόντια εμπλέκονται κατά τη μετάδοση της ροπής. Επομένως η περιφερειακή δύναμη μοιράζεται στα εμπλεκόμενα δόντια σ max q ε m u k Β b Επίσης για τροχούς με πλάγια (ελικοειδή) οδόντωση η επιφάνεια επαφής των δοντιών είναι μεγαλύτερη. Βαθμός επικάλυψης (μέσος αριθμός οδόντων σε εμπλοκή) γωνίας ελίκωσης ˆβ Β Κωστόπουλος, Πίνακας, Σελ. 4.0 Κωστόπουλος, Σχ., Σελ σ επ Έλεγχος αντοχής οδοντωτών τροχών q < b ε m Β σ u k σ max επ υλικό, f περιφερειακή ταχύτητα στον ονομ. κύκλο, είδος φόρτισης, κρουστ. φορτία (συντ. ασφαλείας) Επιτρεπόμενες τιμές φόρτισης Για περιφερειακή ταχύτητα του τροχού στον κύκλο κύλισης μικρότερη ή ίση των 5 m/s σ Έλεγχος αντοχής οδοντωτών τροχών επ σ Β, v 5m 3 s σ Β Αντοχή σε εφελκυσμό (όριο θραύσης)

10 Έλεγχος αντοχής οδοντωτών τροχών Επιτρεπόμενες τιμές φόρτισης Πίνακας αντοχής υλικών Έλεγχος αντοχής οδοντωτών τροχών Επιτρεπόμενες τιμές φόρτισης Για περιφερειακή ταχύτητα του τροχού στον κύκλο κύλισης μεγαλύτερη των 5 m/s σ bw σ, v 5m επ 1.5 s σ bw Αντοχή σε εναλλασσόμενη κάμψη Κωστόπουλος, πίνακας Σελ. 4.3 Έλεγχος αντοχής οδοντωτών τροχών Επιτρεπόμενες τιμές φόρτισης Έλεγχος αντοχής οδοντωτών τροχών Αντοχή σε δυναμική κάμψη - Σύνοψη Πίνακας αντοχής υλικών Περιφερειακή δύναμη φόρτισης οδόντος Τάση θραύσης σ Β, v 5m u qk 3 s σ max b m σ ε Β επ σ bw, v 5m 1.5 s Πλάτος οδόντος Βαθμός επικάλυψης (μέσος αριθμός οδόντων που είναι κάθε φορά σε εμπλοκή) moule γωνίας ελίκωσης Δυναμική αντοχή σε εναλλασσόμενη κάμψη Κωστόπουλος, πίνακας Σελ. 4.3

11 Η στρεπτική ροπή μεταφέρεται μέσω της περιφερειακής δύναμης η οποία ασκείται με την επαφή των επιφανειών των οδόντων στην περιοχή κοντά στον κύκλο κύλισης. Η αστοχία εμφανίζεται στην περιοχή των οδόντων κοντά στον τροχό κύλισης με τη μορφή εκκοιλάνσεων. Οι εκκοιλάνσεις οφείλονται κυρίως σε επιφανειακές ρωγμές λόγω της επαφής μετάλλου με μέταλλο των οδόντων ή σε φθορές καθώς τα δόντια συνεργάζονται με λεπτό λιπαντικό φιλμ (ή με λιπαντικό χαμηλού ιξώδους). Ορίζουμε ως μόνιμη αντοχή σε πίεση επιφανείας την πίεση η οποία δημιουργεί μία εκκοίλανση ανά in σε 10 7 κύκλους φόρτισης. max επ Υπολογισμός μέγιστης αναπτυσσόμενης επιφανειακής πίεσης Υπολογισμός επιτρεπόμενης τιμής Πρέπει να ισχύει η ανισότητα Η μέγιστη αναπτυσσόμενη πίεση επιφανείας είναι ( 1) + max Y Y Y mm u i1 k W C L b 01 i1 Η μέγιστη αναπτυσσόμενη πίεση επιφανείας είναι ( i + 1) u 1 max YW YC YL b 01 i1 Περιφερειακή ρφ ρ δύναμη, σε k u b b1 5 Πλάτος του συνεργαζόμενου τροχού, σε mm b Πλάτος του πινιόν, σε mm 1 i 1 Λόγος μείωσης της βαθμίδας Ο αρχικός κύκλος του πινιόν, σε mm 01 W Y Y C υλικού κυλίσεως Y Y W W υλικού 1 1, 43 k mm E1 E E + E 1 E σε. Για χάλυβα E 0500 k mm Y L φορτίσεως

12 Η μέγιστη αναπτυσσόμενη πίεση επιφανείας είναι ( i + 1) u 1 max YW YC YL b 01 i1 Η μέγιστη αναπτυσσόμενη πίεση επιφανείας είναι ( i + 1) u 1 max YW YC YL b 01 i1 Y C κυλίσεως Y L Y L φορτίσεως 1 για ευθεία οδόντωση 1 B για πλάγια οδόντωση γωνίας ελίκωσης ˆβ Β Κωστόπουλος, Σχ. 4, Σελ. 4.5 Κωστόπουλος, Πίνακας, Σελ. 4.0 ( i + 1) u 1 max YW YC YL b 01 i1 επ Y Y 0 1 0, Αντοχή σε πίεση επιφανείας Έχοντας υπολογίσει το max με τη διαδικασία που αναπτύχθηκε, μπορεί να γίνει ο έλεγχος αντοχής: Παράμετρος υλικού Παράμετρος λίπανσης max 0 1 επ επ Y Y ασφαλείας Πίνακας αντοχής υλικών Κωστόπουλος, πίνακας Σελ. 4.3

13 επ Y Y 0 1 Y 1, Παράμετρος υλικού 1 1 γενικά Y 1, 5 όταν ο συνεργαζόμενος τροχός είναι από χυτοσίδηρο επ Y Y 0 1 Y, Παράμετρος λίπανσης, συνάρτηση του κινηματικού ιξώδους του λιπαντικού Το κινηματικό ιξώδες επιλέγεται ως συνάρτηση της ταχύτητας κυλίσεως Μονάδες: 1tokes1cm /s επομένως 1ct1x10 - cm /s 10 - x m /s Κωστόπουλος, Πίνακας Σελ. 4.8 Κωστόπουλος, Σχ. 5, Σελ. 4.9 επ Y Y 0 1, ασφαλείας, υλικού ( i + 1) κυλίσεως u 1 max YW YC YL b 01 i1 φορτίσεως Παράμετρος υλικού επ Y Y 0 1 Παράμετρος λίπανσης ασφαλείας max επ?

14 Υπολογισμός ελέγχου Σύνοψη Με δεδομένη τη γεωμετρία και τα χαρακτηριστικά κίνησης είναι δυνατός ο έλεγχος της αντοχής των οδοντωτών τροχών Έλεγχος αντοχής σε δυναμική κάμψη (θραύση οδόντος) σ max σ Β, v 5m u q k 3 s < σεπ b ε m Β σ bw, v 5 m 1.5 s Έλεγχος αντοχής σε επιφανειακή πίεση (εκκοιλάνσεις) Αντοχή τροχού Ερώτημα: Πώς μπορούμε να εκτιμήσουμε τις διαστάσεις των συνεργαζόμενων τροχών αν είναι γνωστά τα χαρακτηριστικά της κίνησης; Υπολογισμός μελέτης Υπολογισμός ελέγχου max ( 1) i + Y Y Y Y Y u W C L επ b 01 i1 Υπολογισμός μελέτης οδοντωτών τροχών Υπολογισμός μελέτης οδοντωτών τροχών Ο υπολογισμός μελέτης οδοντωτών τροχών είναι ο αντίστροφος υπολογισμός αντοχής σε επιφανειακή πίεση (εκκοιλάνσεις) max ( 1) i + Y Y Y Y Y u W C L επ b 01 i M i 3 Ψ i ( + 1) MM u Διάμετρος αρχικού κύκλου (mm) 0 Αντοχή σε πίεση (k/mm ) M 1 i1 Στρεπτική ροπή (k cm) Σχέση μετάδοσης M i 3 Ψ i b Ψ εργαζόμενου πλάτους α) Μικρός αριθμός στροφών, συνήθεις ποιότητες οδόντωσης β) Μέσος αριθμός στροφών, συνήθεις ποιότητες οδόντωσης γ) Υψηλός αριθμός στροφών, υψηλές ποιότητες οδόντωσης δ) Μεγάλες απαιτήσεις ακρίβειας ( + 1) Κωστόπουλος, Σχ. 6, Σελ. 4.9

15 Υπολογισμός μελέτης οδοντωτών τροχών ΠΙΝΙΟΝ `Επιλογή υλικού ( 0 ) Υπολογισμός διαμέτρου αρχικού κύκλου 01 Υπολογισμός πλάτους τροχού 95 M i 3 Ψ i b ( + 1) 1 Ψ 1 Ψ Υπολογισμός υπόλοιπων μεγεθών των τροχών b Υπολογισμός μελέτης οδοντωτών τροχών Πολυβάθμιοι μειωτήρες στροφών Απαιτήσεις μεγάλων σχέσεων μετάδοσης μπορούν να ικανοποιηθούν με χρήση δύο ή τριών βαθμίδων μείωσης. Υπολογισμοί γίνονται για κάθε βαθμίδα. Η συνολική σχέση μετάδοσης προκύπτει n 1 n n n n n n i i1 i n 3 n3 n ολ n n 3 n n 3 Υπολογισμός μελέτης οδοντωτών τροχών Επιμερισμός σχέσεων μετάδοσης σε πολυβάθμιο μειωτήρα Τέλος Ενότητας Ερωτήσεις;

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Στοιχεία Μηχανών ΙΙ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Στοιχεία Μηχανών ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στοιχεία Μηχανών ΙΙ Ενότητα 1: Γενικά στοιχεία οδοντωτών τροχών - Γεωμετρία οδόντωσης Μετωπικοί τροχοί με ευθεία οδόντωση Δρ Α.

Διαβάστε περισσότερα

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς. ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,

Διαβάστε περισσότερα

ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ

ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ \ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΚΩΝΙΚΩΝ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ Απαραίτητα δεδομένα : αριθμός στροφών κινητήριου

Διαβάστε περισσότερα

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ιδάσκων: Χ. Παπαδόπουλος Σύνδεση με μαθήματα Σχολής ΝΜΜ Μηχανική Φορτίσεις, Είδη φορτίσεων (εφελκυσμός, θλίψη,

Διαβάστε περισσότερα

α. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ

α. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 6/04/206 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια

Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Κ. ΝΤΑΒΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Α. ΗΛΩΣΕΙΣ. Να αναφέρετε τα μέσα σύνδεσης.. Σε ποιες κατηγορίες διακρίνονται οι συνδέσεις;. Ποιες συνδέσεις ονομάζονται

Διαβάστε περισσότερα

Φρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς.

Φρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς. ΦΡΕΖΕΣ ΦΡΕΖΕΣ Είναι εργαλειομηχανές αφαίρεσης υλικού από διάφορες εργασίες με μηχανική κοπή. Η κατεργασία διαμόρφωσης των μεταλλικών υλικών στη φρέζα, ονομάζεται φρεζάρισμα. Φρεζάρισμα Με το φρεζάρισμα

Διαβάστε περισσότερα

1501 - Έλεγχος Κίνησης

1501 - Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Οδοντωτοί Τροχοί (Γρανάζια) - Μέρος Β Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

α. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ

α. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΖΗΤΗΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ ΤΜΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ Τ.Ε.Λ. ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΙ ΙΚΟΤΗΤΑΣ ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΑΠΟΦΟΙΤΟΥΣ

Διαβάστε περισσότερα

Σχήμα 22: Αλυσίδες κυλίνδρων

Σχήμα 22: Αλυσίδες κυλίνδρων Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης

Διαβάστε περισσότερα

ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ

ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Πίνακας 1: Τυποποιημένες τιμές module, mm Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 Σειρά 1 Σειρά 2 Σειρά 3 0.1 1.25 7 50 0.15 1.5 8 55 0.2 1.75

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου

ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Στοιχεία μετάδοσης κίνησης (ιμάντες, αλυσίδες, οδοντωτοί τροχοί). Κινητήρες εσωτερικής καύσης. Μηχανές ηλεκτρικές,

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2008 ( ΠΡΟΚΗΡΥΞΗ 5Π /2008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 12.04 ΜΗΧΑΝΟΛΟΓΩΝ, ΝΑΥΠΗΓΩΝ, ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ &

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ

ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ 86 ΣΤΟΧΟΙ: Με τη συμπλήρωση της ύλης της ενότητας αυτής ο μαθητής θα πρέπει να μπορεί να: 1. Εξηγεί τι είναι τα συστήματα μετάδοσης κίνησης και ποιο σκοπό εξυπηρετούν. 2. Ταξινομεί

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2008

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2008 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 008 ΘΕΜΑ Ο α. Οι ήλοι, ανάλογα µε την µορφή της κεφαλής τους διακρίνονται σε Ηµιστρόγγυλους. Φακοειδείς. Η κεφαλή είναι λιγότερο καµπυλωτή από αυτή των ηµιστρόγγυλων και µοιάζει

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα

Διαβάστε περισσότερα

Τίτλος Διδακτικού Σεναρίου: «Στοιχεία μετάδοσης κίνησης - ΟΔΟΝΤΩΣΕΙΣ» Φάση «1» Τίτλος Φάσης: «Περιγραφή - λειτουργικός σκοπός»

Τίτλος Διδακτικού Σεναρίου: «Στοιχεία μετάδοσης κίνησης - ΟΔΟΝΤΩΣΕΙΣ» Φάση «1» Τίτλος Φάσης: «Περιγραφή - λειτουργικός σκοπός» Τίτλος Διδακτικού Σεναρίου: «Στοιχεία μετάδοσης κίνησης - ΟΔΟΝΤΩΣΕΙΣ» Φάση «1» Τίτλος Φάσης: «Περιγραφή - λειτουργικός σκοπός» Χρόνος Υλοποίησης: 15 Λεπτά Δραστηριότητα 1. Θεωρία - Εμπλουτισμός γνώσεων

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2008 ( ΠΡΟΚΗΡΥΞΗ 5Π /2008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδοι-Ειδικότητες: ΠΕ 17.02 ΜΗΧΑΝΟΛΟΓΩΝ, ΝΑΥΠΗΓΩΝ, ΤΕΧΝΟΛΟΓΩΝ ΕΝΕΡΓΕΙΑΚΗΣ

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065 Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό. ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΗ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΚΙΒΩΤΙΟΥ ΤΑΧΥΤΗΤΩΝ ΜΙΚΡΟΥ ΑΥΤΟΚΙΝΗΤΟΥ 50 ΗΡ

ΣΧΕ ΙΑΣΗ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΚΙΒΩΤΙΟΥ ΤΑΧΥΤΗΤΩΝ ΜΙΚΡΟΥ ΑΥΤΟΚΙΝΗΤΟΥ 50 ΗΡ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΧΕ ΙΑΣΗ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΣ ΚΙΒΩΤΙΟΥ ΤΑΧΥΤΗΤΩΝ ΜΙΚΡΟΥ ΑΥΤΟΚΙΝΗΤΟΥ 50 ΗΡ ΣΠΟΥ ΑΣΤΕΣ:

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

10 Ν 100 εκ (1 μέτρο) Άγνωστο Ψ (N) 20 εκ (0.2 Μ)

10 Ν 100 εκ (1 μέτρο) Άγνωστο Ψ (N) 20 εκ (0.2 Μ) Τεχνολογία A τάξης Λυκείου Μάθημα 20 ον - Μηχανισμοί Φύλλο εργασίας Μοχλοί σελίδες Dan-78-87 Collins 167-208 1. Ο άνθρωπος όταν πρωτοεμφανίστηκε στην γη ανακάλυψε πολύ σύντομα την χρήση του μοχλού για

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1 ΕΠΑΛ ΔΡΑΠΕΤΣΩΝΑΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΟΥΡΑΤΙΔΗΣ Μ. ΜΑΡΙΟΣ 2014/15 Περιέχονται όλα τα θέματα των πανελλαδικών εξετάσεων στο μάθημα, από το 1997 έως σήμερα ταξινομημένα σε κεφάλαια.

Διαβάστε περισσότερα

«ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» προορίζονται για αυτούς που

«ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» προορίζονται για αυτούς που Οι σύντομες αυτές σημειώσεις θέματα στο μάθημα «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» προορίζονται για αυτούς που υπηρετούν τη δημόσια και δωρεάν παιδεία, και τα αγαπητά «παιδιά μου». ΔΡΑΠΕΤΣΩΝΑ 10/2013 ΜΑΡΙΟΣ ΜΟΥΡΑΤΙΔΗΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΛΥΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Μηχανολογίας

Διαβάστε περισσότερα

Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση

Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση Χριστοδουλόπουλος Αντώνιος 1 Εισαγωγή Κατηγορίες οδοντωτών τροχών Χαρακτηριστικά μεγέθη Κατασκευαστικές τεχνολογίες

Διαβάστε περισσότερα

Τροχαλίες και τροχοί. Μηχανολογικό Σχέδιο ΙΙ. Dr.-Ing. Β. Ιακωβάκης

Τροχαλίες και τροχοί. Μηχανολογικό Σχέδιο ΙΙ. Dr.-Ing. Β. Ιακωβάκης Τροχαλίες και τροχοί Μηχανολογικό Σχέδιο ΙΙ Dr.-Ing. Β. Ιακωβάκης Βιβλιογραφία Handbuch Kettentechnik, IWIS http://www.hreiter.at/userfiles/file/36af028e-4450-44ae-bca1-816754d1474dkettenraeder.pdf Ιμαντοκινήσεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Δυναμική προσομοίωση λειτουργίας βαθμίδας μετωπικών οδοντωτών τροχών ευθύγραμμων οδόντων με επίδραση της μάζας των εμπλεκομένων

Διαβάστε περισσότερα

Όλα τα γρανάζια είναι κατασκευασµένα από χρωµιο-µολυβδενιούχο χάλυβα µε όριο θραύσης

Όλα τα γρανάζια είναι κατασκευασµένα από χρωµιο-µολυβδενιούχο χάλυβα µε όριο θραύσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ 265 00 ΠΑΤΡΑ, ΕΛΛΑΣ UNIVERSITY OF PATRAS SCHOOL OF ENGINEERING DEPARTMENT of MECHANICAL ENGINEERING

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΑΠΟΒΛΙΤΤΩΝ ΣΤΟ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ Ο ΟΝΤΩΣΕΩΝ

ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΑΠΟΒΛΙΤΤΩΝ ΣΤΟ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ Ο ΟΝΤΩΣΕΩΝ ΓΕΩΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΑΠΟΒΛΙΤΤΩΝ ΣΤΟ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ Ο ΟΝΤΩΣΕΩΝ Σκοπός εργασίας Σκοπός του λογισμικού που δημιουργήθηκε είναι η μελέτη της γεωμετρίας του αποβλίττου στο φραιζάρισμα με κύλιση οδοντώσεων,

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΔΙΑΤΜΗΣΗ 1. Γενικά Όλοι γνωρίζουμε ότι σε μια διατομή ενός καταπονούμενου φορέα

Διαβάστε περισσότερα

ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ

ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ 1. Τεχνολογικά χαρακτηριστικά ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ Βασικοί συντελεστές της κοπής (Σχ. 1) Κατεργαζόμενο τεμάχιο (ΤΕ) Κοπτικό εργαλείο (ΚΕ) Απόβλιττο (το αφαιρούμενο υλικό) Το ΚΕ κινείται σε σχέση

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Μηχανουργική Τεχνολογία Ημερομηνία

Διαβάστε περισσότερα

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Στοιχεία περιστροφικής κίνησης (άξονες, άτρακτοι, έδρανα) Άξονες και άτρακτοι Οι άξονες είναι κυλινδρικά κατά

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1 Πρόλογος 19 1 1.1 ΒΑΣΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΚΑΙ ΟΡΓΑΝΑ ΣΧΕΔΙΟΥ 21 1.1.1 Χαρτί σχεδίου 21 1.1.2 Κανονισμοί στο σχέδιο 21 1.1.3 Τοποθέτηση του χαρτιού 23 1.1.4 Αναδίπλωση 23 1.1.5 Υπόμνημα 24 1.1.6 Κλίμακα 25 1.1.7

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Εργαστήριο Στοιχείων Μηχανών Βέλτιστος σχεδιασμός κατατομών μετωπικών οδοντωτών τροχών κλειστής τροχιάς επαφών για ισοκατανομή του κινδύνου εμφάνισης

Διαβάστε περισσότερα

ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ

ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ 8 Κ Ε Φ Α Λ Α Ι Ο ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ 8. Συνδέσεις Γενικά ονομάζουμε συνδέσεις τις άμεσες ενώσεις δύο εξαρτημάτων ή μηχανικών οργάνων. Οι ενώσεις αυτές μπορεί να είναι: Κινητές, όπου τα συνδεδεμένα κομμάτια

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 155 7.6 ΦΡΕΖΕΣ

ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 155 7.6 ΦΡΕΖΕΣ ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 155 7.6 ΦΡΕΖΕΣ Η φρέζα όπως και ο τόρνος αποτελεί μία από τις βασικότερες εργαλειομηχανές ενός μηχανουργείου. Κατά την κοπή στην φρέζα, το κοπτικό εργαλείο αποκόπτει από το αντικείμενο

Διαβάστε περισσότερα

A e (t σε sec). Το πλάτος των ταλαντώσεων

A e (t σε sec). Το πλάτος των ταλαντώσεων ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M) . ΥΠΟΛΟΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M). Ορισμοί φορτίσεων μίας δοκού Οι φορτίσεις που μπορεί να εμφανισθούν σ'ένα σώμα είναι ο εφελκυσμός (ή η θλίψη με κίνδυνο λογισμού), η διάτμηση, η κάμψη και η στρέψη.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΣΕΡΡΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΣΕΡΡΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (ΤΕΙ) ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Των σπουδαστών: α. Χαράλαμπος Στρούμπος β. Χρήστος Χατζηνικολάου Θέμα: Μελέτη & κατασκευή μειωτήρα

Διαβάστε περισσότερα

περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5

περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5 15958 Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R1= 0,2 m και R2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ α. =α. γων. R γ. Όλα τα σημεία του τροχού που είναι σε ύψος R από τον δρόμο έχουν ταχύτητα υ=υ cm

ΟΡΟΣΗΜΟ α. =α. γων. R γ. Όλα τα σημεία του τροχού που είναι σε ύψος R από τον δρόμο έχουν ταχύτητα υ=υ cm ÊéíÞóåéò óôåñåïý óþìáôïò ÊÅÖÁËÁÉÏ 4 21 Ένα σώμα εκτελεί μεταφορική κίνηση Τότε: α Όλα τα σημεία του στερεού έχουν την ίδια στιγμιαία γωνιακή επιτάχυνση β Όλα τα σημεία του στερεού έχουν την ίδια στιγμιαία

Διαβάστε περισσότερα

ΣΧΕΔΙΟΜΕΛΕΤΗ ΤΡΙΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΣΤΡΟΦΩΝ ΜΕ ΜΕΤΩΠΙΚΟΥΣ ΟΔΟΝΤΩΤΟΥΣ ΤΡΟΧΟΥΣ

ΣΧΕΔΙΟΜΕΛΕΤΗ ΤΡΙΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΣΤΡΟΦΩΝ ΜΕ ΜΕΤΩΠΙΚΟΥΣ ΟΔΟΝΤΩΤΟΥΣ ΤΡΟΧΟΥΣ T.E.I. ANATOΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦYΣΙΚΟΥ ΑΕΡΙΟΥ Τ.Ε. ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΤΕΡΓΑΣΙΑΣ ΑΠΟΦΛΟΙΩΣΗΣ Ο ΟΝΤΩΣΕΩΝ ΜΕ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ ΒΑΣΙΣΜΕΝΗ ΣΕ ΣΥΣΤΗΜΑ CAD

ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΤΕΡΓΑΣΙΑΣ ΑΠΟΦΛΟΙΩΣΗΣ Ο ΟΝΤΩΣΕΩΝ ΜΕ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ ΒΑΣΙΣΜΕΝΗ ΣΕ ΣΥΣΤΗΜΑ CAD 1 ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΤΕΡΓΑΣΙΑΣ ΑΠΟΦΛΟΙΩΣΗΣ Ο ΟΝΤΩΣΕΩΝ ΜΕ ΦΡΑΙΖΑΡΙΣΜΑ ΜΕ ΚΥΛΙΣΗ ΒΑΣΙΣΜΕΝΗ ΣΕ ΣΥΣΤΗΜΑ CAD ΠΑΡΟΥςΙΑςΗ ΙΠΛΩΜΑΤΙΚΗς ΕΡΓΑςΙΑς 2 Για την κατασκευή οδοντώσεων (γραναζιών) που λειτουργούν σε υψηλό αριθμό

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδοι-Ειδικότητες: ΠΕ 1720 ΤΕΧΝΟΛΟΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΠΕ 1851 ΟΧΗΜΑΤΩΝ ΤΕΙ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ

Διαβάστε περισσότερα

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 1 Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 2 Μετωπικό φραιζάρισμα: Χρησιμοποιείται κυρίως στις αρχικές φάσεις της κατεργασίας (φάση εκχόνδρισης) Μεγάλη διάμετρο Μεγάλες προώσεις μείωση

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390 ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΛΥΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Μηχανολογίας

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Πάτρα 005 Έδρανα ολίσθησης Σελίδα - - 1.1 ΑΣΚΗΣΕΙΣ ΕΔΡΑΝΩΝ ΟΛΙΣΘΗΣΗΣ 1.1.1 ΑΣΚΗΣΗ Ένα πλήρες έδρανο ολίσθησης έχει διάμετρο 0 /d 1. Το φορτίο του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΣΥΓΚΟΛΛΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ ΣΥΓΚΟΛΛΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 8 ΣΥΓΚΟΛΛΗΣΕΙΣ - 2 / 22 - Παπαδόπουλος Α. Χρήστος 8 Συγκολλήσεις είναι η διαδικασία της μόνιμης τοπικής ένωσης μεταλλικών μερών σε ημιτετηγμένη μορφή με εφαρμογή πίεσης ή την ένωση των μερών σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)

Διαβάστε περισσότερα

Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει.

Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει. Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει. Η διπλή τροχαλία του σχήματος αποτελείται από δύο ομόκεντρους ομογενείς δίσκους με ακτίνες και αντίστοιχα, όπου = 0,5 m και έχει συνολική

Διαβάστε περισσότερα

ΚΑΤΕΡΓΑΣΙΕΣ ΜΕ ΑΦΑΙΡΕΣΗ ΥΛΙΚΟΥ

ΚΑΤΕΡΓΑΣΙΕΣ ΜΕ ΑΦΑΙΡΕΣΗ ΥΛΙΚΟΥ 19 Γ ΚΑΤΕΡΓΑΣΙΕΣ ΜΕ ΑΦΑΙΡΕΣΗ ΥΛΙΚΟΥ 1. ΕΙΣΑΓΩΓΗ Οι βασικότερες κατεργασίες με αφαίρεση υλικού και οι εργαλειομηχανές στις οποίες γίνονται οι αντίστοιχες κατεργασίες, είναι : Κατεργασία Τόρνευση Φραιζάρισμα

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ 47 ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ ΣΤΟΧΟΙ Με τη συμπλήρωση του μέρους αυτού ο μαθητής θα πρέπει να μπορεί να: 1. Ορίζει τι είναι στοιχείο μηχανής και να αναγνωρίζει και να κατονομάζει τα βασικά

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ Μάθημα: Τεχνολογία

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ Aπό τo βιβλίο Heinz Grohe: Otto und Dieselmotoren. 9 Auflage, Vogel Buchverlag 1990. Kεφάλαιο 2: Mechanische Grundlagen Επιμέλεια μετάφρασης:

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΟΙΧΕΙΩΝ ΚΙΝΗΣΗΣ ΜΙΚΡΟΥ ΣΥΜΒΑΤΙΚΟΥ ΤΟΡΝΟΥ ΜΕ ΤΕΣΣΕΡΕΣ ΤΑΧΥΤΗΤΕΣ ΠΕΡΙΣΤΡΟΦΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΟΙΧΕΙΩΝ ΚΙΝΗΣΗΣ ΜΙΚΡΟΥ ΣΥΜΒΑΤΙΚΟΥ ΤΟΡΝΟΥ ΜΕ ΤΕΣΣΕΡΕΣ ΤΑΧΥΤΗΤΕΣ ΠΕΡΙΣΤΡΟΦΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΟΙΧΕΙΩΝ ΚΙΝΗΣΗΣ ΜΙΚΡΟΥ ΣΥΜΒΑΤΙΚΟΥ ΤΟΡΝΟΥ ΜΕ ΤΕΣΣΕΡΕΣ ΤΑΧΥΤΗΤΕΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΘΕΤ. & ΤΕΧΝ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Η ομογενής και ισοπαχής ράβδος ΑΓ του διπλανού σχήματος έχει μήκος L=1,m και μάζα M=4kg και μπορεί να περιστρέφεται χωρίς τριβές σε κατακόρυφο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Μηχανουργική Τεχνολογία Ημερομηνία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Στο

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα