Higgs Mass Textures in Flipped SU(5)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Higgs Mass Textures in Flipped SU(5)"

Transcript

1 hep-ph/ CERN-TH/ IOA-16/1999 July 1999 Higgs Mass Textures in Flipped SU(5) John Ellis a, G.K. Leontaris a,b and J. Rizos b a Theory Division, CERN, CH 1211 Geneva, Switzerland b Theoretical Physics Division, Ioannina University, GR-4511 Ioannina, Greece Abstract We analyze the Higgs doublet-triplet mass splitting problem in the version of flipped SU(5) derived from string theory. Analyzing non-renormalizable terms up to tenth order in the superpotential, we identify a pattern of field vev s that keeps one pair of electroweak Higgs doublets light, while all other Higgs doublets and all Higgs triplets are kept heavy, with the aid of the economical missing-doublet mechanism found in the field-theoretical version of flipped SU(5). The solution predicts that second generation charge -1/3 quarks and charged leptons are much lighter than those in the third generation.

2 2 1. Introduction One of the most challenging problems in supersymmetric GUT model-building is that of the doublet-triplet mass splitting [1]. The problem is less severe than in non-supersymmetric GUTs, because supersymmetry can be used to stabilize light masses for electroweak Higgs doublets, but how did they get to be light in the first place? And can this be arranged in a natural way that also keeps their GUT triplet partners sufficiently heavy, safeguarding the stability of the proton? One of the most promising approaches to this problem is the missing-doublet idea [2, 3]. One postulates a GUT with additional colour-triplet fields, that couple to the Higgs triplets and give them GUT-scale masses, but no accompanying electroweak doublet fields, so that the Standard Model Higgs doublets may remain light. The most economical realization [4] of this idea is in the field-theoretical version of the flipped SU(5) U(1) GUT, where the unwanted Higgs triplets pair with triplet fields in the 1-dimensional representations that develop GUT-scale vacuum expectation values (vev s) [4, 5]. This was one of the vaunted advantages of flipped SU(5), along with its lack of adjoint and higher GUT representations, that motivated its derivation from string theory [6]. String-derived flipped SU(5) models have provided one of the more successful avenues in string phenomenology, but there has never been a definitive answer whether they resolve the doublet-triplet mass-splitting problem. This is complicated by the fact that flipped SU(5) models derived from string contain several 5 and 5 Higgs representations with candidate electroweak Higgs fields, as well as considerable ambiguity in the assignments of 1 and 1 representations. On the other hand, the generalized Yukawa couplings of chiral supermultiplets can be calculated, including (in principle) non-renormalizable couplings [7] up to any desired order (depending on one s computational stamina). At the level of renormalizable Yukawa couplings, it is known that there are pairs of massless electroweak doublets, and some couplings between Higgs triplets and prospective partners in 1 and 1 representations. Some relevant non-renormalizable couplings have also been identified [7], but a systematic survey is lacking. One expects the contributions of such non-renormalizable interactions to be suppressed by powers of V/M,whereV is the generic vev of some singlet or 1/1 field, and M is related to the Planck scale. One might expect M O(M P / 8π) 1 18 GeV in a weakly-coupled string model, and perhaps M 1 16 GeV in a strongly-coupled model. One might expect V/M = O(1/1), and non-renormalizable interactions with such a suppression factor have been shown to provide encouraging textures for quark, charged-lepton and neutrino mass matrices. In this paper, we study whether the string-derived flipped SU(5) model contains non-renormalizable interactions which, with a suitable pattern of large vev s, provide an acceptable texture for Higgs masses, with light doublets and heavy triplets. We first identify textures of Higgs mass matrices that provide one pair of light Higgs doublets while keeping all Higgs triplets heavy. Then we examine all the relevant renormalizable and non-renormalizable Yukawa interactions up to tenth order in the fields. Starting from constraints on large vev s V that are imposed by earlier phenomenological studies, we explore whether there is a suitable refinement of the pattern of vev s that may solve the

3 3 doublet-triplet mass-splitting problem in flipped SU(5). We exhibit a pattern of vev s, i.e., a possible choice of string vacuum, in which there is one pair of light Higgs doublets that remain massless through tenth order in the superpotential, another pair of Higgs doublets and a pair of Higgs triplets that acquire masses O(1 1 to 1 12 ) GeV, and the remaining Higgs doublets and triplets have masses close to the GUT scale. 2. The Problem of Light Higgs Doublets in Flipped SU(5) In the minimal field-theoretical version of flipped SU(5), there is a single pair of electroweak Higgs doublets, which are separated from their heavy Higgs triplet partners D 3, D 3 by an economical realization of the missing-doublet mechanism, in which D 3, D 3 couple to triplet members of 1 and 1 representations H, H and acquire large masses from GUTscale vev s of electroweak-singlet components of H, H [4]. The light electroweak Higgs doublets couple via a singlet field φ that develops a vev at the supersymmetry-breaking scale, providing an acceptable value of the Higgs mixing parameter µ. This simple and elegant picture becomes more complicated in the version of flipped SU(5) derived from string theory in the free-fermion formulation. This model is obtained by introducing a set of five vectors of world-sheet boundary conditions (1,S,b 1,2,3 ), which define an SO(1) SO(6) E 8 gauge group with N=1 supersymmetry. Next, adding the vectors b 4,5,α, the number of generations is reduced to three and the observable-sector gauge group obtained is SU(5) U(1) accompanied by additional four U(1) factors and a hiddensector SU(4) SO(1) gauge symmetry. The massless spectrum includes the seventy chiral superfields listed in Table 1, together with their non-abelian group representation contents and their U(1) charges [6]. As seen explicitly in Table 1, the matter and Higgs fields in this string model carry additional charges under extra U(1) symmetries [6], there are a number of neutral singlet fields, and some hidden-sector matter fields which transform non-trivially under the SU(4) SO(1) gauge symmetry: sextets under SU(4), namely 1,2,3,4,5, and decuplets under SO(1), namely T 1,2,3,4,5. There are also fourplets of the SU(4) hidden symmetry which possess fractional charges. However, these are confined and will not concern us here. We recall that the flavour assignments of the light Standard Model particles in this model are as follows: f 1 :ū, τ; f2 : c, e/µ; f5 : t, µ/e; F 2 : Q 2, s; F 3 : Q 1, d; F 4 : Q 3, b; l c 1 : τ;l c 2:ē; l c 5: µ (1) and the trilinear superpotential relevant to fermion and Higgs doublet or triplet masses is W 3 = 1 2 F 1F 1 h F 2F 2 h F 4F 4 h F 5 F5 h2 + F 4 f5 h45 + F 3 f3 h3 + f 1 l c 1 h 1 + f 2 l c 2 h 2 + f 5 l c 5 h 2 + h 1 h2 Φ 12 + h 2 h1 Φ12 + h 2 h3 Φ + h 3 h2 Φ + h 3 h1 + h 1 h3 Φ31 + h 3 h45 + h 45 h3 φ h 45 h 45 Φ 3 (2) As also seen in Table 1, there are four candidate pairs of electroweak Higgs doublets, and a corresponding number of partner Higgs triplets in the multiplets h 1,h 2,h 3 and h 45 and

4 4 h 1, h 2, h 3 and h 45 shown in Table 1. There are also candidates for the GUT Higgs multiplets among the F 1,2,3,4 and F 5 shown in Table 1. Their tree-level couplings are sufficient to give masses to one pair of Higgs triplet components. The question we address in this paper is whether non-renormalizable higher-order terms in the superpotential can give masses to the remaining Higgs triplets, while leaving light at least one pair of Higgs doublets. The string-derived flipped SU(5) model contains an anomalous U(1) A gauge factor, leading to symmetry breaking via vev s at the scale M A 1 1 M P for GUT-singlet fields that are also listed in Table 1. The superpotential of the model contains, in addition to tree-level trilinear terms, higher-order non-renormalizable terms. If all but three (two) of the fields in such an n th -order interaction acquire large vev s V 1 1 M, one will be left with a residual trilinear (bilinear) interaction with coefficient of order 1 3 n M. Such interactions may provide interesting and realistic textures for quark, charged-lepton and neutrino mass matrices [8], since they provide entries that are hierarchically suppressed. Models of this type must make choices of the field vev s that are consistent with the D and F flatness of the effective scalar potential. It is not an easy task to secure the existence of massless electroweak doublets in such a model, while also keeping their triplet partners massive. Consider a generic doublet mass term of the general form ( ) Φ n 3 g Φ M hh (3) where Φ represents a generic field that obtains a large vev V O(M/1). Even a term of order n = 17 of the type (3) could in principle push the Higgs masses above the electroweak scale. In principle, one should calculate all the relevant non-renormalizable terms up to 17 th order, in order to ensure that there exist flat directions that preserve at least one massless pair of Higgs doublets. This paper does not go that far, but we do extend the analysis to tenth order, as discussed in following sections. 3. Conditions for Light Higgs Doublets We now discuss how light Higgs doublets may appear, starting with the tree-level contributions to the superpotential. All phenomenologically viable flat directions require non-zero vev s for the singlet fields,,φ, Φ and φ 45, φ 45 shown in Table 1, which enter the Higgs mass matrix arising from the SU(5) representations h 1,2,3, h 45 and h 1,2,3, h 45 already at the tree level. We recall that the tree-level superpotential terms which may provide the third-generation masses involve the Higgses h 1,2 and h 45. The tree-level doublet Higgs matrix has two zero eigenvalues, and one pair of the corresponding eigenvectors do indeed have h 45 and h 1,2 Higgs fields as components. The doublet Higgs mass matrix at the tree level is: Φ 12 Φ31 M2 3 = Φ 12 Φ Φ, (4) φ 45 Φ 3

5 5 but with our choice of singlet vacuum expectation values Φ 12, Φ 12 = Φ 3 =,sothere are two massless pairs [9]. To ensure the masslessness of suitable Higgs mass eigenstates when higher-order nonrenormalizable terms are included, we work as follows. We first consider the most general texture for the 4 4 doublet Higgs mass matrix, including arbitrary contributions to the entries that vanish at the tree level: M all 2 = h 1 h2 h3 h45 h 1 ε 1 ε 2 Φ31 ε 3 h 2 ε 4 ε 5 Φ ε 6 h 3 Φ ε 7, (5) h 45 ε 8 ε 9 φ 45 ε 1 where we may ignore higher-order contributions to the entries which are non-zero at the tree level. The parameters ε 1,...,1 correspond to all possible non-renormalizable contributions. Next, we check which of the parameters ε 1,...,1 must be zero in order to obtain zero eigenvalues whose eigenvectors have components along the h 1,2 and h 45 directions. We find 54 solutions. Whether ε 7 =or does not affect the presence of such massless eigenstates. Factoring out these two options, there remain 27 options for combinations of the other ε i that need not vanish, as listed in Tables 2 and 3. The next task is to analyze the Higgs triplet mass matrix, which takes the form M all 3 = h 1 h2 h3 h45 F 1 h 1 ε 1 ε 2 Φ31 ε 3 λ 1 h 2 ε 4 ε 5 Φ ε 6 λ 2 h 3 Φ ε 7 λ 3, (6) h 45 ε 8 ε 9 φ 45 ε 1 λ 4 F 5 λ1 λ2 λ3 λ4 where the λ i and λ j : i, j =1,2,3,4 are generic Yukawa couplings. Two of these, namely λ 1 and λ 2, are non-vanishing at the tree level. The issue then is: for each of the doublet options listed in Tables 2 and 3, which combinations of the λ i and λ j must be non-vanishing in order that all the Higgs triplets are massive? The answers are that no such satisfactory combinations exist for the two Higgs doublet textures listed in Table 2, whereas there are possible solutions for each of the other 52 textures, as shown in the last column of Table Non-Renormalizable Contributions to the Higgs Mass Textures We have enumerated all possible non-renormalizable terms up to tenth order, but do not worry: we shall not list them all here. Instead, we present only the contributions up to seventh order in Table 4, and then we discuss those higher-order terms that have a chance of being non-vanishing. For this purpose, we take into account the choices of non-zero field

6 6 vev s that have been made in previous phenomenological studies of the string flipped SU(5) model. We therefore assume that just the following minimal set of fields have vanishing vev s, satisfying all flatness conditions [1, 8] Φ 12 = Φ 12 =Φ I=1,...,5 = φ 1 = φ 3 = φ 1 = φ 2 = φ + = φ = φ 3 φ 4 =F 4 =F 3 =F 2 = 1 =T 1 =, (7) and that the following set of non-abelian composite gauge-singlet condensates also vanish 1 : [T 4 T 4 ]=[T 5 T 5 ]=[ 4 4 ]=[ 4 5 ]=[ 5 5 ]=[T 2 T 4 ]=[T 4 T 5 ]=[ 2 2 ]+[T 2 T 2 ]=, (8) We also assume that the following minimal set of elementary fields have non-vanishing vev s Φ, Φ,,,φ 45, φ 45,φ 2, φ 4,F 1, F 5 (9) as well as the following composite fields: [ 2 3 ] and [T 3 T 4 ] or [T 3 T 5 ]. (1) We make no a priori assumption about the vev s of the remaining elementary or composite fields. With the above choice (7,8,9,1) of vev s, the first non renormalizable terms in the doublet mass matrix appear at seventh order. This means that the ε i are seventh order or higher, so that the Higgs doublet masses are certainly much smaller than M GUT.Inorder to have the triplet masses as heavy as possible, we search for solutions involving only the tree level contributions to the triplet couplings λ i, λ i. Since the tree level superpotential gives λ 1 = F 1, λ 2 = F 5,wehaveλ i 1 = λ i 2 = to this order. Examining the last column of Table 3 for textures leading to non zero triplet masses, we find the 14 options (3-7,1-15,22-24), for each of which ε 7 is a possible option. All these textures need ε 3 = ε 2 =, so we must check these conditions as far as possible. Imposing ε 3 = up to ninth order yields the conditions [T 2 T 3 ]=[ 3 4 ]=[ 3 5 ] φ 3 =[T 3 T 4 T 3 T 4 ][ 3 3 ]= [T 2 T 5 ][ 2 5 ]=[T 2 T 5 ][ 2 4 ] φ 3 = φ + [ ]= φ + [ ]= φ 3 [ ] = (11) φ ([ ]+[ 3 3 ][T 2 T 2 ]) = φ + ([ ]+[ 3 3 ][T 2 T 2 ]) = [ ]+[ T 2 T 2 ]= 1 Here we introduce the notation [A 1...A n ] to denote a general linear combination of all possible group invariants of the fields A 1,A 2,...A n.

7 7 Further imposing ε 2 = up to ninth order yields the additional conditions [T 4 T 4 T 4 T 5 T 5 T 5 ] = (12) [T 5 T 4 T 4 T 4 ][ 2 2 ]+[T 5 T 4 T 4 T 4 T 2 T 2 ] = (13) Both sets of these conditions are simultaneously compatible with our initial choice (7,8,9,1) of vev s. Next we search for the lowest order non vanishing ε i. We find none at seventh order, and to eighth order only ε 1,ε 4,ε 6,ε 1.Wenotealsothatε 1 ε 1 and ε 4 ε 6.Among these options, only ε 1 = ε 1 = together with ε 6,ε 4 give acceptable textures. The condition ε 1 = ε 1 = then imposes the extra constraint [ ]=. (14) This selects the textures 15, and possibly 13 if ε 5 is generated at higher order. All of ε 1,8,9,1 have to vanish in order to preserve one massless doublet pair. Examining the ninth-order Higgs mass terms, we find that ε 5 = ε 9 = ε 1 = automatically, whilst in order to keep ε 1 = ε 8 = we have to impose [ ]+[ ][T 2 T 2 ] = (15) [ ]+[ ][T 2 T 2 ] = (16) [ ]+[ ][T 2 T 2 ] = (17) Again, these conditions are compatible with the previous choices of vacuum parameters, and amount to a refinement of the string vacuum choice. With the above vacuum choice, the relevant non renormalizable contributions to the doublet mass matrix up to the ninth order are ε 4 = O(1) 1 M ([ ] φ φ 45 ) (18) ε 6 = O(1) 1 ( ) [ 5 M ] φ Φ31 (19) In order to insure a non vanishing ε 6,ε 4,wehavetoimpose [ ],φ (2) When combined with conditions (11), this implies that the vacuum must also have φ + =[ ]+[ 2 2 ][ 3 3 ] = (21) which completes our specification of the string vacuum to this order. We discuss now the Higgs triplet masses. Analyzing texture 15, we first note that there are four pairs which are massive at the tree level, two of them with masses proportional to λ 1 λ2. The fifth pair has the lightest mass, which is M light 3 φ 45 ε4 ε 6 ( Φ 2 + φ 45 2 )( 2 + φ 45 2 ) (22)

8 8 for our vacuum choice. If we assume generic vev s O(1/1) in natural units, we see that (22) indicates that the lightest triplet mass might be in the range of 1 1 to 1 12 GeV, which is perfectly satisfactory in flipped SU(5). We now turn to the Higgs doublets. By construction, there is a massless pair, and there were two massive pairs ab initio at the tree level. The fourth Higgs pair is relatively light, with mass M light 2 ( φ ) 1 2 ( ( ε ε 6 2 ) Φ 2 2 ) ε 6 ε 4 ( ) 1 Φ 2 + φ ( 2 + Φ 2 + φ ) 1 45 It is interesting that this mass is comparable in order of magnitude to the lightest triplet mass (22), whereas all the other massive doublets and triplets have masses comparable to M GUT. Thus, below M GUT, we have (effectively) only complete GUT representations, and the standard supersymmetric GUT prediction for the electroweak mixing angle is at least not affected to first order by their appearance in the renormalization-group equations. According to Table 3, the Higgs doublets that are massless to ninth order are the combinations 1 ( h = φ 45 h 1 φ Φ Φ ) 31h 45 (24) 31 h = 1 ( Φ r h 1 +(φ 45 r) h 2 Φ2 Φ ) h45 (1 + r 2 )+(φ 45 r) 2 Where r = ε 6 ε 4 = O(1) φ 45. Moreover, we have checked that this light Higgs doublet pair remains massless when tenth-order terms in the superpotential involving observable field vev s are taken into account. We note that h (24) contains components with tree-level couplings only to the thirdgeneration quark and lepton masses. This is welcome since the two lighter generations receive masses from non renormalizable terms: up to fifth order one finds W 5 = F 2 f2 h45 + F ( 2 f2 h45 φ4 + F 2 F 2 h 1 φ2 4 + φ 3) 2 + f2 l c 2 h ( 1 φ2 4 + φ 3) (26) Thus, a natural hierarchy between the third- and second-generation quark and lepton masses is a prediction of our doublet-triplet splitting mechanism. Let us now comment on the uniqueness of the solution presented above. It is the only one that involves tree level couplings in both the λ i and the λ i. If one relaxes this constraint, which will tend to reduce the lightest triplet Higgs mass, many other textures in Table 3 can provide acceptable solutions. For example, a search for FFh and F F h couplings to fifth order yields already λ 2 F 1 (φ + φ2 4 ) (27) () (25) λ 4 F 1 φ 45 (28) λ 1 F 5 (φ + φ2 4 ) (29) λ 4 F 1 Φ. (3)

9 9 As can easily be checked from Table 3, λ 3 λ3 is irrelevant and we have not calculated it. 5. Conclusions and Prospects We have presented in this paper a solution to the triplet doublet splitting problem in which the light Higgs doublets do not acquire a mass from any superpotential term through ninth order, nor even at tenth order if we discard vev s for higher-order combinations of hidden-sector fields. This solution has the attractive features that there are effectively complete GUT representations of intermediate-mass Higgs doublets and triplets, and predicts that the second-generation charge -1/3 quarks and leptons are much lighter than those in the third generation. As explained earlier, one really needs to check this solution up to 17 th order in the superpotential in order to ensure that the light Higgs doublet is sufficiently light. However, the analysis presented here goes to much higher order than had been done previously, and constitutes a promising start. If, eventually, this solution does not survive, there are other possible solutions, as mentioned at the end of the previous section. We are optimistic that the version of flipped SU(5) derived from string can live up to its field-theoretical promise of solving the doublet-triplet mass splitting problem. Acknowledgements The work of J.R. was supported in part by the EU under the TMR contract ERBFMRX- CT96-9.

10 1 F 1 (1, 1, 1,,, ) f1 ( 5 3, 1,,, ) lc 1(1, 5, 1,,, ) F 2 (1, 1,, 1,, ) f2 ( 5 3,, 1,, ) lc 2 (1, 5,, 1,, ) F 3 (1, 1,,, 1, 1 ) f3 ( 5 3,,, 1, 1 ) lc 3(1, 5,,, 1, 1 ) 2 F 4 (1, 1, 1,,, ) f 4(5, 3, 1,,, ) lc 4 (1, 5, 1,,, ) F 5 (1, 1,, 1,, ) f5 ( 5 3,, 1,, ) lc 5 (1, 5,, 1,, ) h 1 (5, 1, 1,,, ) h 2 (5, 1,, 1,, ) h 3 (5, 1,,, 1, ) h 45 (5, 1, 1, 1,, ) h 1 ( 5, 1, 1,,, ) h2 ( 5, 1,, 1,, ) h3 ( 5, 1,,, 1, ) h 45 ( 5, 1, 1, 1,, ) φ 45 (1,, 1, 1, 1, ) φ 45 (1,, 1, 1, 1, ) φ +(1,, 1, 1,, 1) φ+ (1,, 1, 1,, 1) φ (1,, 1, 1,, 1) φ (1,, 1, 1,, 1) Φ (1,,, 1, 1, ) (1,, 1,, 1, ) Φ 12 (1,, 1, 1,, ) φ i (1,, 1, 1,, ) φi (1,, 1, + 1,, ), i=1,2,3,4 Φ (1,,, 1, 1, ) Φ31 (1,, 1,, 1, ) Φ12 (1,, 1, 1,, ) Φ i (1,,,,, ), I=1,2,3,4,5 1 (, 1, 6,, 1 2, 1 2, ) 2(, 1, 6, 1 2,, 1 2, ) 3(, 1, 6, 1 2, 1 2,, 1 2 ) 4 (, 1, 6,, 1 2, 1 2, ) 5(, 1, 6, 1 2,, 1 2, ) T 1 (, 1, 1,, 1 2, 1 2, ) T 2(, 1, 1, 1 2,, 1 2, ) T 3(, 1, 1, 1 2, 1 2,, 1 2 ) T 4 (, 1, 1,, 1 2, 1 2, ) T 5(, 1, 1, 1 2,, 1 2, ) Table 1: The chiral superfields of the version of the flipped SU(5) model derived from string, with their quantum numbers [6]. For F i, fi, l c i, h i, h i and the singlet fields the SU(5) U(1) U(1) 4 quantum numbers are presented. For i and T i we present the U(1) SO(1) SO(6) U(1) 4 quantum numbers.

11 11 1 M 2 h,h φ 45, Φ31 Φ Φ /ε 7 φ 45 Φ h, h, Φ Table 2: Textures leading to two pairs of massless Higgs doublets, with unnormalized indications of the massless eigenstates (h,h, h, h ). References [1] S.Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 15. [2] S. Dimopoulos and F. Wilczek, in the Proc. of the International School on Subnuclear Physics, Erice, Italy, [3] A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Phys. Lett. B115 (1982) 38. [4] I. Antoniadis, J. Ellis, J. Hagelin and D.V. Nanopoulos, Phys.Lett. B194 (1987) 1. [5] S. M. Barr, Phys. Lett. B112 (1982) 219; J. P. Deredinger, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B139 (1984) 17. [6] I. Antoniadis, J. Ellis, J. Hagelin and D.V. Nanopoulos, Phys. Lett. B1 (1989) 65. [7] S. Kalara, J. L. Lopez and D.V. Nanopoulos, Phys. Lett. B245 (199) 421. [8] J. Ellis, G. K. Leontaris, S. Lola and D.V. Nanopoulos, Phys. Lett. B425 (1998) 86 and Eur. Phys. J. C9 (1999) 389. [9] J. Rizos and K. Tamvakis, Phys. Lett. B251 (199) 369. [1] I. Antoniadis, J. Rizos and K. Tamvakis, Phys. Lett. B278 (1992) 257.

12 M 2 h h det M 3 Φ31 Φ φ 45 Φ ε Φ /ε 7 9 (λ 1 λ 2 )( λ 1 λ 4 ) ε 9 φ 45 Φ 31 Φ31 Φ Φ ε 1 φ 45 ε 9 Φ ε (Φ λ 1 λ 2 ) 1 ( Φ /ε 7 φ 45 ε 9 λ1 Φ ε 1 λ1 +Φ ε 9 φ 45 ε 1 ε 31 ε 1 λ2 ε 9 λ4 ) 9 Φ31 Φ Φ φ 45 ε 8 (Φ λ 1 λ 2 ) Φ /ε 7 ( φ 45 λ2 Φ λ4 ) ε 8 φ 45 Φ Φ31 Φ Φ ε 1 Φ φ 45 ε 8 ε (Φ λ 1 λ 2 ) 1 ( Φ /ε 7 φ 45 ε 8 λ2 ε 1 λ2 + Φ ε 8 φ 45 ε 1 Φ ε ε 1 λ1 Φ ε 8 λ4 ) 8 Φ31 Φ φ 45 ε 9 Φ φ 45 ε (Φ λ 1 λ 2 ) 8 ( Φ /ε 7 φ 45 ε 9 λ1 φ 45 ε 8 λ2 + Φ ε 8 ε 9 φ 45 Φ ε 8 ε ε 8 λ4 ε 9 λ4 ) 9 Φ31 Φ Φ ε 1 φ 45 ε 9 (Φ λ 1 λ 2 ) Φ φ 45 ε 8 ε 1 ( φ 45 ε 9 λ1 Φ ε 1 λ1 Φ /ε 7 ε 8 ε 9 φ 45 ε 1 ε 9 Φ φ 45 ε 8 λ2 + ε 1 λ2 + ε 8 Φ ε 8 λ4 ε 9 λ4 ) Φ31 φ 45 φ 45 ε 5 Φ ε 5 (φ 45 λ 1 λ 4 ) Φ /ε 7 ( φ 45 λ1 λ4 ) φ 45 Φ 31 Φ ε 5 Φ ε 9 φ 45 ε 5 φ 45 ε 9 ( φ 45 λ1 λ4 ) (φ Φ /ε 7 45 ε 5 λ 1 Φ ε 9 λ 1 ε 9 φ 45 Φ + Φ 31 ε 5 ε 9 λ 2 ε 5 λ 4 ) 31 Φ31 φ 45 Φ ε 6 φ 45 ε 5 ε 5 Φ ε 6 ε (φ 45 λ 1 λ 4 ) 6 ( Φ /ε 7 φ 45 ε 5 λ1 Φ ε 6 λ1 +Φ φ 45 ε 31 ε 6 λ2 ε 5 λ4 ) 5 Table 3: Textures leading to a single pair of massless Higgs doublets, together with unnormalized indications of the associated massless eigenstates (h, h ) and the determinant det(m 3 ) of the colour triplet mass matrix.

13 Φ31 ε 4 Φ Φ /ε 7 φ 45 Φ31 ε 4 Φ Φ /ε 7 ε 8 φ 45 Φ31 ε 4 Φ ε 6 Φ /ε 7 φ 45 Φ31 ε 4 ε 5 Φ Φ /ε 7 φ 45 Φ31 ε 4 ε 5 Φ ε 6 Φ /ε 7 φ 45 ε 2 Φ31 Φ Φ /ε 7 φ 45 ε 2 Φ31 Φ Φ /ε 7 ε 9 φ 45 ε 2 Φ31 ε 5 Φ Φ /ε 7 φ 45 ε 2 Φ31 ε 5 Φ Φ /ε 7 ε 9 φ 45 φ 45 Φ ε 8 φ 45 ε 4 Φ 31ε 8 Φ 31ε 4 φ 45 φ 45 φ 45 Φ Φ ε 9 ε 2 Φ 31 ε 9 Φ ε 2 φ 45 ε 5 φ 45ε 2 Φ ε 2 Φ 31ε 5 ε 5 Φ ε 9 Φ 31ε 9 ε 2 Φ ε 2 Φ 31 ε 5 φ 45 Φ φ 45 Φ Φ ε 6 φ 45 ε 4 ε 6 Φ ε 4 φ 45 ε 5 φ 45 ε 4 Φ ε 4 ε 5 φ 45 ε 5 Φ ε 6 φ 45 ε 4 ε 6 ε 5 Φ ε 4 φ 45 φ 45 φ 45 φ 45 ε 4 ( λ 4 φ 45 λ 1 ) ( φ 45 λ2 Φ λ4 ) ( φ 45 λ2 Φ λ4 ) (φ 45 ε 4 λ 1 Φ ε 8 λ 1 + ε 8 λ 2 ε 4 λ 4 ) ( λ 4 φ 45 λ 1 ) ( φ 45 ε 4 λ2 ε 6 λ2 + Φ ε 6 λ1 Φ ε 4 λ4 ) (φ 45 λ 1 λ 4 ) ( φ 45 ε 5 λ1 φ 45 ε 4 λ2 + Φ ε 4 λ4 ε 5 λ4 ) (φ 45 λ 1 λ 4 ) ( φ 45 ε 5 λ1 Φ ε 6 λ1 φ 45 ε 4 λ2 + ε 6 λ2 + Φ ε 4 λ4 ε 5 λ4 ) ε 2 (Φ λ 4 φ 45 λ 2 ) ( φ 45 λ1 λ4 ) ( λ4 φ 45 λ1 ) (φ 45 ε 2 λ 2 ε 9 λ 2 +Φ ε 9 λ 1 Φ ε 2 λ 4 ) ( φ 45 λ1 λ4 ) (φ 45 ε 5 λ 1 φ 45 ε 2 λ 2 +Φ ε 2 λ 4 ε 5 λ 4 ) ( φ 45 λ1 λ4 ) (φ 45 ε 5 λ 1 Φ ε 9 λ 1 +Φ ε 2 λ 4 ε 5 λ 4 φ 45 ε 2 λ 2 + ε 9 λ 2 ) Table 3 (continued)

14 ε 2 Φ31 ε 3 Φ Φ /ε 7 φ 45 ε 1 Φ31 Φ Φ /ε 7 φ 45 ε 1 Φ31 Φ Φ /ε 7 ε 8 φ 45 ε 1 Φ31 ε 4 Φ Φ /ε 7 φ 45 ε 1 Φ31 ε 4 Φ Φ /ε 7 ε 8 φ 45 ε 1 Φ31 ε 3 Φ Φ /ε 7 φ 45 ε 1 ε 2 Φ31 Φ Φ /ε 7 φ 45 ε 1 ε 2 Φ31 ε 3 Φ Φ /ε 7 φ 45 Φ Φ Φ ε 8 ε 1 Φ 31 ε 8 Φ ε 1 ε 4 ε 1 Φ ε 1 Φ 31ε 4 ε 4 Φ ε 8 Φ 31ε 8 ε 1 Φ ε 1 Φ 31 ε 4 Φ Φ Φ Φ ε 3 φ 45 ε 2 ε 3 ε 2 φ 45 Φ φ 45 Φ φ 45 Φ φ 45 Φ Φ ε 3 φ 45 ε 1 ε 3 Φ ε 1 φ 45 ε 2 φ 45 ε 1 Φ ε 1 ε 2 φ 45 ε 2 Φ ε 3 ε 3 φ 45 ε 1 Φ ε 1 ε 2 (Φ λ 4 φ 45 λ 2 ) ( φ 45 ε 2 λ1 Φ ε 3 λ1 + ε 3 λ2 ε 2 λ4 ) ε 1 (φ 45 λ 2 Φ λ 4 ) ( φ 45 λ2 Φ λ4 ) ( φ 45 λ2 Φ λ4 ) (φ 45 ε 1 λ 2 ε 8 λ 2 +Φ ε 8 λ 1 Φ ε 1 λ 4 ) ( Φ λ4 + φ 45 λ2 ) (φ 45 ε 4 λ 1 φ 45 ε 1 λ 2 +Φ ε 1 λ 4 ε 4 λ 4 ) ( Φ λ4 φ 45 λ2 ) (φ 45 ε 4 λ 1 Φ ε 8 λ 1 φ 45 ε 1 λ 2 + ε 8 λ 2 +Φ ε 1 λ 4 ε 4 λ 4 ) (φ 45 λ 2 Φ λ 4 ) ( φ 45 ε 1 λ2 ε 3 λ2 + Φ ε 3 λ1 Φ ε 1 λ4 ) (Φ λ 4 φ 45 λ 2 ) ( φ 45 ε 2 λ1 φ 45 ε 1 λ2 + Φ ε 1 λ4 ε 2 λ4 ) (Φ λ 4 φ 45 λ 2 ) ( φ 45 ε 2 λ1 Φ ε 3 λ1 φ 45 ε 1 λ2 + Φ ε 1 λ4 + ε 3 λ2 ε 2 λ4 ) Table 3 (continued)

15 15 h 1 h 1 D 5 D 5 φ 3 φ 3 Φ + h 1 h 1 D 5 D 5 φ 4 φ 4 Φ + h 1 h 1 D 5 T 4 D 2 T 2 φ 2 + h 1 h 1 T 5 T 5 φ 2 φ 2 Φ + h 1 h 1 T 5 T 5 φ 4 φ 4 Φ + h 1 h 1 D 2 D 2 φ 2 φ 2 Φ + h 1 h 1 D 2 D 2 φ 4 φ 4 Φ + h 1 h 1 T 2 T 2 φ 2 φ 2 Φ + h 1 h 1 T 2 T 2 φ 4 φ 4 Φ + h 1 h 2 D 5 D 4 φ 3 φ 3 φ 3 + h 1 h 2 D 5 D 4 φ 3 φ 4 φ 4 + h 1 h 2 T 5 T 4 φ 3 φ 3 φ 2 + h 1 h 2 T 5 T 4 φ 2 φ 4 φ 4 + h 1 h 45 T 5 T 5 φ 45 + h 1 h 45 D 2 D 2 φ 45 + h 1 h 45 T 2 T 2 φ 45 + h 1 h 45 D 5 T 5 D 3 T 3 φ 3 + h 1 h 45 D 5 T 5 D 2 T 2 φ 45 + h 1 h 45 D 5 D 4 φ 3 φ 45 + h 1 h 45 T 5 T 5 φ 45 Φ Φ + h 1 h 45 T 5 D 4 D 3 T 3 Φ + h 1 h 45 T 5 T 4 φ 2 φ 45 + h 1 h 45 D 4 D 4 φ 3 φ 3 φ 45 + h 1 h 45 D 4 D 4 φ 4 φ 4 φ 45 + h 1 h 45 D 2 D 2 φ 45 Φ Φ + h 1 h 45 T 2 T 2 φ 45 Φ Φ + h 2 h 1 D 5 D 4 φ 3 φ 2 φ 2 + h 2 h 1 T 5 T 4 φ 2 φ 2 φ 2 + h 2 h 1 T 5 T 4 φ 2 φ 4 φ 4 + h 2 h 2 D 4 D 4 φ 3 φ 3 + h 2 h 2 D 4 D 4 φ 4 φ 4 + h 2 h 2 T 4 T 4 φ 2 φ 2 + h 2 h 2 T 4 T 4 φ 4 φ 4 + h 2 h 45 D 4 D 4 φ 45 + h 2 h 45 D 5 D 4 φ 3 φ 45 Φ + h 2 h 45 T 5 T 5 φ 2 φ 2 φ 45 + h 2 h 45 T 5 T 5 φ 4 φ 4 φ 45 + h 2 h 45 T 5 D 4 D 3 T 3 + h 2 h 45 T 5 T 4 φ 2 φ 45 Φ + h 2 h 45 D 4 D 4 φ 45 + h 2 h 45 D 4 T 4 D 3 T 3 φ 2 + h 2 h 45 D 2 D 2 φ 2 φ 2 φ 45 + h 2 h 45 D 2 D 2 φ 4 φ 4 φ 45 + h 2 h 45 T 2 T 2 φ 2 φ 2 φ 45 + h 2 h 45 T 2 T 2 φ 4 φ 4 φ 45 + h 45 h 1 D 5 D 5 φ 45 + h 45 h 1 D 5 D 5 φ 45 Φ Φ + h 45 h 1 D 5 D 4 φ 3 φ 45 + h 45 h 1 T 5 T 4 φ 2 φ 45 + h 45 h 1 T 4 T 4 φ 2 φ 2 φ 45 + h 45 h 1 T 4 T 4 φ 4 φ 4 φ 45 + h 45 h 2 T 4 T 4 φ 45 + h 45 h 2 D 5 D 5 φ 3 φ 3 φ 45 + h 45 h 2 D 5 D 5 φ 4 φ 4 φ 45 + h 45 h 2 D 5 D 4 φ 3 φ 45 Φ + h 45 h 2 T 5 T 4 φ 2 φ 45 Φ + h 45 h 2 T 4 T 4 φ 45 + h 45 h 45 D 5 D 5 φ 4 φ 4 + h 45 h 45 D 5 D 5 φ 45 φ 45 + h 45 h 45 D 5 D 4 φ 3 φ 45 φ 45 + h 45 h 45 T 5 T 5 φ 4 φ 4 + h 45 h 45 T 5 T 5 φ 45 φ 45 + h 45 h 45 T 5 T 4 φ 2 φ 4 φ 4 + h 45 h 45 T 5 T 4 φ 2 φ 45 φ 45 + h 45 h 45 D 4 D 4 φ 4 φ 4 Φ + h 45 h 45 D 4 D 4 φ 45 φ 45 Φ + h 45 h 45 T 4 T 4 φ 4 φ 4 Φ + h 45 h 45 T 4 T 4 φ 45 φ 45 Φ + h 45 h 45 D 2 D 2 φ 4 φ 4 + h 45 h 45 D 2 D 2 φ 45 φ 45 + h 45 h 45 T 2 T 2 φ 4 φ 4 + h 45 h 45 T 2 T 2 φ 45 φ 45 (31) Table 4: Non renormalizable contributions to the Higgs doublet mass matrix that are non zero up to seventh order for the vacuum choice (7).

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα