Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;"

Transcript

1 Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Η έννοια της αναγωγής Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Βασικό σκεπτικό: Θέλουµε να αποδείξουµε τη µη επιλυσιµότητα προβλήµατος B. Εστω ότι γνωρίζουµε πως ένα πρόβληµα, A, είναι µη επιλύσιµο. Ανάγουµε την επίλυση του A στην επίλυση του B. Αν επιλύαµε το B, ϑα «χρησιµοποιούσαµε» τη µέθοδό µας για το A. Αυτό δείχνει ότι το A είναι το πολύ «τόσο δύσκολο» όσο το B. Επειδή όµως το A είναι µη επιλύσιµο, το επιχείρηµα οδηγεί σε άτοπο. Εποµένως το B πρέπει να είναι µη επιλύσιµο. Ορίζουµε: ΤΕΡΜΑΤΙΣΜΟΣ/TM = { M, w η TM M τερµατίζει για είσοδο w } Θεώρηµα: Η γλώσσα ΤΕΡΜΑΤΙΣΜΟΣ/TM δεν είναι ( Turing-)αποφασίσιµη. Σχόλια: Η γλώσσα αυτή (και το πρόβληµα) δεν αποτελούν το Πρόβληµα του Τερµατισµού. Το Πρόβ. του Τερµατισµού ϱωτά αν µια TM αποδέχεται δεδοµένη είσοδο. ιαισθητικά, το Πρόβληµα του Τερµατισµού «υποκρύπτει» το πρόβληµα του τίτλου. Αν αποφασίζεται η Αποδοχη/TM, ϑα πρέπει να αποφασίζεται η ΤΕΡΜΑΤΙΣΜΟΣ/TM. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

2 Απόδειξη Για δεδοµένη TM, M, είναι L(M) = ; Εστω ότι υπάρχει µια TM R που αποφασίζει την ΤΕΡΜΑΤΙΣΜΟΣ/TM. Για είσοδο M, w, η R: 1. Αποδέχεται, αν η M τερµατίζει (αποδέχεται ή απορρίπτει) για είσοδο w. 2. Απορρίπτει, αν η M δεν τερµατίζει για είσοδο w. Τότε, ορίζουµε TM που αποφασίζει το Πρόβληµα του Τερµατισµού (Αποδοχη/TM): Για είσοδο M, w, η TM S: 1. Εκτελεί την R, για είσοδο M, w. 2. Απορρίπτει, εφόσον η R απορρίψει. Ορίζουµε: /TM = { M για την TM M έχουµε L(M) = } Θεώρηµα: Η γλώσσα /TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω ότι υπάρχει TM, R, που αποφασίζει για είσοδο M αν M /TM. Θα δείξουµε ότι TM που αποφασίζει την Αποδοχη/TM. (ΑΤΟΠΟ) 3. ιαφορετικά, προσοµοιώνει την M, για είσοδο w. 4. Αποδέχεται, αν αποδεχθεί η M, διαφορετικά, απορρίπτει. ΑΤΟΠΟ Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Απόδειξη (Συνέχεια) ίνεται είσοδος M, w για το πρόβληµα (απόφασης) Αποδοχη/TM. εδοµένης της TM εισόδου M, ορίζουµε την ακόλουθη TM, M w : Για είσοδο z, η M w : 1. Απορρίπτει, αν z w. 2. Αν z = w, προσοµοιώνει M(w). Αποδέχεται, αν αποδέχεται η M(w). Τότε µπορούµε να ορίσουµε την ακόλουθη TM, S, για την Αποδοχη/TM: Για είσοδο M, w, η S: 1. Από την είσοδο M, w δηµιουργεί την M w. 2. Προσοµοιώνει την R (ορισµένη προηγουµένως), για είσοδο M w. 3. Απορρίπτει, αν η R αποδέχεται. ιαφορετικά, αποδέχεται. Επεξήγηση Εστω είσοδος M, w Αποδοχη/TM για την S. Τότε, η M w : απορρίπτει για είσοδο w, αποδέχεται για είσοδο = w. Και, τότε, η S: Προσοµοιώνει την R (για το πρόβληµα /TM) µε είσοδο M w. Η R απορρίπτει, διότι η M w αποδέχεται την w. Τότε η S αποδέχεται ορθώς, αφού M, w Αποδοχη/TM. Οµοίως επαληθεύεται ότι η S απορρίπτει είσοδο M, w Αποδοχη/TM. ιότι, τότε η M w δεν αποδέχεται καµία είσοδο. Εποµένως η R αποδέχεται είσοδο M W για την /TM. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

3 Για δεδοµένη TM, M, είναι η L(M) κανονική; Απόδειξη Ορίζουµε: REG/TM = { M, για την TM M, η L(M) είναι κανονική } Θεώρηµα: Η γλώσσα REG/TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω ότι TM R που, για δεδοµένη TM M, αποφασίζει αν L(M) κανονική. είχνουµε ότι TM S που αποφασίζει την Αποδοχη/TM. Για είσοδο M, w, η TM S: 1. Κωδικοποιεί (στην ταινία) την ακόλουθη TM, M 0 n 1n, όπου: Για είσοδο x µηχανή Turing M 0 n 1 n: 1.1 Αποδέχεται, αν x είναι της µορφής 0 n 1 n, για n ιαφορετικά (όταν x δεν είναι της µορφής 0 n 1 n ), προσοµοιώνει την M για είσοδο w και αποδέχεται, εφόσον η M αποδέχεται. 2. Προσοµοιώνει την R, για είσοδο M 0 n 1 n. 3. Αποδέχεται, αν η R αποδέχεται. Απορρίπτει αν η R απορρίπτει. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Επεξήγηση Αναγνωρίζουν δύο TMs την ίδια γλώσσα; Εστω είσοδος M, w Αποδοχη/TM για την S. Επειδή η M αποδέχεται την w, η TM M 0 n 1 n αποδέχεται κάθε x {0, 1}. Τότε η R αποδέχεται την είσοδο M 0 n 1 n, διότι {0, 1} κανονική. Κατά συνέπεια, η S ορθώς αποδέχεται την είσοδο M, w. Εστω είσοδος M, w Αποδοχη/TM για την S. Επειδή M δεν αποδέχεται w, η M 0 n 1 n αποδέχεται µόνο x {0n 1 n : n 0} Τότε η R απορρίπτει M 0 n 1 n, διότι {0n 1 n : n 0} όχι κανονική. Ορίζουµε: /TM = { M 1, M 2 οι M 1,M 2 είναι TMs και L(M 1 ) = L(M 2 ) } Θεώρηµα: Η γλώσσα /TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω TM R που αποφασίζει τη γλώσσα /TM. Θα δείξουµε ότι υπάρχει TM S που αποφασίζει τη γλώσσα /TM. Κατά συνέπεια, η S ορθώς απορρίπτει την είσοδο M, w. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

4 Απόδειξη Για είσοδο M, η µηχανή Turing S: 1. Κωδικοποιεί µια µηχανή M, που απορρίπτει όλες τις εισόδους της. 2. Προσοµοιώνει τη µηχανή R, για είσοδο M, M. Αναγωγές Απεικόνισης 3. Αν η R αποδέχεται, αποδέχεται και η S. 4. ιαφορετικά, η R απορρίπτει και απορρίπτει και η S. Επεξήγηση: Αν αποφασίζεται η /TM, τότε αποφασίζεται και η /TM. (ΑΤΟΠΟ) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Υπολογίσιµες Απεικονίσεις Παράδειγµα 1 Ορισµός: Μια συνάρτηση f : Σ Σ λέγεται υπολογίσιµη αν: Ολες οι συνήθεις αριθµητικές πράξεις µεταξύ ακεραίων αποτελούν υπολογίσιµες συναρτήσεις. Μπορούµε, π.χ., να έχουµε µια µηχανή Turing που: υπάρχει µηχανή Turing που, µε είσοδο w L(Σ ), τερµατίζει, έχοντας στην ταινία της µόνο τη λέξη f(w) L(Σ ). δέχεται είσοδο m, n, όπου m, n ακέραιοι, «επιστρέφει» (αφήνει πάνω στην ταινία σαν έξοδο) m + n. Πώς ϑα µπορούσαµε να περιγράψουµε λεπτοµερώς µια τέτοια µηχανή; Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

5 Παράδειγµα 2 Αναγωγή Απεικόνισης Μια υπολογίσιµη συνάρτηση µπορεί επιτελεί µετασχηµατισµό µιας TM. Παράδειγµα: συνάρτηση f που δέχεται σαν όρισµα µια λέξη w και: Ορισµός: Μια γλώσσα A είναι απεικονιστικά αναγώγιµη σε µια γλώσσα B αν: Αν w = M, όπου M µια TM, τότε η f επιστρέφει M, όπου: υπάρχει υπολογίσιµη συνάρτηση f : Σ Σ, 1. M µηχανή Turing µε L(M ) = L(M), 2. η M δεν προσπαθεί ποτέ να µετακινήσει την κεφαλή της πέρα από το αριστερό άκρο της ταινίας της. Η f µετασχηµατίζει την M προσθέτοντας επιπλέον καταστάσεις. Αν η w δεν είναι κωδικοποίηση µηχανής Turing, τότε η f επιστρέφει ɛ. τέτοια ώστε, για κάθε λέξη w: w A f(w) B. η f λέγεται αναγωγή της A στη B. Συµβολίζουµε µε A m B την αναγωγιµότητα της A στη B. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Παρατηρήσεις Αναγωγές Απεικόνισης: Ιδιότητες και Χρησιµότητα Ερωτήµατα «ανήκειν» στην A απεικονίζονται υπολογιστικά: σε ερωτήµατα «ανήκειν» στη B. αντί να ελέγχουµε αν w A, µπορούµε να ελέγχουµε αν f(w) B. µε την υπολογιστική επιβάρυνση της f. Πρόβληµα που έχει αναγωγή απεικόνισης σε ήδη λυµένο πρόβληµα επιλύεται µέσω του δεύτερου. Η αναγωγή απεικόνισης ονοµάζεται έτσι λόγω της (υπολογίσιµης) συνάρτησης f (που είναι µια απεικόνιση). Θεώρηµα: Αν A m B και B αποφασίσιµη, τότε και A αποφασίσιµη. Απόδειξη: Ορίζουµε µια TM M A, που αποφασίζει την A. δεδοµένης µιας TM M B που αποφασίζει τη B Για είσοδο w, η M A : 1. Υπολογίζει τη λέξη f(w), όπου f : Σ Σ η υπολογίσιµη αναγωγή από την A στη B. 2. Προσοµοιώνει τη µηχανή M B για είσοδο f(w). 3. Επιστρέφει την έξοδο της M B. Χρήσιµο: Αν A m B και A µη αποφασίσιµη, τότε και B µη αποφασίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

6 Παράδειγµα 1 Παράδειγµα 2 είξαµε: αναγωγή της Αποδοχη/TM στην ΤΕΡΜΑΤΙΣΜΟΣ/TM. Θα δείξουµε επίσης ότι: ΤΕΡΜΑΤΙΣΜΟΣ/TM m Αποδοχη/TM. Αρκεί η περιγραφή TM που υπολογίζει την απεικόνιση. Για είσοδο M, w, η µηχανή Turing F: 1. Κωδικοποιεί (στην ταινία της) την εξής µηχανή, M : Για είσοδο x η µηχανή Turing M : είξαµε: µη αποφασισιµότητα της /TM. Η απόδειξη ηταν αναγωγή απεικόνισης /TM m /TM. Απεικονίζει κάθε M /TM σε µια M, M 0 /TM, όπου: 1 Προσοµοιώνει τη µηχανή M για είσοδο x. 2 Αν η M αποδέχεται, αποδέχεται και η M. 3 Αν η M απορρίπτει, η M «εγκλωβίζεται» σε ατέρµονο υπολογισµό. M είναι µια µηχανή που απορρίπτει όλες τις εισόδους της. 2. «Επιστρέφει» (γράφοντας στην ταινία της) τη λέξη M, w. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Παράδειγµα 3 Αναγωγές Απεικόνισης για Αναγνωρισιµότητα Εχουµε ήδη αποδείξει ότι η γλώσσα /TM δεν είναι αποφασίσιµη. Με αναγωγή της γλώσσας Αποδοχη/TM στη γλώσσα /TM. Υπάρχει αντίστοιχη αναγωγή απεικόνισης από την Αποδοχη/TM στην /TM; Μπορούµε εύκολα να κατασκευάσουµε µια µηχανή F, που µετατρέπει µια είσοδο M, w σε µια λέξη M w. Οµως, η M αποδέχεται την w αν και µόνο αν L(M w ) =. Εποµένως, η F «υλοποιεί» (υπολογίζει) µια αναγωγή απεικόνισης από την Αποδοχη/TM στη γλώσσα /TM. Αποδεικνύει ϐεβαίως ότι η /TM δεν είναι αποφασίσιµη. Αλλά δεν αποτελεί αναγωγή απεικόνισης της Αποδοχη/TM στην /TM. Θεώρηµα: Αν A m B και B αναγνωρίσιµη, τότε και A αναγνωρίσιµη. Απόδειξη: Ορίζουµε TM M A, που αναγνωρίζει την A. δεδοµένης TM M B που αναγνωρίζει τη B. Για είσοδο w, η TM M A : 1. Υπολογίζει τη λέξη f(w), όπου f : Σ Σ η υπολογίσιµη αναγωγή από την A στη B. 2. Προσοµοιώνει τη µηχανή M B για είσοδο f(w). 3. Επιστρέφει την έξοδο της M B, εφόσον η M B τερµατίσει. Χρήσιµο: Αν A m B και A µη αναγνωρίσιµη, τότε και B µη αναγνωρίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

7 Τυπική Εφαρµογή Μια (και) συµπληρωµατικά µη αναγνωρίσιµη γλώσσα Προκύπτει όταν ϑέσουµε A = Αποδοχη/TM, µη αναγνωρίσιµη γλώσσα. Αν ϑέλουµε να δείξουµε ότι η B µη αναγνωρίσιµη, αρκεί να δείξουµε: Αποδοχη/TM m B Σύµφωνα µε τον ορισµό της απεικονιστικής αναγωγιµότητας: A m B Ā m B Εποµένως µπορούµε να δείξουµε ότι B µη αναγνωρίσιµη αποδεικνύοντας: Θεώρηµα Η γλώσσες /TM και /TM δεν είναι αναγνωρίσιµες. Χρειαζόµαστε δύο απεικονιστικές αναγωγές: 1. Αποδοχη/TM m /TM. 2. Αποδοχη/TM m /TM. Αποδοχη/TM m B Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Απόδειξη (1/2) Απόδειξη (2/2) Η παρακάτω TM F υλοποιεί την αναγωγή απεικόνισης Αποδοχη/TM m /TM: Για είσοδο M, w, η µηχανή Turing, F: 1. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 1 : Για κάθε είσοδο, η µηχανή Turing M 1 απορρίπτει. 2. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 2 : Για κάθε είσοδο, η µηχανή Turing M 2 : 2.1 Προσοµοιώνει την M για είσοδο w. 2.2 Αποδέχεται, αν η M αποδέχεται. 3. «Επιστρέφει» τη λέξη M 1, M 2 (την κωδικοποιήση των δύο µηχανών). Η παρακάτω TM G υλοποιεί την αναγωγή απεικόνισης Αποδοχη/TM m /TM: Για είσοδο M, w, η µηχανή Turing, G: 1. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 1 : Για κάθε είσοδο, η µηχανή Turing M 1 αποδέχεται. 2. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 2 : Για κάθε είσοδο, η µηχανή Turing M 2 : 2.1 Προσοµοιώνει την M για είσοδο w. 2.2 Αποδέχεται, αν η M αποδέχεται. 3. «Επιστρέφει» τη λέξη M 1, M 2 (την κωδικοποιήση των δύο µηχανών). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή. Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές

Διαβάστε περισσότερα

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος. Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n

Διαβάστε περισσότερα

Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης

Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης Τάξη των Συναρτήσεων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 1. Να δειχθεί ότι 7n 2 = O(n 3 ) 2. Να δειχθεί ότι η n 2 δεν είναι O(n). 3. Αληθεύει ότι n 3 =

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1. Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων Ορέστης Τελέλης telelis@unipi.g Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς A B C = A + B + C A B B C A C +

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f() είναι O( g() ) αν υπάρχουν σταθερές C και 0, τέτοιες ώστε: f() C g() για κάθε 0

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα. Σύνοψη Προηγούµενου Κανονικές Γλώσσες (3) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς (Ντετερµινιστική) Κλειστότητα Κανονικών Γλωσσών ως προς Ενωση. Κατασκευή: DFA

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.2: Ντετερµινιστικά Πεπερασµένα Αυτόµατα ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Πεπερασµένα Αυτόµατα 1. Λειτουργία και Παραδείγµατα

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική

Διαβάστε περισσότερα

Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων.

Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. 30 Νοεμβρίου 2016 Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. t = (c Α, c Π, c Δ, c Κ ) C 4 πλακίδιο του Wang. Πλακίδια του Wang C πεπερασμένο σύνολο

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1. Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες

Διαβάστε περισσότερα

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ Κεφάλαιο 7 Επιλυσιμότητα - Μη επιλυσιμότητα Σύνοψη Στα προηγούμενα κεφάλαια επικεντρωθήκαμε σε επιλύσιμα προβλήματα και μελετήσαμε υπολογιστικά μοντέλα με δυνατότητες, που συνεχώς διευρύναμε. Το τελευταίο

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N. Αναδροµικές Σχέσεις Αναδροµικές Σχέσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αναδροµική Σχέση για την ακολουθία a n } είναι: - εξίσωση που εκφράζει τον n-οστό

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3. Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (2)

Στοιχεία Θεωρίας Γραφηµάτων (2) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g

Διαβάστε περισσότερα

Πεπερασμένος έλεγχος καταστάσεων

Πεπερασμένος έλεγχος καταστάσεων Κεφάλαιο 6 Μηχανές Turing Σύνοψη Οι Μηχανές Turing (ΜΤ) δεν είναι απλά μία ακόμη μηχανή αναγνώρισης για κάποια ευρύτερη οικογένεια γλωσσών από τις γλώσσες, που γίνονται δεκτές από τα Αυτόματα Στοίβας.

Διαβάστε περισσότερα

K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M.

K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M. Ισοδυναµία των Μηχανών Turing (TM) Αλέξανδρος Γ. Συγκελάκης 11 Απριλίου 2006 1 Βασική µορφή Μηχανών Turing (BTM) Η ϐασική µορφή της Μηχανής Turing (ΒΤΜ) αποτελείται από ένα σύνολο εντολών, µία ταινία που

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μηχανές Turing (3.1) Τυπικό Ορισμός Παραδείγματα Παραλλαγές Μηχανών Turing (3.2) Πολυταινιακές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

Mh apofasisimèc gl ssec. A. K. Kapìrhc

Mh apofasisimèc gl ssec. A. K. Kapìrhc Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................

Διαβάστε περισσότερα

CSC 314: Switching Theory. Chapter 3: Turing Machines

CSC 314: Switching Theory. Chapter 3: Turing Machines CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1 Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

t M (w) T ( w ) O( n) = O(n 2 )

t M (w) T ( w ) O( n) = O(n 2 ) Κεφάλαιο 9 Υπολογιστική Πολυπλοκότητα Σύνοψη Πέρα από το ερώτημα του αν για ένα πρόβλημα υπάρχει Μηχανή Turing, που το επιλύει, μας απασχολεί επίσης και το ερώτημα του αν ένα πρόβλημα είναι «πρακτικά»

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii

Διαβάστε περισσότερα

Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου)

Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Εισαγωγή. Αυτό το φυλλάδιο έχει στόχο να δώσει ένα ανάλογο αποτέλεσµα µε αυτό του linear speedup θεωρήµατος, εάν έχουµε µία µηχανή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 12. Θεωρία Υπολογισιμότητας 30Μαρτίου, 17 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Θέση Church-Turing Τι μπορεί να υπολογιστεί και τι δεν μπορεί να υπολογιστεί?

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (3)

Στοιχεία Θεωρίας Γραφηµάτων (3) Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Απαρίθµηση Μονοπατιών Εστω

Διαβάστε περισσότερα

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ως προς µια διάταξη των

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

Η τροχιά του δυναµικού συστήµατος µε αρχική συνθήκη X γράφεται

Η τροχιά του δυναµικού συστήµατος µε αρχική συνθήκη X γράφεται Απόδειξη Θεωρήµατος Poincare-Bendixson Το δυναµικό σύστηµα είναι στο επίπεδο, προσδιορίζεται από το διάνυσµατικό πεδίο ταχυτήτων v(x), και οι τροχιές ικανοποιούν την δυνα- µική: ẋ = v(x). Η τροχιά του

Διαβάστε περισσότερα