ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ"

Transcript

1 ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μέθοδος και Εφαρμογές. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ

2 Στύλων Παράδειγμα Ο χεδιαμός των τη μέθοδο και γίνεται με βάη τη θεωρία της υνειφέρουας ς Κάθε τύλος φέρει το φορτίο του πετρώματος που βρίκεται μέα το κατακόρυφο ορθογώνιο παραλληλεπίπεδο, του οποίου γενέτειρα είναι οι άξονες που χωρίζουν τη μέη τους διαδρόμους που περιβάλλουν το τύλο. Η οριζόντια αυτή ονομάζεται υνειφέρουα.

3 Επιφάνεια Παράδειγμα

4 Θαλάμων Ο υπολογιμός για τρωιγενή πετρώματα γίνεται με τη θεωρία της αμφίπακτης δοκού: n ax L γ L 3 4 γ τ ax 3 E 4 ax γ L Παράδειγμα n ax : η μέγιτη κάμψη L: το πλάτος του θαλάμου : το πάχος του τρώματος της οροφής Ε: το μέτρο του Young του πετρώματος της οροφής γ: το ειδικό βάρος του πετρώματος της οροφής τ ax : η μέγιτη διατμητική τάη ax : η μέγιτη εφελκυτική / θλιπτική τάη

5 Θαλάμων Διαιρώντας κατά μέλη τις χέεις: τ ax γ L 3 4 προκύπτει ότι: τ ax ax ax L 3 γ L Παράδειγμα Όταν L / > 5 τότε ax > 3 τ ax Επειδή η αντοχή των πετρωμάτων ε εφελκυμό είναι υνήθως μικρότερη από την αντοχή τους ε διάτμηη και πολύ μικρότερη από την αντοχή τους ε θλίψη, ως παράμετρος υπολογιμού του πλάτους των χρηιμοποιείται η μέγιτη εφελκυτική τάη

6 Τυπολόγιο Γεωτατικές Τάεις: S γ Τάη ε τύλο (τετραγ.): S γ ( W + W ) R P W P γ 1 + W R W Υπολογιμός αντοχής τύλου: W 1 0, , Παράδειγμα Υπολογιμός SF τύλου: F Υπολογιμός Απόληψης: R 1 ( W W + W R ) Υπολογιμός L ax θαλάμου: L ax γ F

7 Παράδειγμα Προγραμματίζεται η κατακευή ενός υπόγειου έργου διατάεων 10x10 και ύψους 5. Το ύψος των υπερκειμένων είναι 150, γ,65 / 3, ενώ και η θλιπτική αντοχή κυβικού δοκιμίου (d/h1) είναι 65 MPa. (α) Να εξετατεί εάν ο χεδιαμός ικανοποιεί τις απαιτήεις της αφάλειας ως προς την αντοχή των. (β) Εάν το ύψος των υπερκειμένων ανέλθει ε 0 και το επιθυμητό πλάτος θαλάμου και τύλου παραμένει 10, ποια θα πρέπει να είναι η μεταβολή το ύψος του τύλου ώτε να θεωρηθεί ο χεδιαμός αφαλής? (γ) Εάν το νέο ύψος δεν ικανοποιεί τις απαιτήεις του χεδιαμού προτείνετε τι πρέπει να αλλάξει ώτε να ικανοποιούνται οι υνθήκες αφάλειας

8 Εξέταη SF τύλου Γεωτατικές Τάεις: S γ S, ,5 S 3, 98Ma 3 Τάη ε τύλο: W R 10 S γ 1 3, ,9 + W 10 MPa Παράδειγμα Αντοχή τύλου: W ,778 0, 65 0, , 79, 4MPa + 5 Υπολογιμός SF τύλου: F 79,4 15,9 4,98

9 Ύψος υπερκειμένων: 0 Γεωτατικές Τάεις: Τάη ε τύλο: Υπολογιμός SF τύλου: S γ S, S 5, 83Ma 3 W R 10 S γ 1 5, ,3 + W 10 F 79,4 3,3 3,4 SF >4 MPa Παράδειγμα Για SF4: F F 3,3 4 93, 3MPa W 0, W 0, ,778 0, 3, 6 + 1,44 0,778 0,778 1

10 Άλλες Προτάεις Παράδειγμα Αύξηη διατάεων (π.χ. από 10 ε 1) Επομένως, είναι: W S R 10 γ 1 5, ,6 MPa + W 1 W 1 1 0,778 0, 65 0, , 85, MPa + 5 F 85, 19,6 4,3

11 Παράδειγμα Παράδειγμα Προγραμματίζεται η κατακευή ενός υπόγειου arking. Ο ιδιοκτήτης του έργου θέτει τις ακόλουθες προδιαγραφές: Πλάτος 15 Πλάτος 15 Ύψος 5 Συνολική ελεύθερη Για την κατακευή του υπόγειου χώρου υπάρχουν δύο εναλλακτικές τοποθείες. Η πρώτη έχει ύψος των υπερκειμένων 170, ειδ. βάρος του πετρώματος,65 /3, θλιπτική αντοχή δοκιμίου (d/h1) 60 MPa, εφελκυτική αντοχή 10 MPa και πάχος τρώης,3. Η δεύτερη θέη έχει ύψος των υπερκειμένων 00, ειδ. βάρος του πετρώματος,65 /3, θλιπτική αντοχή δοκιμίου (d/h1) 70 MPa, εφελκυτική αντοχή 13 MPa και πάχος τρώης. Ποια θέη είναι καλύτερη για την κατακευή και γιατί?

12 Εξέταη SF τύλου () Γεωτατικές Τάεις: S γ S, S 4, 50MPa 3 Τάη ε τύλο: W R 15 S γ 1 4, W 15 MPa Παράδειγμα Αντοχή τύλου: W ,778 0, 60 0, , 86, 6MPa + 5 Υπολογιμός SF τύλου: F 86,6 18 4,81

13 Εξέταη SF τύλου (B) Παράδειγμα Γεωτατικές Τάεις: Τάη ε τύλο: Αντοχή τύλου: S γ S, S 5, 83MPa 3 W R 15 S γ 1 5, ,3 MPa + W 15 W ,778 0, 70 0, , 101, 1MPa + 5 Υπολογιμός SF τύλου: F 3,3 4,33

14 Εξέταη Lax Θαλάμος (Α) L γ F ax 1000,3,65 8 L 14,7 Θαλάμος (Β) Παράδειγμα L γ F ax 1300,65 8 L 15,66

15 Τελική Επιλογή Θέης Παράδειγμα Θέη () SF 4,8 Lax14,7 Θέη (B) SF 4,3 Lax15,5

16 Παράδειγμα Υπόγειος χώρος για την αποθήκευη αρχείων κατακευάζεται εντός αβετολιθικού πετρώματος με τη μέθοδο και ε έκταη που έχει δεμευτεί για το κοπό αυτό, υνολικού εμβαδού () i. Ποιος είναι ο ωφέλιμος χώρος ( R ) που μπορεί να διατεθεί για το κοπό αυτό αν επιλέγεται ο υντελετής αφαλείας των (Fc) να είναι ίος με 4,5; ii. Ελέγξτε αν ένας θάλαμος πλάτους (W R ) 8 μπορεί να κατακευατεί χωρίς προβλήματα την οροφή του υγκροτήματος Δίνονται: γ,6 n/3, h180, 160 MPa, W/1, 1,8, εφ 8 ΜPa.

17 Παράδειγμα Είναι: Επομένως: W / 1 60 F 1 13, 3 4,5 4,5 4,5 MPa S γ S, S 4, 68MPa 3 S ,3 4, R R Εξέταη Lax θαλάμου: L 800 1,8 ax 880 γ F 0,8,6 8 3 L 11,7

18 Παράδειγμα Πρόκειται να γίνει η αποκατάταη παλαιού μεταλλείου, το οποίο γίνονταν η εκμετάλλευη με τη μέθοδο και, ώτε να χρηιμοποιηθεί για την διάθεη αποβλήτων. Χρειάζεται να γίνει επομένως η κατ αρχήν εκτίμηη της κατάταης όον αφορά τις υνθήκες ευτάθειας των και της οροφής. Το εμβαδόν του τομέα φτάνει τα 450 ενώ το εμβαδόν των δίνεται τον αντίτοιχο πίνακα. Αντίτοιχα τα πλάτη των κυμαίνονται από 5-7, ενώ δοκιμές προδιόριαν τη μέη τιμή της αντοχής τύλου ε 50 ΜPa. Δίνονται, ύψος 4, υπερκείμενα 150, γ,5 n/3, πάχος τρώης 1,, αντοχή ε εφελκυμό 6ΜPa. Ποιες περαιτέρω ενέργειες προτείνετε ώτε να βελτιωθούν οι υνθήκες ευτάθειας? a/a

19 Παράδειγμα Είναι: 147 S γ S, S 3, 98Ma S 3,98 3,98 3,06 1, 18MPa ,18 Άρα: F 4, 1 L γ F ax 600 1,,65 8 L 8,4

20 Υπόγειος χώρος έχει κατακευατεί εντός αβετολιθικού πετρώματος με τη μέθοδο και ε έκταη υνολικού εμβαδού () Από αυτά το 60% είναι ωφέλιμος χώρος. Αν τα υπερκείμενα είναι 00, ποια η μέη τάη που δέχεται ο κάθε τύλος; Δίνονται: γ,6 n/3, h00 Παράδειγμα

21 Παράδειγμα Είναι: Άρα: R % R S γ S, S 5, Ma S 5, 13MPa

22 Παράδειγμα Υπόγειος χώρος αποθήκευης τροφίμων πρόκειται να κατακευατεί με τη μέθοδο και εντός αβετολιθικού πετρώματος (γ,65 /3) με μέο πάχος τρώης 1,5. Η διάνοιξη προτείνεται να γίνει ε δύο φάεις (ανώτερο τμήμα και βαθμίδα), ύψους 4 και 6 αντίτοιχα. Το πλάτος του θαλάμου είναι 8, ενώ οι τύλοι είναι τετραγωνικής διατομής με πλάτος 1. Το μέγιτο πάχος υπερκειμένων είναι 150, η μονοαξονική αντοχή δοκιμίων πετρώματος (w/h1) ε θλίψη είναι 40 MPa και η αντοχή ε εφελκυμό περίπου 6 MPa. α.ικανοποιούνται οι υνθήκες ευτάθειας του ανοίγματος, για κάθε φάη; β. Αν όχι, προτείνεται κατάλληλο αναχεδιαμό της εκμετάλλευης θεωρώντας τα πλάτη του θαλάμου και του τύλου ταθερά, έτι ώτε να μην δημιουργηθούν προβλήματα με τον αποθηκευτικό κάνναβο. Για την εκτίμηη της αντοχής των χρηιμοποιήτε τον τύπο των Ober and Duall.

23 Παράδειγμα S γ S, S 3, 98MPa Είναι: 3 W R 8 S γ 1 3, ,06 MPa + W 1 1η Φάη: W 1 0, , 40 0, , 57, 76MPa 1 4 F 57,76 11,06 5, L γ F ax 600 1,5,65 8 L 8,4

24 η Φάη: W 1 1 0,778 0, 40 0, , 41, 78MPa ,78 F 3,8 SF >4 11,06 Παράδειγμα Επομένως, χρειάζεται αναχεδιαμός, ο οποίος θα αφορά ε μείωη του τελικού ύψους x F 4 x 44,4 11,06 W 1 0,778 0, ,4 40 0, , 1,106 0,778 + x,664 x 0,38,664 x x 8,1

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών

(α) (β) (γ) Σχήμα Error! No text of specified style in document.-1: Ελικοειδή ελατήρια διαφόρων διατομών και μορφών 11.6 Ελικοειδή θλιπτικά ελατήρια Στα προηγούμενο κεφάλαιο είδαμε αναλυτικά τα ελικοειδή κυλινδρικά ελατήρια υμπίεης, κυκλικής διατομής ύρματος. Στο Σχήμα 11-7 φαίνονται (α) κυλινδρικό ελατήριο υμπίεης

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2

Σχεδιασµός Φορέων από Σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατακευών Εργατήριο Ωπλιµένου Σκυροδέµατος Κωνταντίνος Χαλιορής, ρ. Πολιτικός Μηχανικός, Λέκτορας τηλ./fax: 54107963 Ε-mail: haliori@ivil.duth.gr

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ

ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΚΣΚΑΦΩΝ ΣΕ ΣΥΜΠΑΓΕΣ ΠΕΤΡΩΜΑ. ΜΕΘΟΔΟΛΟΓΙΑ. Τα υπόγεια τεχνικά έργα έχουν γενικά μεγάλη διάρκεια ζωής. Τέτοια είναι οι ήραγγες, οι άλαμοι, οι αποήκες καυίμων, τα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ Μετάδοη Τάεων λόγω Επιβολής Φορτίων Σελίδα ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ 8. Ειαγωγή Ένα ύνηθες αποτέλεµα των έργων Πολιτικού Μηχανικού είναι η επιβολή φορτίων το έδαφος

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού

Διαβάστε περισσότερα

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής.

Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. η Εφαρμογή (Το επιτυχημένο service) Οριζόντια βολή. Επιλέγοντας την ταχύτητα βολής. Νεαρός τενίτας που έχει ύψος h ν =,6m εκτελεί service και το μπαλάκι φεύγει από ύψος h =,4m πάνω από το κεφάλι του με

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες

Διαβάστε περισσότερα

Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7.1

Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7.1 7. ΧΑΛΙΚΟΠΑΣΣΑΛΟΙ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 ΠΕΡΙΕΧΟΜΕΝΑ 7.1 Μέθοδοι Κατακευής 7.2 Παράμετροι Σχεδιαμού Οριμοί 7.3 Εμπειρικές Μέθοδοι Σχεδιαμού 7.4 Αναλυτικές Μέθοδοι Σχεδιαμού

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Δημιουργία Υπογείων Αποθηκευτικών Χώρων στην Αττική. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Δημιουργία Υπογείων Αποθηκευτικών Χώρων στην Αττική. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Δημιουργία Υπογείων Αποθηκευτικών Χώρων στην Αττική A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Βασικά υπογείων Tτεχνολογία Μεταξύ άλλων Αντιστάθμιση της έλλειψης χώρου στην

Διαβάστε περισσότερα

Χάραξη γραφηµάτων/lab Graphing

Χάραξη γραφηµάτων/lab Graphing Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Χρήτος Α. Παπαδόπουλος ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Πάτρα 005 Μετωπικοί οδοντωτοί τροχοί Σελίδα - -. Ακήεις μετωπικών οδοντωτών τροχών... ΑΣΚΗΣΗ (Αντοχή ε κάμψη και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N( Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούνης Αρκετά τρόφιμα περιέχουν το ιχνοτοιχείο ελήνιο το οποίο, όταν προλαμβάνεται ε μικρές ποότητες ημερηίως,

Διαβάστε περισσότερα

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική

Εφαρµογή κριτηρίου παραβολοειδούς εκ περιστροφής στη Βραχοµηχανική Εφαρµογή κριτηρίου παραβολοειδούς εκ περιτροφής τη Βραχοµηχανική Appliaion of a paaboloid ieion in Rok Mehanis ΣΑΚΕΛΛΑΡΙΟΥ, Μ.Γ., ρ Μηχ., Π.Μ. & Α.Τ.Μ., Αναπληρωτής Καθηγητής, Ε.Μ.Π. ΠΕΡΙΛΗΨΗ : Στο παρόν

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 1 ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΣΗΜΕΙΩΣΕΙΣ ( Κυρίως επιλεγµένα και ελεύθερα µεταφραµένα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)

Διαβάστε περισσότερα

Σύγκριση μέθοδων υπόγειας εκμετάλλευσης

Σύγκριση μέθοδων υπόγειας εκμετάλλευσης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Σύγκριση μέθοδων υπόγειας εκμετάλλευσης Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας Εκμετάλλευσης

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Κεφάλαιο 1 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Ο προδιοριμός του φυικού εντατικού πεδίου έχει α κοπό να δώει αφενός μεν τη βαική γνώη για το πεδίο των τάεων, αφετέρου δε τη υγκεκριμένη γνώη των υνοριακών υνθηκών που

Διαβάστε περισσότερα

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006

ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 2006 ΣΤΕΑΜΧ ΕΛΕΓΧΟΣ ΕΚΤΙΜΗΣΗ ΒΛΑΒΩΝ ΠΡΟΤΑΣΕΙΣ ΕΠΙΣΚΕΥΗΣ Φ.Ο. ΣΤΟ ΠΡΩΗΝ ΚΤΙΡΙΟ ΚΕΤΕΣ ΣΠΟΥ ΑΣΤΗΣ: ΛΓΟΣ (ΜΧ) ΒΑΡΛΑΜΟΣ ΕΥΑΓΓΕΛΟΣ ΙΟΥΛΙΟΣ 006 ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΕΣ: ΣΠΥΡΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΑΛΗΟΥ ΧΡΥΣΑΝΘΗ

Διαβάστε περισσότερα

Modified Stability-graph method

Modified Stability-graph method Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Modified Stability-graph method Potvin (1988) Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Modified Stability-graph

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

Νόμος των Wiedemann-Franz

Νόμος των Wiedemann-Franz Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω

Διαβάστε περισσότερα

5. ιαστήµατα Εµπιστοσύνης

5. ιαστήµατα Εµπιστοσύνης 5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού

Διαβάστε περισσότερα

Μια ακόμη πιο δύσκολη συνέχεια.

Μια ακόμη πιο δύσκολη συνέχεια. Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο

Διαβάστε περισσότερα

Κεφάλαιο 1. ΑΝΤΟΧΗ ΑΡΡΗΚΤΟΥ ΠΕΤΡΩΜΑΤΟΣ

Κεφάλαιο 1. ΑΝΤΟΧΗ ΑΡΡΗΚΤΟΥ ΠΕΤΡΩΜΑΤΟΣ Κεφάλαιο. ΑΝΤΟΧΗ ΑΡΡΗΚΤΟΥ ΠΕΤΡΩΜΑΤΟΣ. ΕΙΣΑΓΩΓΗ Αντοχή ενός υλικού ορίζεται η ικανότητά του να ανθίταται ε εξωτερικές δυνάμεις. Η αντοχή οφείλεται τις δυνάμεις υνοχής των ορυκτών του πετρώματος, του υνδετικού

Διαβάστε περισσότερα

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Δδά Διδάκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών

Διαβάστε περισσότερα

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών Διαφορές μεταξύ Αφαλίεων Ζωής και Γενικών Ζωής Αφαλιμένο κεφάλαιο (γνωτό Ένα υμβάν 3 Μικρή εξέλιξη ζημιάς (πχ άνατος, το μααίνεις αμέως Γενικές Μπορεί να είναι γνωτό, μπορεί και όχι (πχ το πίτι αν κατατραφεί

Διαβάστε περισσότερα

Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα

Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας Εκμετάλλευσης

Διαβάστε περισσότερα

G G. = - +kr. 4 as. σ α s. Για τις ισχυρές αλληλεπιδράσεις ισχύει: 2. Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρησιμοποιείται συνηθέστερα είναι:

G G. = - +kr. 4 as. σ α s. Για τις ισχυρές αλληλεπιδράσεις ισχύει: 2. Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρησιμοποιείται συνηθέστερα είναι: Για τις ιχυρές αλληλεπιδράεις ιχύει: s gs 00 s = π Η μορφή του δυναμικού μεταξύ δύο κουάρκ που χρηιμοποιείται υνηθέτερα είναι: s V s = - kr r e - e Πειραματική μαρτυρία και για τους δύο όρους. Εγκλωβιμός

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

Αδιαστατοποιημένο Κριτήριο Αστοχίας Τοιχοποιίας υπό Διαξονική ένταση Non-Dimensional Masonry Failure Criterion under Biaxial Stress

Αδιαστατοποιημένο Κριτήριο Αστοχίας Τοιχοποιίας υπό Διαξονική ένταση Non-Dimensional Masonry Failure Criterion under Biaxial Stress 1 Αδιατατοποιημένο Κριτήριο Ατοχίας Τοιχοποιίας υπό ιαξονική ένταη Non-Dimensional Masonr Failure Criterion under Biaial Stress Πρακτικά 16ου Συνεδρίου Σκυροδέματος, Πάφος, Κύπρος, 1-3 Οκτωβρίου 009 Π

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΑΝΑΛΥΣΗ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΚΑΙ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΕΣ ΕΠΕΝ ΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ 1 1. ΕΙΣΑΓΩΓΗ 1. Η Αγορά Κεφαλαίου Η αγορά κεφαλαίου αποτελεί ένα από τους ηµαντικότερους χρηµατοοικονοµικούς θεµούς

Διαβάστε περισσότερα

Συμμετρία μορίων και θεωρία ομάδων

Συμμετρία μορίων και θεωρία ομάδων Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ

2. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ Τεχνική Μηχανική ΙΙ, Κεφ., 007 69. ΕΠΙΠΕ Η ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ.1 Οριµοί Η µαθηµατική θεωρία των τάεων διατυπώθηκε από τον Louis Augustin Cauchy 1. Για την επεξήγηη της έννοιας της τάης θα θεωρήουµε εδώ

Διαβάστε περισσότερα

[ ] = ( ) ( ) ( ) = { }

[ ] = ( ) ( ) ( ) = { } Πρόταη: Δίνεται η θετική τμ, δηλαδή 1 [ ] ανιότητα Mrkov: P{ } P > = Εάν >, έχουμε την Εάν υποθέουμε ότι η ~ f είναι υνεχής, τότε για κάθε > ιχύει ότι x f x dx x f x dx f x dx P [ ] = = { } Παρατηρείτε

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς

Διαβάστε περισσότερα

Κεφάλαιο 3 ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΒΡΑΧΟΜΑΖΑΣ

Κεφάλαιο 3 ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΒΡΑΧΟΜΑΖΑΣ Κεφάλαιο ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΒΡΑΧΟΜΑΖΑΣ. ΕΙΣΑΓΩΓΗ Το λιθολογικό φάμα των πετρωμάτων καλύπτει γεωυλικά από κληρά πολυμεταλλικά πυριγενή και μεταμορφωμένα, όπως ο γρανίτης και ο δολερίτης, έως μαλακά απολιθωμένα

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Ακαδηµαϊκό έτος 015-016 Εαρινό Εξάµηνο ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Α.Α.Δράκος Διάλεξη 5 η 6 η. Υποδειγµα Ιορροπίας τις Κεφαλαιαγορές Υπόδειγµα Αποτίµηης Περιουιακών Στοιχείων Γραµµή Αξιογράφων Συντελετής βήτα

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς. 4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων

Διαβάστε περισσότερα

Ο πρώτος χώρος διάθεσης επικίνδυνων αποβλήτων στην Ελλάδα

Ο πρώτος χώρος διάθεσης επικίνδυνων αποβλήτων στην Ελλάδα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Εργαστήριο Μεταλλευτικής Τεχνολογίας & Περιβαλλοντικής Μεταλλευτικής Ο πρώτος χώρος διάθεσης επικίνδυνων αποβλήτων στην Ελλάδα Δ. Καλιαμπάκος

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ

Επιλογή του τρόπου κρούσης και απώλεια επαφής Β Γ Επιλογή του τρόπου κρούης και απώλεια επαφής Οι δύο µικρές φαίρες και του χήµατος έχουν ίες µάζες και κινούνται το λείο οριζόντιο δάπεδο. Οι φαίρες υγκρούονται και η κρούη τους είναι κεντρική και πλατική.

Διαβάστε περισσότερα

Αρχές υπόγειας εκμετάλλευσης

Αρχές υπόγειας εκμετάλλευσης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Αρχές υπόγειας εκμετάλλευσης Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Θεμελιώδεις αρχές σχεδιασμού Ο σχεδιασμός

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού . Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

Σχεδιασμός Υπαίθριων Εκμεταλλεύσεων

Σχεδιασμός Υπαίθριων Εκμεταλλεύσεων Σχεδιασμός Υπαίθριων Εκμεταλλεύσεων Ενότητα 2: Βασική μεταλλευτική ορολογία και τύποι εκμετάλλευσης Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες

Γραπτή Εργασία 2 Διαχείριση Χαρτοφυλακίου. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 3 Χρηματοοικονομική Διοίκηη Ακαδημαϊκό Έτος: 009-0 Γραπτή Εργαία Διαχείριη Χαρτοφυλακίου Γενικές

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13 Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πίνακας Σχημάτων 5 Πίνακας Πινάκων Πίνακας Συμβολιμών Συντομογραφιών Ειαγωγή Γενικότητες 5. Έννοιες από την μηχανική του υνεχούς μέου... 7.. Η χέη τάεων παραμορφώεων

Διαβάστε περισσότερα

Τα καλούπια. Ι Απόστολου Κωνσταντινίδη

Τα καλούπια. Ι Απόστολου Κωνσταντινίδη Τόµος Α 2.2 Τα καλούπια Τα στοιχεία των καλουπιών για την κατασκευή δοµικών στοιχείων οπλισµένου σκυροδέµατος, χωρίζονται σε τέσσερεις κατηγορίες: 1. Επιφανειακά στοιχεία ή πετσώµατα 2. Οριζόντια φέροντα

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές σε προβλήματα μηχανικής των υλικών, υπογείων έργων και σηράγγων) Γ. Ε. ΕΞΑΔΑΚΤΥΛΟΥ ΚΑΘΗΓΗΤΟΥ ΠΟΛΥΤΕΧΝΕΙΟΥ ΚΡΗΤΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΣΤΗ ΘΡΑΥΣΤΟΜΗΧΑΝΙΚΗ (Με εφαρμογές ε προβλήματα μηχανικής των υλικών, υπογείων έργων και ηράγγων) Χανιά 006 Eιαγωγή

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC

ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Ελληνικό Στατιτικό Ιντιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιτικής (005) ελ.57-65 ΕΛΛΕΙΨΕΙΣ ΕΜΠΙΣΤΟΣΥΝΗΣ ΣΤΑ ΠΑΡΑΓΟΝΤΙΚΑ ΕΠΙΠΕΔΑ ΤΗΣ AFC Γεώργιος Μενεξές, Άγγελος Μάρκος, Γιάννης Παπαδημητρίου

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ

To φαινόµενο της κό ωσης. N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ To φαινόµενο της κό ωης N.. Αλεξόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ 1 οµή Παρουίαης Η κόπωη ε µηχανολογικές εφαρµογές Μηχανιµός κόπωης Στάδιο 1: ηµιουργία των µικρο-ρωγµών

Διαβάστε περισσότερα

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ

Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ 5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c Χ. Κααγιάννης, Πολιτικός Μηχ. ΕΜΠ,. Μηχ. ΚΑΘΗΓΗΤΗΣ Κατασκευών Ωπλισµένου Σκυοδέµατος και Αντισεισµικού Σχεδιασµού ΠΡΟΕ ΡΟΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΘ Συνοπτική Παουσίαση Σχεδιασµού έναντι ιάτµησης

Διαβάστε περισσότερα

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις ρ.χ. Στρουθόπουλος, e-mail: stch@teise.g ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ

Διαβάστε περισσότερα

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Κεφάλαιο 9 ΒΡΑΧΟΜΑΖΑ 1 ΕΙΣΑΓΩΓΗ

Κεφάλαιο 9 ΒΡΑΧΟΜΑΖΑ 1 ΕΙΣΑΓΩΓΗ Κεφάλαιο 9 ΒΡΑΧΟΜΑΖΑ ΕΙΣΑΓΩΓΗ Το λιθολογικό φάμα των πετρωμάτων καλύπτει γεωυλικά από κληρά πολυμεταλλικά πυριγενή και μεταμορφωμένα, όπως ο γρανίτης και ο δολερίτης, έως μαλακά απολιθωμένα αργιλικά, όπως

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά.

( α ). Να δηλωθεί η συνάρτηση με την genter. ( β ). Να εφαρμοστεί τον αντίστροφο μετασχηματισμό Laplace και να αποδειχθεί Θεωρητικά. Δίνεται η υνάρτηη μεταφοράς ενός αυτόματου υτήματος πλοήγηης υπερηχητικού αεροπλάνου, το οποίο επικουρεί την αεροδυναμική ευτάθεια του, κάνοντας την πτήη ποιο ταθερή και ποιο άνετη. Ζητείται να μελετηθεί

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ

STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ STATICS 2013 ΝΕΕΣ ΥΝΑΤΟΤΗΤΕΣ * ENΙΣΧΥΣΕΙΣ ΠΕΣΣΩΝ ΦΕΡΟΥΣΑΣ ΤΟΙΧΟΠΟΙΪΑΣ ΜΕ ΜΑΝ ΥΕΣ ΟΠΛ. ΣΚΥΡΟ ΕΜΑΤΟΣ Κτίρια από Φέρουσα Τοιχοποιία µε ενισχύσεις από µανδύες οπλισµένου σκυροδέµατος. Οι Μανδύες µπορεί να

Διαβάστε περισσότερα

Υπόγειες μεταλλευτικές εκμεταλλεύσεις στην Ελλάδα

Υπόγειες μεταλλευτικές εκμεταλλεύσεις στην Ελλάδα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Υπόγειες μεταλλευτικές εκμεταλλεύσεις στην Ελλάδα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Αρχαίες Υπόγειες Εκμεταλλεύσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα