Σχέδιο παρουσίασης των διδασκαλιών ή των project

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχέδιο παρουσίασης των διδασκαλιών ή των project"

Transcript

1 Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής. Η σύντομη παρουσίαση έχει στόχο να καταλάβει ο αναγνώστης γρήγορα περί τίνος πρόκειται και αν τον ενδιαφέρει η διδασκαλία. Η λεπτομερής παρουσίαση δίνεται έτσι ώστε κάποιος που ενδιαφέρεται να μπορεί να αναπαράγει με κάθε λεπτομέρεια αυτή τη διδασκαλία. Παρακάτω δίνουμε ένα σχέδιο με τα σημεία που μπορούν να παρουσιαστούν σε μια σύντομη και μια λεπτομερή παρουσίαση. Ως εφαρμογή αυτών δίνεται ένα παράδειγμα από μια διδασκαλία της συναδέλφου Χριστίνας Καρποντίνη. 1. Παρουσίαση (σύντομη) Τίτλος ενότητας Επιδιώξεις (συγκεκριμένοι γνωστικοί στόχοι, διαπιστώσιμοι, παρατηρήσιμοι αν είναι δυνατόν. Οι στόχοι αυτοί μπορούν να αντιστοιχούν σε κάποιο είδος δεξιοτήτων, σε κάποιο είδος δηλωτικής γνώσης, σε συνδυασμούς των δυο ή σε κάποιο άλλο είδος γνώσης, μεταγνωστικοί στόχοι ή στόχοι γενικότερης υφής, όπως κοινωνικοποίησης, καλλιέργειας στάσεων και νοοτροπίας, κριτικής σκέψης, βελτίωσης επαγγελματικών προσόντων κ.ά.) Υλικά-Μέσα (για παράδειγμα, διάφορα υλικά, εικόνες, κείμενα, νομικά κείμενα, διευθύνσεις στο Διαδίκτυο, λογισμικό. Το υλικό αυτό θα περιλαμβάνεται στο ντοσιέ ή θα περιγράφεται με τόση λεπτομέρεια, ώστε να μπορεί να τα αναπαράγει ο διδάσκων που θα χρησιμοποιήσει το ντοσιέ). Προβλεπόμενη διάρκεια της διδασκαλίας Περιγραφή της διδασκαλίας (αν είναι δυνατόν και τις ενδεχόμενες ενδιάμεσες φάσεις). Παρατηρήσεις (επισήμανση όλων εκείνων των σημείων τα οποία χρήζουν ιδιαίτερης προσοχής από το διδάσκοντα. Σε ορισμένες περιπτώσεις τα σημεία αυτά μπορεί να έχουν χαρακτήρα προβλημάτων για την κατάκτηση μιας εννοίας: οι σπουδαστές μπορεί να δυσκολεύονται να κατανοήσουν μια δύσκολη μαθηματική έννοια. Οι συγγραφείς του αντίστοιχου ντοσιέ θα πρέπει, στο μέτρο του δυνατού, να επισημαίνουν τα σημεία αυτά και να υποδεικνύουν, εφόσον είναι δυνατόν πάντοτε, μεθόδους για την αντιμετώπισή τους). ΠΑΡΑΔΕΙΓΜΑ 1. Παρουσίαση (σύντομη) Θέμα / τίτλος Ράβδοι Napier Σκοποί - στόχοι επιδιώξεις

2 1. Να χρησιμοποιήσουν και να ασκηθούν οι μαθητές σε έναν άλλο αλγόριθμο του πολλαπλασιασμού διαφορετικό από τον κλασικό. 2. Εξάσκηση και ανάλυση των ιδιοτήτων του κλασικού αλγόριθμου μέσω της χρήσης ενός νέου αλγορίθμου. 3. Παρουσίαση της ιστορικής εξέλιξης της πράξης του πολλαπλασιασμού και συσχέτιση της με τις πρώτες υπολογιστικές μηχανές. 4. Μια πρώτη προσέγγιση της επιμεριστικής ιδιότητας. Μέσα Υλικά Χαρτόνι, ψαλίδι, γεωμετρικά όργανα. Πραγματικός χρόνος 3 4 διδακτικές ώρες. Ενδεικτική πορεία διδασκαλίας 1. Οι εκπαιδευόμενοι δουλεύουν ομαδικά σε ομάδες των δύο ατόμων. Κάθε ομάδα ετοιμάζει 10 ράβδους Napier από χαρτόνι. Ο ένας της ομάδας ετοιμάζει τους περιττούς αριθμούς και ο άλλος τους άρτιους. 2. Τοποθετούν τις ράβδους την μια δίπλα στη άλλη και διαπιστώνουν πως μπορεί να γίνει ο πολλαπλασιασμός με άλλο τρόπο. 3. Επαληθεύουν την διαπίστωσή τους, εκτελώντας τους πολλαπλασιασμούς και με τον κλασικό τρόπο. 4. Ιστορική αναδρομή και συσχέτιση των ράβδων με τους πρώτους υπολογιστές. Ειδικές παρατηρήσεις Μπορεί να γίνει μια γενικότερη αναφορά στις υπολογιστικές «μηχανές», όπως τον άβακα ή την μηχανή του Πασκάλ. Χρησιμοποιώντας την επιμεριστική ιδιότητα για τον πολ/σμό με τις ράβδους, ζητάμε από τους εκ/νους να εξηγήσουν γιατί όταν κάνουμε τον πολ/μό με το κλασσικό τρόπο γράφουμε το γινόμενο μια θέση πιο δεξιά. 5. Οι εκπαιδευόμενοι δουλεύουν ομαδικά σε ομάδες των δύο ατόμων. Κάθε ομάδα ετοιμάζει 10 ράβδους Napier από χαρτόνι. Ο ένας της ομάδας ετοιμάζει τους περιττούς αριθμούς και ο άλλος τους άρτιους. 6. Τοποθετούν τις ράβδους την μια δίπλα στη άλλη και διαπιστώνουν πως μπορεί να γίνει ο πολλαπλασιασμός με άλλο τρόπο. 7. Επαληθεύουν την διαπίστωσή τους, εκτελώντας τους πολλαπλασιασμούς και με τον κλασικό τρόπο. 8. Ιστορική αναδρομή και συσχέτιση των ράβδων με τους πρώτους υπολογιστές. 2. Παρουσίαση (λεπτομερής) Τίτλος ενότητας Προαπαιτούμενα ( περιγραφή των γνώσεων ή δεξιοτήτων τις οποίες έπρεπε να έχει ο εκπαιδευόμενος προκειμένου να είναι σε θέση να συμμετάσχει στις καινούριες διδακτικές δραστηριότητες)

3 Επιδιώξεις (συγκεκριμένοι γνωστικοί στόχοι, διαπιστώσιμοι, παρατηρήσιμοι αν είναι δυνατόν. Οι στόχοι αυτοί μπορούν να αντιστοιχούν σε κάποιο είδος δεξιοτήτων, σε κάποιο είδος δηλωτικής γνώσης, σε συνδυασμούς των δυο ή σε κάποιο άλλο είδος γνώσης. Μεταγνωστικοί στόχοι ή στόχοι γενικότερης υφής όπως κοινωνικοποίησης, καλλιέργειας στάσεων και νοοτροπίας, κριτικής σκέψης, βελτίωσης επαγγελματικών προσόντων κ.ά.) Διδακτική μεθοδολογία (ή μεθοδολογίες, αν χρησιμοποιούνται περισσότερες από μια και μια αιτιολόγηση της επιλογής της). Υλικό-Μέσα (για παράδειγμα, διάφορα υλικά, εικόνες, κείμενα, νομικά κείμενα, φωτογραφίες, διευθύνσεις στο Διαδίκτυο, λογισμικό). Το υλικό αυτό θα περιλαμβάνεται στο ντοσιέ (αν είναι δυνατόν) ή θα περιγράφεται με τόση λεπτομέρεια ώστε να μπορεί να τα αναπαραγάγει ο διδάσκων που θα χρησιμοποιήσει το ντοσιέ). Πρόσθετο διδακτικό υλικό που χρησιμοποιήθηκε (για παράδειγμα κείμενα, από εφημερίδες, περιοδικά, εικόνες, νομικά κείμενα, διευθύνσεις στο Διαδίκτυο, ενδεχομένως βιβλιογραφία ή πηγές). Πραγματική διάρκεια της διδασκαλίας Λεπτομερής περιγραφή της διδασκαλίας όπως ακριβώς διεξήχθη. Ενδεχόμενες επεκτάσεις της διδασκαλίας, πιθανές χρήσεις της σε project και γενικά πιθανές εφαρμογές των νέων γνώσεων ή δεξιοτήτων σε άλλα πεδία. Όπου είναι δυνατόν, το προς διδασκαλία αντικείμενο σε μορφή «αυτοδιδασκαλίας» - δηλαδή σε μορφή τέτοια ώστε ένας εκπαιδευόμενος να είναι σε θέση να το χρησιμοποιήσει και μόνος του (εννοείται αναφερόμαστε σε εκπαιδευόμενους που έχουν το επίπεδο γνώσεων που θα επέτρεπε κάτι τέτοιο). Δραστηριότητες (για εξάσκηση ή βελτίωση) ή ακόμη και ενδεχόμενα τεστ. Παρατηρήσεις για την εξέλιξη της διδασκαλίας (αποκλίσεις από τον αρχικό σχεδιασμό και αιτιολόγηση, σημεία που δυσκόλεψαν τους εκπαιδευόμενους κτλ.) ΠΑΡΑΔΕΙΓΜΑ 2. Παρουσίαση (λεπτομερής) Θέμα / τίτλος Ράβδοι Napier

4 Προαπαιτούμενα Να γνωρίζουν οι εκπαιδευόμενοι την προπαίδεια. Να γνωρίζουν τον αλγόριθμο του πολλαπλασιασμού. Στόχοι 1. Να έρθουν σε επαφή και να χρησιμοποιήσουν έναν άλλο αλγόριθμο για τον πολλαπλασιασμό 2. Να εξασκηθούν στον αλγόριθμο του πολλαπλασιασμού και να κατανοήσουν καλύτερα τις ιδιότητές του μέσω της χρήσης ενός νέου αλγορίθμου. 3. Να δουν τις πράξεις διαμέσου της ιστορίας και να τις συσχετίσουν με τις πρώτες υπολογιστικές μηχανές. 4. Να έχουν μια πρώτη επαφή με την επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση. Διδακτική μεθοδολογία : 1. Εργασία σε ομάδες. Επιλέχτηκε η διδασκαλία σε ομάδες γιατί το θέμα αυτό προσφέρεται για μια τέτοια μορφή διδασκαλίας. Οι εκ/νοι εργάζονται ομαδικά για να ανακαλύψουν τον νέο τρόπο πολ/μού και να τον αντιπαραβάλουν με τον κλασικό τρόπο. 2. Ατομική εργασία. Χρησιμοποιείται και αυτή η μέθοδος ώστε να δοθεί η δυνατότητα στον καθηγητή να ελέγξει αν το θέμα έγινε κατανοητό από όλους τους εκ/νους. Μέσα Υλικά Χαρτόνι, ψαλίδι, γεωμετρικά όργανα. Εδώ θα πρέπει να περιγραφεί λεπτομερώς το υλικό και αν είναι δυνατόν να δοθούν σχήματα ή φωτογραφίες ώστε να μπορεί να το αναπαράγει ο καθένας. Πραγματικός χρόνος: 4-5 διδακτικές ώρες. Λεπτομερής περιγραφή της διδασκαλίας - Οι εκπαιδευόμενοι χωρίζονται σε ομάδες των δύο ατόμων. - Κάθε εκπ/νος κόβει από χαρτόνι, 5 μικρά ομοιόμορφα ορθογώνια. Στην κορυφή αυτών σημειώνουμε έναν αριθμό από το 1 μέχρι το 9 και από κάτω γράφουμε τα πολλαπλάσια του αριθμού αυτού με το 1, 2, 3,...,9 και 10. Δηλαδή γράφουμε τη στήλη της προπαίδειας του κάθε αριθμού. Χωρίζουμε τις μονάδες από τις δεκάδες με μια διαγώνιο, όπως φαίνεται παρακάτω για τους αριθμούς 4 και 9.

5 - Ο ένας εκ/νος της ομάδας γράφει την προπαίδεια των περιττών αριθμών, και ο άλλος των άρτιων. - Βάζουμε το ένα καρτελάκι δίπλα στο άλλο και διαπιστώνουμε πως μπορούμε να υπολογίσουμε τον πολλ/σμό μεγάλων αριθμών μόνο προσθέτοντας. - Μια ομάδα επιλέγει να πολ/σει το 456 Χ 2. Πρέπει να πάρει τα καρτελάκια του 4, 5, 6 και να τα βάλει το ένα δίπλα στο άλλο με τη σειρά. Στη συνέχεια ανατρέχει στη δεύτερη γραμμή που είναι γραμμένα τα πολ/σια καθενός από τους αριθμούς 4, 5, 6 με το 2 και προσθέτει τους αριθμούς που βρίσκει γραμμένους διαγώνια, όπως φαίνεται παρακάτω.

6 - Αν πάλι μια ομάδα εκ/νων θέλει να υπολογίσει το γινόμενο 456 Χ 52 θα πρέπει να γράψει το 52 σαν άθροισμα των δεκάδων του και των μονάδων του, δηλαδή 52=50+2. Κατόπιν θα πρέπει με τα καρτελάκια να εντοπίσει το γινόμενο 456 Χ 5 και σε αυτό να προσθέσει στο τέλος το μηδέν, και το γινόμενο 456 Χ 2 όπως παραπάνω. Τέλος προσθέτοντας τα μερικά γινόμενα βρίσκει το τελικό αποτέλεσμα Αναλυτικά: 456Χ52=456Χ(50+2)=(456Χ50)+(456Χ2)= = Οι εκ/νοι επαληθεύουν το παραπάνω αποτέλεσμα, εκτελώντας τον πολ/σμό με τον κλασικό τρόπο - Ζητάμε από τους εκ/νους να προβληματιστούν και να εξηγήσουν την διαδικασία αυτή του διαχωρισμού των μονάδων από τις δεκάδες για να γίνει ο πολ/σμός. - Ρωτάμε αν τη μέθοδο αυτή την χρησιμοποιούμε στους νοερούς μας υπολογισμούς. - Διατυπώνονται παραδείγματα από τους μαθητές. - Ο καθηγητής προσπαθεί να εκμαιεύσει από τους εκ/νους το όνομα της ιδιότητας αυτής, διατυπώνοντας τον διαχωρισμό των μονάδων-δεκάδων σαν επιμερισμό. - Ο καθηγητής κάνει μια σύντομη ιστορική αναδρομή στο θέμα. Δραστηριότητες για εξάσκηση 1. Δίνουμε ατομικά φύλλα εργασίας με διάφορους πολ/σμούς και ζητάμε να βρεθούν τα εξαγόμενα με τις ράβδους και με τον κλασσικό τρόπο. 2. Ζητάμε κάθε εκ/νος να κάνει νοερούς πολ/μούς χρησιμοποιώντας την επιμεριστική ιδιότητα. Ειδικές παρατηρήσεις 1. Για την διαπραγμάτευση του παραπάνω θέματος αντί να κόψουμε χαρτονάκια, μπορούμε ακόμα να χρησιμοποιήσουμε 10 απλά ξυλάκια, σαν αυτά που χρησιμοποιούν οι γιατροί ΩΡΛ για να εξετάσουν τον λαιμό. 2. Οι ράβδοι αυτοί επινοήθηκαν από τον Σκοτσέζο J.Napier το Ήταν μια απλή υπολογιστική συσκευή, φθηνή, εύχρηστη και δημοφιλής την οποία χρησιμοποιούσαν μέχρι που αντικαταστάθηκαν από τα κομπιουτεράκια. 3. Μπορεί να γίνει μια γενικότερη αναφορά στις υπολογιστικές «μηχανές», όπως τον άβακα ή την μηχανή του Πασκάλ. 4. Είναι λίγο δύσκολο για τους εκ/νους να διατυπώσουν φραστικά την επιμεριστική ιδιότητα. Ο καθηγητής προσπαθεί ετυμολογικά να βοηθήσει στην δημιουργία την λέξης.(επιμερίζω-χωρίζω σε επί μέρους κομμάτια). 5. Στην διδακτική πορεία οι εκ/νοι εκπλήσσονται ευχάριστα διαπιστώνοντας ότι και ο πιο δύσκολος πολλ/μος μετατρέπεται σε μια απλή πρόσθεση. Δεν χρειάζεται καν να ξέρει την προπαίδεια, απλώς να έχει τα ξυλάκια. 6. Χρησιμοποιώντας την επιμεριστική ιδιότητα για τον πολ/σμό με τις ράβδους, ζητάμε από τους εκ/νους να εξηγήσουν γιατί όταν κάνουμε τον πολ/μό με το κλασσικό τρόπο γράφουμε το γινόμενο μια θέση πιο δεξιά. 7. Οι ράβδοι Napier, με τις μορφές που αναπαριστώνται πιο κάτω βρίσκονται στο Μουσείο Τεχνολογίας και Επιστημών στο Λονδίνο. Συγκεκριμένα εκτίθενται στο τμήμα Υπολογιστών, σαν δείγματα πρώτων υπολογιστικών μηχανών. Πάτρα Καρποντίνη Χριστίνα

7 Σ Δ Ε Πατρών

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης. Παρουσίαση. Τίτλος Το παιχνίδι της προπαίδειας.

Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης. Παρουσίαση. Τίτλος Το παιχνίδι της προπαίδειας. Παρουσίαση Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης Τίτλος Το παιχνίδι της προπαίδειας. Σκοποί και Στόχοι 1. Να απομνημονεύσουν οι εκπαιδευόμενοι τον Πυθαγόρειο πίνακα του πολλαπλασιασμού..

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί

Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί Άρτιοι ( ζυγοί ) - Περιττοί ( μονοί ) αριθμοί Σεντελέ Καίτη Μαθηματικός Σ.Δ.Ε. Ιωαννίνων Γενικός Στόχος Να μάθουν οι εκπαιδευόμενοι την έννοια των άρτιων και περιττών αριθμών Ειδικοί Στόχοι Να ανακαλύψουν

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Οι κλασματικές μονάδες και οι απλοί κλασματικοί αριθμοί ΕΠΙΜΟΡΦOYMENH:

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗ ΧΡΗΣΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΜΟΡΦΩΤΡΙΑ: ΔΟΥΒΛΗ ΓΕΩΡΓΙΑ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ: Προπαίδεια - Πίνακας Πολλαπλασιασμού του 6 ΕΠΙΜΟΡΦOYMENH: ΠΗΛΕΙΔΟΥ ΚΩΝΣΤΑΝΤΙΝΑ

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ - ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Γνωριμία με τα παιδιά: [π.χ. πλήθος παιδιών, κατανομή ανά φύλο/εθνότητα, αναλογία προνήπια/νήπια, κανόνες τάξης, καθημερινές ρουτίνες]

Γνωριμία με τα παιδιά: [π.χ. πλήθος παιδιών, κατανομή ανά φύλο/εθνότητα, αναλογία προνήπια/νήπια, κανόνες τάξης, καθημερινές ρουτίνες] ΠΑΡΑΡΤΗΜΑ Παρατήρηση 1: κουλτούρες πρακτικής μαθηματικών Σχολείο, Τάξη, Παιδιά Γνωριμία με το σχολείο: Που βρίσκεται; Πώς θα το περιγράφατε; [π.χ. περιοχή, κοινότητα, πλήθος παιδιών (φύλο, εθνότητα), κοινωνικο-οικονομικό

Διαβάστε περισσότερα

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation

Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

Γνωστικοί στόχοι: Μετά το τέλος της πρακτικής, οι μαθητές πρέπει να μπορούν να:

Γνωστικοί στόχοι: Μετά το τέλος της πρακτικής, οι μαθητές πρέπει να μπορούν να: ΣΧΟΛΕΙΟ Με αφόρμηση τα ενημερωτικά σποτ του ιστότοπου http://www.saferinternet.gr οι μαθητές εντοπίζουν αρχικά τα κυριότερα προβλήματα που σχετίζονται με τη μη ορθή χρήση του Διαδικτύου. Στη συνέχεια αφού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

Ι Α Σ Κ Α Λ Ι Α Σ Ι Σ Τ Ο Ρ Ι Α Σ

Ι Α Σ Κ Α Λ Ι Α Σ Ι Σ Τ Ο Ρ Ι Α Σ Σ Ε Ν Α Ρ Ι Ο Ι Α Σ Κ Α Λ Ι Α Σ Ι Σ Τ Ο Ρ Ι Α Σ «Η επέκταση των συνόρων του Ελληνικού κράτους την περίοδο 1912-1923» ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΝΕΟΤΕΡΗ ΚΑΙ ΣΥΓΧΡΟΝΗ ΕΛΛΗΝΙΚΗ ΙΣΤΟΡΙΑ ΕΠΑΝΑΛΗΨΗ Ι ΑΧΘΕΙΣΑΣ

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου» ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ «Τα μυστικά ενός αγγείου» ΜΠΙΛΙΟΥΡΗ ΑΡΓΥΡΗ 2011 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΟΥΣΕΙΑΚΗΣ ΑΓΩΓΗΣ «ΤΑ ΜΥΣΤΙΚΑ ΕΝΟΣ ΑΓΓΕΙΟΥ» ΘΕΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Η παρούσα εργασία αποτελεί το θεωρητικό

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14. ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14. ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14 ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η Νέες Τεχνολογίες Πληροφορικής και Τηλεπικοινωνιών Εργασία στο Μαθήμα Σχεδίαση Εκπαιδευτικού

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΟΡΟΛΟΓΙΑ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΟΡΟΛΟΓΙΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΟΡΟΛΟΓΙΑ Τσάνταλη Καλλιόπη, calliopetsantali@yahoo.gr Νικολιδάκης Συμεών, simosnikoli@yahoo.gr o oo Εισαγωγή Στην παρούσα εργασία επιχειρείται μια προσέγγιση της διδακτικής

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθηµα: Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Γ Φάσης) ΜΙΧΑΗΛ ΣΚΟΥΜΙΟΣ

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ 1 ΕΡΓΑΣΙΑ ΣΕ ΜΙΑ ΑΠΟ ΤΙΣ 12 ΑΡΧΕΣ ΤΗΣ ΜΑΘΗΣΗΣ ΑΡΧΗ ΤΗΣ ΜΑΘΗΣΗΣ: Ενεργός συμμετοχή (βιωματική μάθηση) ΘΕΜΑ: Παράδοση στο μάθημα των «ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ», για τον τρόπο διαχείρισης των σκληρών δίσκων.

Διαβάστε περισσότερα

Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη

Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη Μαργαρίτα Χριστοφορίδου 25 Απριλίου 2015 ΕΚΠΑΙΔΕΥΤΙΚΗ ΗΜΕΡΙΔΑ «ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ- ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ-ΠΡΑΚΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ»

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Πανεπιστήμιο Θεσσαλίας ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ: ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Σκοπός του Μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ (ώρα-ώρα)

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ (ώρα-ώρα) ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ (ώρα-ώρα) 1 η ώρα Άλγεβρα Συστηνόμαστε, καλωσορίζουμε, καθησυχάζουμε, εμψυχώνουμε, απειλούμε, καθησυχάζουμε ξανά με αυτή τη σειρά. Εξηγούμε τους στόχους του μαθήματος, τον τρόπο

Διαβάστε περισσότερα

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Tο φαινόμενο της ανάγνωσης προσεγγίζεται ως ολική διαδικασία, δηλαδή ως λεξιλόγιο, ως προφορική έκφραση και ως κατανόηση. ημήτρης Γουλής Πρώτη Πρόταση

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1 Πίνακες πολλαπλασιασμού Το Βεδικό τετράγωνο Στάμη Τσικοπούλου Σ τα μαθηματικά και ιδιαίτερα στην αριθμητική ένας πίνακας πολλαπλασιασμού (ή αλλιώς ένας πυθαγόρειος πίνακας) είναι ένας πίνακας που χρησιμοποιείται

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ

ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ 1 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ 1. Εισαγωγή Το μάθημα εισάγει τους μαθητές και τις μαθήτριες στην σύγχρονη οικονομική επιστήμη, τόσο σε επίπεδο μικροοικονομίας αλλά και σε επίπεδο μακροοικονομίας. Ο προσανατολισμός

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

«Τα μαθηματικά της Φύσης και της Ζωής» της Β τάξης του κ. Χ. Λεμονίδη: Παρουσίαση, προβληματισμοί και σκέψεις από την εφαρμογή του στο Π.Π.Σ.

«Τα μαθηματικά της Φύσης και της Ζωής» της Β τάξης του κ. Χ. Λεμονίδη: Παρουσίαση, προβληματισμοί και σκέψεις από την εφαρμογή του στο Π.Π.Σ. «Τα μαθηματικά της Φύσης και της Ζωής» της Β τάξης του κ. Χ. Λεμονίδη: Παρουσίαση, προβληματισμοί και σκέψεις από την εφαρμογή του στο Π.Π.Σ. Σερρών Γαλάνη Βασιλική Δασκάλα-Μαθηματικός, Πρότυπο Πειραματικό

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη

Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ: Περιβαλλοντική Εκπαίδευση και Μαθηµατικά [Αγωγή Υγείας και Ενεργειακό Ζήτηµα] Άννα Πολυζώη 3 ο ηµοτικό Σχολείο Ιεράπετρας εκέµβριος 2008 Σελίδα 2 από 11 ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗΝ

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών»

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» μια Νίκος Δαπόντες Φυσικός Δευτεροβάθμιας Εκπαίδευσης Το περιβάλλον Microworlds

Διαβάστε περισσότερα

Χρήστος Μαναριώτης Σχολικός Σύμβουλος 4 ης Περιφέρειας Ν. Αχαϊας Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Χρήστος Μαναριώτης Σχολικός Σύμβουλος 4 ης Περιφέρειας Ν. Αχαϊας Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Η καλλιέργεια της ικανότητας για γραπτή έκφραση πρέπει να αρχίζει από την πρώτη τάξη. Ο γραπτός λόγος χρειάζεται ως μέσο έκφρασης. Βέβαια,

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΔΕΠΠΣ. ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ

ΔΕΠΠΣ. ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ ΔΕΠΠΣ ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων Σπουδών ΔΕΠΠΣ Φ.Ε.Κ., 303/13-03-03, τεύχος Β Φ.Ε.Κ., 304/13-03-03, τεύχος Β Ποιοι λόγοι οδήγησαν στην σύνταξη των ΔΕΠΠΣ Γενικότερες ανάγκες

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΙΚΗ ΠΡΑΚΤΙΚΗ IV ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ: Κ. ΧΡΗΣΤΟΥ ΣΥΝΕΡΓΑΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: Μ. ΣΤΡΙΛΙΓΚΑ ΘΕΜΑ: Η ΚΑΛΥΤΕΡΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Εδικοί στόχοι: Σεντελέ Καίτη Μαθηματικός Σ.Δ.Ε. Ιωαννίνων Να δουν οι εκπαιδευόμενοι το κλάσμα ως επανάληψη κλασματικής μονάδας Να δουν ακόμη

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Το σενάριο αφορά τις γνωστικές περιοχές της Μελέτης Περιβάλλοντος και της Γλώσσας. 1.3. Τάξεις στις οποίες μπορεί να απευθύνεται

Το σενάριο αφορά τις γνωστικές περιοχές της Μελέτης Περιβάλλοντος και της Γλώσσας. 1.3. Τάξεις στις οποίες μπορεί να απευθύνεται ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ 1. Συνοπτική παρουσίαση του σεναρίου 1.1. Τίτλος διδακτικού σεναρίου Ακολουθώντας. το λύκο και τη μέλισσα. Από τη δασκάλα: Πονηρού Άννα 1.2. Εμπλεκόμενες γνωστικές περιοχές Το σενάριο

Διαβάστε περισσότερα

Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD

Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD Η σχέση Ιστορίας και Φιλοσοφίας των Επιστημών με την Εκπαίδευση στις Φυσικές Επιστήμες Κωνσταντίνα Στεφανίδου, PhD Εργαστήριο Διδακτικής, Επιστημολογίας Φυσικών Επιστημών και Εκπαιδευτικής Τεχνολογίας,

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: «Χαράξεις με χάρακα και διαβήτη. Ορθές γωνίες» (Κεφάλαιο : 16 ο ) Σχολείο:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων]

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων] Αξιολόγηση του Εκπαιδευτικού Προγράμματος Εκπαίδευση μέσα από την Τέχνη [Αξιολόγηση των 5 πιλοτικών τμημάτων] 1. Είστε ικανοποιημένος/η από το Πρόγραμμα; Μ. Ο. απαντήσεων: 4,7 Ικανοποιήθηκαν σε απόλυτο

Διαβάστε περισσότερα

Σχεδίαση από εκπαιδευτικούς προσθετικών περιβαλλόντων που αποτρέπουν μια αδυναμία να μετατραπεί σε αναπηρία

Σχεδίαση από εκπαιδευτικούς προσθετικών περιβαλλόντων που αποτρέπουν μια αδυναμία να μετατραπεί σε αναπηρία Σχεδίαση από εκπαιδευτικούς προσθετικών περιβαλλόντων που αποτρέπουν μια αδυναμία να μετατραπεί σε αναπηρία Τάσος Λαδιάς Σχολικός Σύμβουλος ΠΕ19 ladiastas@gmail.com Θα παρουσιαστούν τα λογισμικά: ΕυΔομή

Διαβάστε περισσότερα

2. Σκοποί της μάθησης και διδακτικοί στόχοι

2. Σκοποί της μάθησης και διδακτικοί στόχοι ¾ Αναλυτικά Προγράμματα ή Προγράμματα Σπουδών ¾ Σκοποί της μάθησης και διδακτικοί στόχοι ¾ Τι είναι σχέδιο μαθήματος, Τι περιλαμβάνει ένα σχέδιο μαθήματος ¾ Μορφές σχεδίων μαθήματος ¾ Διδακτικές τεχνικές,

Διαβάστε περισσότερα

5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης

5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης 5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης Μια πολύ ενδιαφέρουσα συζήτηση για τις πιο αποτελεσματικές στρατηγικές και τεχνικές μάθησης για τους μαθητές όλων των ηλικιών ανοίγουν

Διαβάστε περισσότερα

Θέμα της διδακτικής πρότασης: «Η ανάπτυξη δυναμικών ομάδων και ο ρόλος τους στον ελλαδικό χώρο από το το 1453 έως το 1820».

Θέμα της διδακτικής πρότασης: «Η ανάπτυξη δυναμικών ομάδων και ο ρόλος τους στον ελλαδικό χώρο από το το 1453 έως το 1820». M ί α δ ι δ α κ τ ι κ ή π ρ ό τ α σ η μ ε α ν α ζ ή τ η σ η κ α ι α ξ ι ο π ο ί η σ η ι σ τ ο ρ ι κ ο ύ υ λ ι κ ο ύ α π ό τ ο λ ο γ ι σ μ ι κ ό 2 1 Ε Ν Π Λ Ω Σύντομη περιγραφή: Οι μαθητές/τριες αντλούν

Διαβάστε περισσότερα

Οι διδακτικές πρακτικές στην πρώτη τάξη του δημοτικού σχολείου. Προκλήσεις για την προώθηση του κριτικού γραμματισμού.

Οι διδακτικές πρακτικές στην πρώτη τάξη του δημοτικού σχολείου. Προκλήσεις για την προώθηση του κριτικού γραμματισμού. Οι διδακτικές πρακτικές στην πρώτη τάξη του δημοτικού σχολείου. Προκλήσεις για την προώθηση του κριτικού γραμματισμού. ημήτρης Γουλής Ο παραδοσιακός όρος αλφαβητισμός αντικαταστάθηκε από τον πολυδύναμο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αγωγοί και µονωτές» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ, Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Μυκηναϊκός Πολιτισμός ΕΙΣΗΓΗΤΗΣ: ΚΑΛΛΙΑΔΟΥ ΜΑΡΙΑ ΘΕΜΑ: «Η καθημερινή ζωή στον Μυκηναϊκό Κόσμο» Οι μαθητές

Διαβάστε περισσότερα

Οι συγκοινωνίες στην Ελλάδα. Γεωγραφία Γλώσσα Ερευνώ και Ανακαλύπτω ΤΠΕ

Οι συγκοινωνίες στην Ελλάδα. Γεωγραφία Γλώσσα Ερευνώ και Ανακαλύπτω ΤΠΕ ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Οι συγκοινωνίες» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. «Το Υλικό του Υπολογιστή»

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. «Το Υλικό του Υπολογιστή» ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ «Το Υλικό του Υπολογιστή» 1.Τίτλος Διδακτικού Σεναρίου Το Υλικό του Υπολογιστή. 2. Εκτιμώμενη Διάρκεια Προβλέπεται να διαρκέσει συνολικά 2 διδακτικές ώρες. 3. Ένταξη στο πρόγραμμα σπουδών

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

Πως μπορεί να επιτευχθεί η αυτονομία του φοιτητή; http://www.lib.auth.gr/ Βιβλία Summon αναζήτηση Π.χ. class management physical education

Πως μπορεί να επιτευχθεί η αυτονομία του φοιτητή; http://www.lib.auth.gr/ Βιβλία Summon αναζήτηση Π.χ. class management physical education Πως μπορεί να επιτευχθεί η αυτονομία του φοιτητή; http://www.lib.auth.gr/ Βιβλία Summon αναζήτηση Π.χ. class management physical education Άρθρα σε περιοδικά Στην αρχική σελίδα της βιβλιοθήκης αριστερά

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα