Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:"

Transcript

1 Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B gounaris/courses/dwdm/

2 Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν το σύγγραμμα «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» Αρχικές εκδόσεις από μέρος των διαφανειών ετοιμάστηκαν από τον Δρ. Α. Νανόπουλο. Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Introduction to Data Mining» των Tan, Steinbach, Kumar, και «Data Mining: Concepts and Techniques» των Jiawei Han, Micheline Kamber. 2

3 Τί θα εξετάσουμε 4 βασικές κατηγορίες αλγορίθμων ομαδοποίησης Αλγ. τμηματοποίησης Ιεραρχικοί αλγόριθμοι Αλγ. βασισμένοι στην πυκνότητα Αλγ. βασισμένοι σμέ ση στην θεωρία γράφων Κλιμάκωση Έλεγχος Εγκυρότητας και τάσης ομαδοποίησης ης 3

4 Αλγόριθμοι Τμηματοποίησης (Partitioning Algorithms) Μεθοδολογία: Δημιουργία τμηματοποίησης μίας ΒΔ D με n αντικείμενα σε ένα σύνολο k συστάδων. Δεδομένου του k, πρέπει να βρεθεί η τμηματοποίηση η η που βελτιστοποιεί το κριτήριο τμηματοποίησης. Βέλτιστη λύση: πρέπει να εξεταστούν όλες οι περιπτώσεις. Ευρετικές μέθοδοι: k-means, k-medoids, k-nn k-means (MacQueen 67): Κάθε συστάδα αντιπροσωπεύεται από το κέντρο της. k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw 87): Κάθε συστάδα αντιπροσωπεύεται από ένα αντικείμενό της. 4

5 K-means 1. Διάλεξε k τυχαία κέντρα. (Τα κέντρα μπορεί να μην αντιστοιχούν σε ένα από τα δεδομένα αντικείμενα.) 2. Ανάθεσε κάθε αντικείμενο στο πλησιέστερο προς αυτό κέντρο. 3. Για κάθε μία από τις k ομάδες, υπολόγισε το νέο κέντρο. 4. Αν όλα τα νέα κέντρα συμπίπτουν με τα προηγούμενα (δηλαδή, δεν υπήρξε μεταβολή), τότε τερμάτισε γιατί ο αλγόριθμος έχει συγκλίνει. Αλλιώς, επανάλαβε το βήμα 2 5

6 Χαρακτηριστικά K-means Πλεονεκτήματα Απλός Γρήγορος (O(nd)) Μειονεκτήματα Επιλογή k Τοπικά ελάχιστα Ευαισθησία σε θόρυβο, outliers Χαμηλή αποτελεσματικότητα όταν οι πραγματικές συστάδες είναι διαφορετικού μεγέθους, πυκνότητας, ή δεν έχουν σφαιρικό σχήμα. Χρειάζονται αυξημένο k 6

7 Ομαδοποίηση η πλησιέστερων γειτόνων 2 σημεία στην ίδια ομάδα αν μοιράζονται αρκετούς πλησιέστερους γείτονες i j i j 4 7

8 Ομαδοποίηση η πλησιέστερων γειτόνων Για κάθε αντικείμενο x i υπολόγιζε τη λίστα L(x i ) με τα k πλησιέστερα αντικείμενα. Για κάθε ζεύγος σημείων x i και x j, αν L(x i ) L(x j ) k t, τότε τοποθέτησε τα x i και x j στην ίδια ομάδα. Οι τιμές των παραμέτρων k και k t προσδιορίζονται εμπειρικά. Όταν το k παίρνει μεγάλες τιμές, ο αλγόριθμος τείνει να συνενώνει ομάδες, ενώ αντιθέτως, για μικρές τιμές του k τείνει να προκαλεί διασπάσεις. Σχετικά με το k t όταν k t =1, τότε ο αλγόριθμος παράγει παρόμοιες ομάδες με αυτές του ιεραρχικού αλγορίθμου μονής σύνδεσης (δες επόμενες διαφάνειες), ) καθώς είναι ευκολότερο να γίνουν συνδέσεις αντικειμένων. Πολυπλοκλότητα O(n 2 ) 8

9 Παράδειγμα με τα IRIS δεδομένα προβολή στα 2 πρώτα ιδιοδιανύσματα k=20 k=7 k=100 k t =k/2 9

10 Ευαισθησία στο k t k t k t -1 10

11 Ομαδοποίηση η αμοιβαίας γειτνίασης x j είναι το είναι το p-οστό p αντικείμενο προς το x i x i είναι το είναι το q-οστό αντικείμενο προς το x j Aν p,q<k, ΑΓ(x i,x j )=p+q, αλλιώς άπειρο Αλγόριθμος: 1. Για κάθε αντικείμενο x i υπολόγιζε τη λίστα L(x i ) με τα k πλησιέστερα αντικείμενα. 2. Για κάθε ζεύγος αντικειμένων x i και x j, υπολόγισε την τιμή ΑΓ(x i, x j ). 3. Εντόπισε όλα τα ζεύγη αντικειμένων με ΑΓ ίσο με 2. Ανάθεσε όλα αυτά τα ζεύγη αντικειμένων στην ίδια ομάδα. 4. Επανάλαβε το βήμα 3 για την επόμενη τιμή ΑΓ μέχρι την τιμή 2k. 11

12 Τί θα εξετάσουμε 4 βασικές κατηγορίες αλγορίθμων ομαδοποίησης Αλγ. τμηματοποίησης Ιεραρχικοί αλγόριθμοι Αλγ. βασισμένοι στην πυκνότητα Αλγ. βασισμένοι σμέ ση στην θεωρία γράφων Κλιμάκωση Έλεγχος Εγκυρότητας και τάσης ομαδοποίησης ης 12

13 Βασικές Δομές μς Πίνακας Δεδομένων x x i x 1f... x if x 1p... x ip x n1... x nf... x np Πίνακας Απόστασης 0 d(2,1) 0 d(3,1 ) d (3,2) 0 : : : d ( n,1) d ( n,2)

14 Ιεραρχική ρχ Συσταδοποίηση η Δυο βασικοί τύποι ιεραρχικής συσταδοποίησης: Συσσωρευτικός (Agglomerative): Αρχίζει με τα σημεία ως ξεχωριστές συστάδες Σε κάθε βήμα, συγχωνεύει το πιο κοντινό ζευγάρι συστάδων μέχρι μχρναμείνει μόνο μία (ή k) συστάδες Διαιρετικός (Divisive): Αρχίζει με μία συστάδα που περιέχει όλα τα σημεία Σε κάθε βήμα, διαχωρίζει μία συστάδα, έως κάθε συστάδα να περιέχει μόνο ένα σημείο (ή να δημιουργηθούν k συστάδες 14

15 Ιεραρχική ρχ Συσταδοποίηση: η εισαγωγικά γ Παράγει ένα σύνολο από εμφωλευμένες συστάδες οργανωμένες σε ένα ιεραρχικό δέντρο Μπορεί να παρασταθεί με έναδενδρόγραμμα Δηλ. ένα διάγραμμα που μοιάζει με δένδρο και καταγράφει τις ακολουθίες από συγχωνεύσεις (merges) και διαχωρισμούς (splits)

16 Συναθροιστική Ιεραρχική ρχ Ομαδοποίηση η 1. Ξεκίνα από την αρχική διαμέριση C 1 = {{x 1 },,{x n }}. Επίσης i=1. 2. Bρες το ζεύγος ομάδων c r και c s με τη μικρότερη απόσταση d(c r, c s ). 3. Συνένωσε τις ομάδες c r και c s και δημιούργησε την ακολουθία C i+1. Θέσε i=i Ενημέρωσε τον πίνακα D, διαγράφοντας τις γραμμές και τις στήλες που αντιστοιχούν στις ομάδες c r και c s. Θώ Θεώρησε μία γραμμή και στήλη, που να αντιστοιχούν στη συνενωμένη ομάδα c r c s. Υπολόγισε την απόσταση της συνενωμένης ομάδα c r c s από όλες τις υπόλοιπες ομάδες, και συμπλήρωσε τις τιμές στη νέα στήλη και τη νέα γραμμή του D. 5. Αν στο βήμα 3 έχει παραχθεί διαμέριση με k ομάδες, τότε σταμάτησε. Διαφορετικά, επανάλαβε το βήμα 2. 16

17 Αρχική κατάσταση p1 p2 p3 p4 p5.. p1 p2 p3 p4 p5.... Πίνακας Αποστάσεων Κάθε σημείο είναι ένα cluster 17

18 Ενδιάμεση κατάσταση C3 C4 c1 c2 c1 c2 c3 c4 c5... C1 c3 c4 c5. C2 C5.. Πίνακας Αποστάσεων 18

19 Συνένωση ομάδων C3 C4 C1 C2 C1 C2 C3 C4 C5 C1 C3 C4 C5 C2 C5 19

20 Μετά τη συνένωση C3 C4 C1 C2 U C5 C3 C4 C1? C1 C2 U C5???? C2 U C5 C3 C4?? 20

21 Απόσταση ομάδων Απόσταση;; p1 p2 p3 p4 p1 p2 p3 p4 p5... MIN MAX Μέσος όρος Απόσταση μεταξύ κέντρων Μέθοδος Ward (τετραγωνικό σφάλμα) p5... Πίνακας Αποστάσεων 21

22 Απόσταση ομάδων MIN MAX p1 p2 p3 p4 p5. p1 p2 p3 p4 p5.... Απόσταση μεταξύ κέντρων. Πίνακας Αποστάσεων Μέσος όρος Μέθοδος Ward (τετραγωνικό σφάλμα) Ανάλογα, χειριζόμαστε και ομοιότητες αντί για αποστάσεις 22

23 Απόσταση ομάδων MIN MAX Μέσος όρος Απόσταση μεταξύ κέντρων p1 p2 p3 p4 p5 Μέθοδος Ward (τετραγωνικό σφάλμα)... p1 p2 p3 p4 p5... Πίνακας Αποστάσεων 23

24 Απόσταση ομάδων MIN MAX Μέσος όρος Απόσταση μεταξύ κέντρων p1 p2 p3 p4 p5 Μέθοδος Ward (τετραγωνικό σφάλμα)... p1 p2 p3 p4 p5... Πίνακας Αποστάσεων 24

25 Απόσταση ομάδων p1 p2 p3 p4 p5... p1 p2 MIN MAX Μέσος όρος Απόσταση μεταξύ κέντρων p3 p4 p5 Μέθοδος Ward (τετραγωνικό σφάλμα)... Πίνακας Αποστάσεων 25

26 Σύγκριση γρ MIN vs. MAX MIN: αλγόριθμος λό μονής σύνδεσης ύδ (single-link) l MAX: αλγόριθμος πλήρους σύνδεσης (complete-link) 26

27 Σύγκριση γρ MIN vs. MAX

28 Ερμηνεία με θεωρία γράφων Ζυγισμένος γράφος G: κορυφές = αντικείμενα βάρη = αποστάσεις d(i): η απόσταση των ομάδων που συνενώνονται στο i βήμα H(d(i)): o υπογράφος του G με ακμές με βάρη < d(i) () Στο τελικό αποτέλεσμα: Μονής σύνδεσης: κάθε ομάδα αντιστοιχεί σε μία συνιστώσα που είναι spanning tree (ζευγνύον δένδρο) Πλήρους σύνδεσης: κάθε ομάδα, μία κλίκα (πλήρης υπογράφος) 28

29 Γενική εξίσωση απόστασης Μετά τη συνένωση r και s, βρίσκουμε την απόστασή τους από κάθε άλλη ομάδα k: 29

30 Αλγόριθμος Ward Το κέντρο της k ομάδας: Τετραγωνικό λάθος: Συνολικό λάθος (Κ ομάδες): Κατά τη συνένωση rs t: r,s t: Σε κάθε βήμα: συνένωση που προκαλεί μικρότερο ΔΕ 2 30

31 Σύγκριση MIN MAX Group Average Ward s Method

32 Ποιος είναι καταλληλότερος; Εξαρτάται από τα δεδομένα ΜΑΧ: +λιγότερη εξάρτηση σε θόρυβο και outliers. - Τείνει να διασπά μεγάλες συστάδες. Οδηγεί συνήθως σε κυκλικά σχήματα ΜΙΝ: + Contiguity-based (συνεχόμενες συστάδες) + Μπορεί να χειριστεί μη ελλειπτικά (non-elliptical) σχήματα - Ευαίσθητο σε θόρυβο και outliers Μέσος όρος Αά Ανάμεσα σε MIN-MAX MAX + Πλεονεκτήματα: μικρότερη ευαισθησία σε θόρυβο και outliers - Μειονεκτήματα: Ευνοεί κυκλικές συστάδες 32

33 Άλλο Παράδειγμα: ΜΙΝ ΜAX 33

34 Πολυπλοκότητα Ιεραρχικών ρχ αλγορίθμων O(N 2 ) χώρο, για τον πίνακα αποστάσεων O(N 3 ) χρόνο N βήματα, σε κάθε βήμα N 2, για τη συνένωση O(N 2 log(n) ) για μονής σύνδεσης σε χαμηλές διαστάσεις 34

35 Σύγκριση με k-means Δεν απαιτεί τον ορισμό του αριθμού των clusters Oι αποφάσεις σε κάθε βήμα δεν αναιρούνται Όχι τοπικά βέλτιστα. Όμως Υπάρχουν μελέτες που υποστηρίζουν ότι παράγουν καλύτερες συστάδες. Συνδυάζεται με k-means 35

36 Κ-means vs single link διαφάνεια από M. Vazirgiannis 36

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Γ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining»,

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining», Συσταδοποίηση Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ

Διαβάστε περισσότερα

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

11 Ανάλυση Συστάδων

11 Ανάλυση Συστάδων 11 Ανάλυση Συστάδων Σύνοψη Η Ανάλυση Συστάδων (ΑΣ) (Clustering) είναι μια από τις βασικότερες εργασίες Εξόρυξης Δεδομένων. Στόχος της ΑΣ είναι ο επιμερισμός ενός συνόλου παραδειγμάτων σε συστάδες. Οι συστάδες

Διαβάστε περισσότερα

Ανάλυση κατά Συστάδες. Cluster analysis

Ανάλυση κατά Συστάδες. Cluster analysis Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα,

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Ηλίας Κ. Σάββας Εξόρυξη Δεδομένων Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, Μετατροπή δεδομένων σε ΠΛΗΡΟΦΟΡΙΑ, Πολλά δεδομένα αποθηκευμένα

Διαβάστε περισσότερα

Κεφάλαιο 6: Συσταδοποίηση

Κεφάλαιο 6: Συσταδοποίηση Κεφάλαιο 6: Συσταδοποίηση Σύνοψη Ο βασικός στόχος αυτού του κεφαλαίου είναι η εξοικείωση με θέματα που αφορούν την τρίτη σημαντική εργασία της εξόρυξης δεδομένων, δηλαδή την ανάλυση των συστάδων. Πιο συγκεκριμένα,

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ

10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ 1 2 3 1 ΚΑΤΗΓΟΡΊΕΣ ΤΑΞΙΝΌΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervised classification) Μη-κατευθυνόμενη ταξινόμηση (unsupervised classification) Γραμμική: Μη-Γραμμική: Ιεραρχική: Επιμεριστική:

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Εισαγωγή Ο αλγόριθμος k-means Αποστάσεις Ιεραρχική Συσταδοποίηση Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Τι

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 6 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Συστάσεις Ι Ποιός είμαι εγώ: Email: tsap@cs.uoi.gr Γραφείο: Β.3 Προτιμώμενες ώρες γραφείου: 11:00-18:00 Ενδιαφέροντα Web mining, Social networks, User Generated Content Mobile

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 6: Δένδρα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ιπλωµατική Εργασία

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ιπλωµατική Εργασία ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ιπλωµατική Εργασία «Μετάδοση πληροφορίας σε ασύρµατο δίκτυο αισθητήρων µε οµαδοποιηµένους κόµβους και µε χρήση διευθύνσεων

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Διπλωματική Εργασία: Ομαδοποίηση γράφων με τους αλγόριθμους k-means και DBSCAN. Σπουδαστής: Νικηφοράκης

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση II Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Εξόρυξη Δεδομένων: Ακ. Έτος 008-009 ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Δένδρα επικάλ επικ υψης ελάχιστου στους

Δένδρα επικάλ επικ υψης ελάχιστου στους Δένδρα επικάλυψης ελάχιστου κόστους Αλγόριθμος Kruskal Αλγόριθμος Kruskal Ξεκινάμε από ένα δάσος από n δένδρα, κάθε ένα δένδρο εκφυλισμένο σε ένα μεμονωμένο κόμβο. Σε κάθε επανάληψη, προσθέτουμε τη πλευρά

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών

Συμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Πιθανοτικοί Αλγόριθμοι

Πιθανοτικοί Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Προεπεξεργασία Δεδομένων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Η διαδικασίας της ανακάλυψης γνώσης Knowledge Discovery (KDD) Process Εξόρυξη δεδομένων- πυρήνας της διαδικασίας ανακάλυψης

Διαβάστε περισσότερα

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Ανάλυση κατά Συστάδες σε δεδοµένα Χρονολογικών σειρών Κωνσταντίνα Κ. Μεντζέλου ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τµήµα Στατιστικής του Οικονοµικού Πανεπιστηµίου

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση

Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 3 Ο Εργαστήριο WEKA (CLUSTERING) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Συσταδοποίηση (Clustering) Συσταδοποίηση / Ομαδοποίηση

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Παπαδάκης Χαράλαμπος 1, Παναγιωτάκης Κώστας 2, Παρασκευή Φραγκοπούλου 1 1 Τμήμα Μηχ/κών Πληροφορικής, ΤΕΙ Κρήτης 2 Τμήμα

Διαβάστε περισσότερα

«Ομαδοποίηση δεδομένων Κοινωνικού Ιστού»

«Ομαδοποίηση δεδομένων Κοινωνικού Ιστού» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑΝΝΑΚΙΔΟΥ ΕΙΡΗΝΗ (Α.Μ. 49) «Ομαδοποίηση δεδομένων Κοινωνικού

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35)

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Γινόµενα σηµεία, τοµή ευθυγράµµων τµηµάτων Εύρεση κυρτών περιβληµάτων: Ο αλγόριθµος του Grm και ο αλγόριθµος του

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ Δομή παρουσίασης Εισαγωγή Βασικές Έννοιες Σχετικές μελέτες Εφαρμογή Δεδομένων Συμπεράσματα Εισαγωγή Μελέτη και προσαρμογή των διάφορων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δεντρικά Ευρετήρια 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες ως εξής P 1 K 1 P

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Αναπαράσταση & Απλοποίηση Μοντέλων

Αναπαράσταση & Απλοποίηση Μοντέλων Γραφικά & Οπτικοποίηση Κεφάλαιο 6 Αναπαράσταση & Απλοποίηση Μοντέλων Εισαγωγή Οι 3Δ εικόνες στα Γραφικά αποτελούνται από διάφορα σχήματα & δομές: Γεωμετρικά σχήματα (π.χ. σφαίρες) Μαθηματικές επιφάνειες

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

BIRCH: : An Efficient Data Clustering Method for Very Large Databases

BIRCH: : An Efficient Data Clustering Method for Very Large Databases BIRCH: : An Efficient Data Clustering Method for Very Large Databases Tian Zhang Raghu Ramakrishnan Miron Livny Παρουσίαση: Μαρία Καθηγητής: Μιχάλης Μάθημα: Θέματα Μαρία Δήμα Μιχάλης Χατζόπουλος Θέματα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 15: Τμηματοποίηση σε τοπολογικά συνεκτικές περιοχές Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Διαμέριση σε συνεκτικές

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Εφαρμοσμένη Πολυμεταβλητή Ανάλυση : Ανάλυση κατά συστάδες 1. Εισαγωγή Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων Η ομαδοποίηση δεδομένων

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ (INTERNETWORKING)

ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ (INTERNETWORKING) ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ (INTERNETWORKING) Α. Α. Οικονομίδης Πανεπιστήμιο Μακεδονίας Διασυνδεδεμένο δίκτυο διασύνδεση δικτύων που το καθένα διατηρεί την ταυτότητά του χρησιμοποιώντας ειδικούς μηχανισμούς διασύνδεσης

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα