Fundamentals of Probability: A First Course. Anirban DasGupta

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fundamentals of Probability: A First Course. Anirban DasGupta"

Transcript

1 Fundamentals of Probability: A First Course Anirban DasGupta

2 Contents 1 Introducing Probability ExperimentsandSampleSpaces Set Theory Notation and Axioms of Probability How to Interpret a Probability Calculating Probabilities ManualCounting GeneralCountingMethods InclusionExclusionFormula Bounds on the Probability of a Union Synopsis Exercises References The Birthday and the Matching Problem TheBirthdayProblem *Stirling sapproximation TheMatchingProblem Synopsis Exercises References Conditional Probability and Independence BasicFormulasandFirstExamples MoreAdvancedExamples IndependentEvents BayesTheorem Synopsis Exercises Integer Valued and Discrete Random Variables MassFunction CDFandMedianofaRandomVariable FunctionsofaRandomVariable Independence of Random Variables ExpectedValueofaDiscreteRandomVariable I

3 4.4 BasicPropertiesofExpectations Illustrative Examples Using Indicator Variables to Calculate Expectations The Tail Sum Method for Calculating Expectations Variance, Moments, and Basic Inequalities Illustrative Examples Variance of a Sum of Independent Random Variables Utility of µ, σ assummaries Chebyshev s Inequality and Weak Law of Large Numbers *BetterInequalities Other Fundamental Moment Inequalities *ApplyingMomentInequalities TruncatedDistributions Synopsis Exercises References Generating Functions GeneratingFunctions Moment Generating Functions and Cumulants Cumulants Synopsis Exercises References Standard Discrete Distributions IntroductiontoSpecialDistributions DiscreteUniformDistribution BinomialDistribution Geometric and Negative Binomial Distribution HypergeometricDistribution PoissonDistribution Mean Absolute Deviation and the Mode PoissonApproximationtoBinomial MiscellaneousPoissonApproximations Benford slaw II

4 6.10 DistributionofSumsandDifferences *DistributionofDifferences DiscreteDoesNotMeanIntegerValued Synopsis Exercises References Continuous Random Variables TheDensityFunctionandtheCDF Quantiles Generating New Distributions from Old Normal and Other Symmetric Unimodal Densities Functions of a Continuous Random Variable QuantileTransformation Cauchydensity ExpectationofFunctionsandMoments The Tail Probability Method for Calculating Expectations SurvivalandHazardRate *MomentsandtheTail Moment Generating Function and Fundamental Tail Inequalities *Chernoff-BernsteinInequality *Lugosi simprovedinequality Jensen and Other Moment Inequalities and a Paradox Synopsis Exercises References Some Special Continuous Distributions UniformDistribution ExponentialandWeibullDistributions GammaandInverseGammaDistributions BetaDistribution ExtremeValueDistributions * Exponential Density and the Poisson Process Synopsis Exercises III

5 8.9 References Normal Distribution DefinitionandBasicProperties WorkingwithaNormalTable Additional Examples and the Lognormal Density SumsofIndependentNormalVariables Mills Ratio and Approximations for the Standard Normal CDF Synopsis Exercises References Normal Approximations and Central Limit Theorem SomeMotivatingExamples CentralLimitTheorem NormalApproximationtoBinomial ContinuityCorrection ANewRuleofThumb ExamplesoftheGeneralCLT NormalApproximationtoPoissonandGamma Convergence of Densities and Higher Order Approximations *RefinedApproximations Practical Recommendations for Normal Approximations Synopsis Exercises References Multivariate Discrete Distributions Bivariate Joint Distributions and Expectations of Functions Conditional Distributions and Conditional Expectations Examples on Conditional Distributions and Expectations Using Conditioning to Evaluate Mean and Variance CovarianceandCorrelation MultivariateCase JointMGF MultinomialDistribution IV

6 11.6 Synopsis Exercises Multidimensional Densities JointDensityFunctionandItsRole ExpectationofFunctions BivariateNormal Conditional Densities and Expectations Examples on Conditional Densities and Expectations Bivariate Normal Conditional Distributions OrderStatistics BasicDistributionTheory * More Advanced Distribution Theory Synopsis Exercises References Convolutions and Transformations ConvolutionsandExamples Products and Quotients and the t and F Distribution Transformations ApplicationsofJacobianFormula PolarCoordinatesinTwoDimensions Synopsis Exercises References Markov Chains and Applications NotationandBasicDefinitions Chapman-Kolmogorov Equation CommunicatingClasses Gambler sruin FirstPassage,RecurrenceandTransience Long Run Evolution and Stationary Distributions Synopsis Exercises V

7 14.9 References Urn Models in Physics and Genetics Stirling Numbers and Their Basic Properties UrnModelsinQuantumMechanics *PoissonApproximations Pólya surn Pólya-EggenbergerDistribution * de Finetti s Theorem and PólyaUrns UrnModelsinGenetics Wright-FisherModel TimeuntilAlleleUniformity MutationandHoppe surn *TheEwensSamplingFormula Synopsis Exercises References Appendix I: Supplementary Homework and Practice Problems WordProblems True-FalseProblems Appendix II GlossaryofSymbols FormulaSummaries Moments and MGFs of Common Distributions Useful Mathematical Formulas UsefulCalculusFacts Tables NormalTable PoissonTable VI

Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα

Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα Έκδοση: 1.02, Απρίλιος 2014 Συντάκτης: Δρ. Παντελής Μπαλαούρας, Καθ. Λάζαρος Μεράκος (ΕΚΠΑ) Προσαρμογή: Αν. Καθ.

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

Harold s Statistics Probability Density Functions Cheat Sheet 30 May PDF Selection Tree to Describe a Single Population

Harold s Statistics Probability Density Functions Cheat Sheet 30 May PDF Selection Tree to Describe a Single Population Harold s Statistics Probability Density Functions Cheat Sheet 30 May 2016 PDF Selection Tree to Describe a Single Population Qualitative Quantitative Copyright 2016 by Harold Toomey, WyzAnt Tutor 1 Discrete

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ

ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ Α Αθροιστική συνάρτηση κατανομής, 70, 317 σχετική συχνότητα, 321 Αθροιστικός κανόνας, 57, 60 Ακολουθία δοκιμών Bernoulli, 118 Ακρίβεια, 501 Αμεροληψία, 252 Αναμενόμενη τιμή, 73

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

Anti-Final CS/SE 3341 SOLUTIONS

Anti-Final CS/SE 3341 SOLUTIONS CS/SE 3341 SOLUTIONS Anti-Final 1. Users call help desk every 15 minutes, on the average. There is one help desk specialist on duty, and her average service time is 9 minutes. Modeling the help desk as

Διαβάστε περισσότερα

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008 .. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

When using the normal approximation to a discrete distribution, use the continuity correction.

When using the normal approximation to a discrete distribution, use the continuity correction. Tables for Exam C The reading material for Exam C includes a variety of textbooks. Each text has a set of probability distributions that are used in its readings. For those distributions used in more than

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

MOTORCAR INSURANCE I

MOTORCAR INSURANCE I MOTORCAR INSURANCE I I Acc. II Acc. III Acc. Sex Year Month Day 19970602 0 0 M 1966 4 11 19820101 19840801 0 M 1926 3 25 19820801 19840712 0 F 1952 2 19 19781222 19810507 0 M 1952 3 23 19821110 19870614

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23 Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or

Διαβάστε περισσότερα

Exponential Families

Exponential Families Exponential Families Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Surprisingly many of the distributions we use in statistics for random variables taking value in

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ Λ. ΑΝΤΖΟΥΛΑΚΟΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΔΗΜΗΤΡΙΟΣ Λ. ΑΝΤΖΟΥΛΑΚΟΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΔΗΜΗΤΡΙΟΣ Λ. ΑΝΤΖΟΥΛΑΚΟΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΠΟΥΔΕΣ, ΣΤΑΔΙΟΔΡΟΜΙΑ ΕΡΕΥΝΗΤΙΚΟ ΕΡΓΟ ΠΕΙΡΑΙΑΣ 2014 1. Προσωπικά στοιχεία

Διαβάστε περισσότερα

Μάθημα Τεχνοοικονομική ανάλυση δικτύων

Μάθημα Τεχνοοικονομική ανάλυση δικτύων Μάθημα Τεχνοοικονομική ανάλυση δικτύων Ανάλυση Ευαισθησίας και Ανάλυση Κινδύνων Δρ. Δημήτρης Κατσιάνης Nils Kristian Elnergaard Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutions to Exercises Chapter Review of Probabiity Soutions to Exercises. (a) Probabiity distribution function for Outcome = 0 = = (number of heads) probabiity 0.5 0.50 0.5 Cumuative probabiity

Διαβάστε περισσότερα

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI 155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2016

Stationary Stochastic Processes Table of Formulas, 2016 Stationary Stochastic Processes, 06 Stationary Stochastic Processes Table of Formulas, 06 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής

Διαβάστε περισσότερα

Important Probability Distributions

Important Probability Distributions D Important Probability Distributions Development of stochastic models is facilitated by identifying a few probability distributions that seem to correspond to a variety of data-generating processes, and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΓΙΑ ΤΟΥΣ ΔΙΔΑΣΚΟΝΤΕΣ ΤΟΥ ΠΜΣ

ΣΤΟΙΧΕΙΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΓΙΑ ΤΟΥΣ ΔΙΔΑΣΚΟΝΤΕΣ ΤΟΥ ΠΜΣ ΣΤΟΙΧΕΙΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΓΙΑ ΤΟΥΣ ΔΙΔΑΣΚΟΝΤΕΣ ΤΟΥ ΠΜΣ Ονοματεπώνυμο : Μάρκος Κούτρας Τίτλος : Καθηγητής Τμήμα : Στατιστικής & Ασφαλιστικής Επιστήμης Ίδρυμα : Πανεπιστήμιο Πειραιώς Διεύθυνση Γραφείο: Καραολή

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Contents. Preface. 4 Support Vector Machines Linearclassification SVMs separablecase... 64

Contents. Preface. 4 Support Vector Machines Linearclassification SVMs separablecase... 64 Contents Preface xi 1 Introduction 1 1.1 Applicationsandproblems... 1 1.2 Definitionsandterminology... 3 1.3 Cross-validation... 5 1.4 Learningscenarios... 7 1.5 Outline... 8 2 The PAC Learning Framework

Διαβάστε περισσότερα

Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών

Βιογραφικό Σημείωμα. Διεύθυνση επικοινωνίας: Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Βιογραφικό Σημείωμα Προσωπικά στοιχεία Όνομα: Σταύρος Επώνυμο: Κουρούκλης Έτος γέννησης: 1952 Τόπος γέννησης: Ληξούρι Κεφαλλονιάς Στρατιωτική θητεία: Φεβρουάριος 2002 Οκτώβριος 2003 Οικογενειακή κατάσταση:

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

STAT200C: Hypothesis Testing

STAT200C: Hypothesis Testing STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Formula for Success a Mathematics Resource

Formula for Success a Mathematics Resource A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 3: Δειγματοληπτικές μέθοδοι Βαγγέλης Χαρμανδάρης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Transformation Methods:

Διαβάστε περισσότερα

Περιγραφή Μαθήματος. Περιεχόμενα του Μαθήματος: βλ. «Παράρτημα- Περιεχόμενα Εβδομαδιαίου Προγράμματος» Καθ/ρια Στέλλα Σοφιανοπούλου 1

Περιγραφή Μαθήματος. Περιεχόμενα του Μαθήματος: βλ. «Παράρτημα- Περιεχόμενα Εβδομαδιαίου Προγράμματος» Καθ/ρια Στέλλα Σοφιανοπούλου 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στη Βιομηχανική Διοίκηση & Τεχνολογία Τμ. Βιομηχανικής Διοίκησης & Τεχνολογίας Διοίκηση Αποθήκευσης και Διανομής Προϊόντων + Περιγραφή Μαθήματος Τίτλος - Κωδικός Αριθμός του Μαθήματος

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

The Normal and Lognormal Distributions

The Normal and Lognormal Distributions The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

RCA models with correlated errors

RCA models with correlated errors Applied Mathematics Letters 19 (006) 84 89 www.elsevier.com/locate/aml RCA models with correlated errors S.S. Appadoo a,a.thavaneswaran a,,jagbir Singh b a Department of Statistics, The University of Manitoba,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΙΔΙΚΕΥΣΗΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΡΟΥΣ ΦΟΙΤΗΣΗΣ Αθήνα 2014 ΜΕΤΑΠΤΥΧΙΑΚΟ

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

EE-3061: ΣΑΣΙΣΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΠΙΘΑΝΟΣΗΣΩΝ ΒΑΙΚΕ ΠΛΗΡΟΦΟΡΙΕ

EE-3061: ΣΑΣΙΣΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΠΙΘΑΝΟΣΗΣΩΝ ΒΑΙΚΕ ΠΛΗΡΟΦΟΡΙΕ EE-3061: ΣΑΣΙΣΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΠΙΘΑΝΟΣΗΣΩΝ ΒΑΙΚΕ ΠΛΗΡΟΦΟΡΙΕ Σμιμα Ηλεκτρονικήσ Σίτλοσ Μακιματοσ ΗΛΕΚΣΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Κωδικόσ Μακιματοσ EE-6011 Θεωρία / Θεωρία Εργαςτιριο Εξάμθνο Γ Διδαςκαλίασ Πιςτωτικζσ

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για ΠΜΜΠ. Ακαδημαϊκό Έτος Εαρινό Εξάμηνο. 1 η Ενδιάμεση Εξέταση. 6:00-8:30 μ.μ. (150 λεπτά)

ΠΠΜ 512: Ανάλυση Κινδύνου για ΠΜΜΠ. Ακαδημαϊκό Έτος Εαρινό Εξάμηνο. 1 η Ενδιάμεση Εξέταση. 6:00-8:30 μ.μ. (150 λεπτά) ΠΠΜ 51: Ανάλυση Κινδύνου για ΠΜΜΠ Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Δρ. Σ. Χριστοδούλου, Επικ. Καθηγητής Ακαδημαϊκό Έτος 005-006 Εαρινό Εξάμηνο

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + + ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση

Διαβάστε περισσότερα

Formulas in Project Risk

Formulas in Project Risk Formulas in Project Risk Jørn Vatn Email: jorn.vatn@ntnu.no 2014-07-04 - Rev2 Some important formulas from the course compendium Project Risk Analysis are listed in this memo. For assumptions and limitations,

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο

Διαβάστε περισσότερα

Δείγμα πριν τις διορθώσεις

Δείγμα πριν τις διορθώσεις Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

Αγγλο-ελληνικό λεξικό στατιστικών όρων

Αγγλο-ελληνικό λεξικό στατιστικών όρων Αγγλο-ελληνικό λεξικό στατιστικών όρων Τσαγρής Μιχαήλ BSc in Statistics mtsagris@yahoo.gr ΑΘΗΝΑ 2008 A acceptance region acceptance sampling accessibility sampling additive model algorithm alpha alternative

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + + ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση

Διαβάστε περισσότερα

Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα

Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα Έντυπο Καταγραφής Πληροφοριών και Συγκέντρωσης Εκπαιδευτικού Υλικού για τα Ανοικτά Μαθήματα Έκδοση: 1.02, Απρίλιος 2014 Πράξη «Κεντρικό Μητρώο Ελληνικών Ανοικτών Μαθημάτων» Σύνδεσμος: http://ocw-project.gunet.gr

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά

Διαβάστε περισσότερα

M / M (k) /1 Queuing model with varying bulk service

M / M (k) /1 Queuing model with varying bulk service International Journal of Mathematics and Soft Computing Vol., No. (0), 09 7. ISSN 49 338 M / M () / Queuing model with varying bul service T.S.R. Murthy Professor, Shri Vishnu Engineering College for Women,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Description of the PX-HC algorithm

Description of the PX-HC algorithm A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:

Διαβάστε περισσότερα

SE C O N D E D ITI O N CONSTRUCTION, ANALYSIS, AND INTERPRETATION

SE C O N D E D ITI O N CONSTRUCTION, ANALYSIS, AND INTERPRETATION Matrix Population Models SE C O N D E D ITI O N CONSTRUCTION, ANALYSIS, AND INTERPRETATION HAL CASWELL Contents Preface Preface to the First Edition xvii xxi 1 Introduction 1 1.1 The life cycle: Linking

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 18η: 17/05/2017 1 Η μέθοδος BrowseRank 2 Εισαγωγή Η page importance, που αναπαριστά την αξία μιας σελίδας του Web, είναι παράγων-κλειδί για την

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ΑΓΓΕΛΙΚΗ ΒΟΥΔΟΥΡΗ ΥΠΟΜΝΗΜΑ ΤΙΤΛΟΙ - ΣΠΟΥΔΕΣ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΡΓΑΣΙΕΣ

ΑΓΓΕΛΙΚΗ ΒΟΥΔΟΥΡΗ ΥΠΟΜΝΗΜΑ ΤΙΤΛΟΙ - ΣΠΟΥΔΕΣ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΡΓΑΣΙΕΣ ΑΓΓΕΛΙΚΗ ΒΟΥΔΟΥΡΗ ΥΠΟΜΝΗΜΑ ΤΙΤΛΟΙ - ΣΠΟΥΔΕΣ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΡΓΑΣΙΕΣ 1 ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 1. ΟΝΟΜΑ : Αγγελική. 2. ΕΠΩΝΥΜΟ : Βουδούρη. 3. ΟΝΟΜΑ ΠΑΤΡΟΣ : Παναγιώτης. 4. ΥΠΗΚΟΟΤΗΤΑ : Ελληνική. 5. ΤΟΠΟΣ ΔΙΑΜΟΝΗΣ

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

UMI Number: All rights reserved

UMI Number: All rights reserved UMI Number: 3408360 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send

Διαβάστε περισσότερα

Παράδειγµα (Risky Business 1)

Παράδειγµα (Risky Business 1) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ ΘΕΜΑ: Επιπτώσεις που επιβάλλει το Νέο Σύμφωνο της Επιτροπής της Βασιλείας (Βασιλεία ΙΙ) για τις τράπεζες που δραστηριοποιούνται

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΕΠΩΝΥΜΟ: ΡΟΜΠΟΛΗΣ ΟΝΟΜΑ: ΛΕΩΝΙΔΑΣ ΟΝΟΜΑ ΠΑΤΡΟΣ: ΣΑΒΒΑΣ ΧΡΟΝΟΛΟΓΙΑ ΓΕΝΝΗΣΗΣ: 16/1/1977 ΤΟΠΟΣ ΓΕΝΝΗΣΗΣ: ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ: ΟΙΚΟΝΟΜΟΥ 29, 16122, ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

arxiv: v1 [stat.me] 13 Oct 2015

arxiv: v1 [stat.me] 13 Oct 2015 A note on the best attainable rates of convergence for estimates of the shape parameter of regular variation Meitner Cadena arxiv:151.3617v1 [stat.me] 13 Oct 15 October 14, 15 Abstract Hall Welsh gave

Διαβάστε περισσότερα

ΠΑΠΑ ΑΤΟΣ ΝΙΚΟΛΑΟΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Επίκουρος Καθηγητής, Τµήµα Μαθηµατικών, Πανεπιστήµιο Αθηνών

ΠΑΠΑ ΑΤΟΣ ΝΙΚΟΛΑΟΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Επίκουρος Καθηγητής, Τµήµα Μαθηµατικών, Πανεπιστήµιο Αθηνών ΠΑΠΑ ΑΤΟΣ ΝΙΚΟΛΑΟΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ Ονοµατεπώνυµο: Παπαδάτος Νικόλαος του ιονυσίου Θέση : Επίκουρος Καθηγητής, Τµήµα Μαθηµατικών, Πανεπιστήµιο Αθηνών ιεύθυνση γραφείου: Πανεπιστήµιο

Διαβάστε περισσότερα

DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE

DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE 1. COURSE TITLE: Advanced Statistics 2. COURSE COORDINATOR/ LECTURER: Mavrommatis

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software

An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software An Introduction to Spatial Statistics: Data Types, Statistical Tools and Computer Software Moira A. Mugglestone MRC Institute for Environment and Health mam14@le.ac.uk http://www.le.ac.uk/ieh/ spatial.1

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Μία path-based προσέγγιση στατιστικής ανάλυσης καθυστέρησης ψηφιακών κυκλωμάτων

Μία path-based προσέγγιση στατιστικής ανάλυσης καθυστέρησης ψηφιακών κυκλωμάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Χατζηπαρασκευάς Γεώργιος Μία path-based προσέγγιση στατιστικής ανάλυσης καθυστέρησης ψηφιακών

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Βασικά μαθηματικά εργαλεία

Βασικά μαθηματικά εργαλεία Παράρτημα Αʹ Βασικά μαθηματικά εργαλεία Σύνοψη Παρατίθενται μια επανάληψη σε βασικές γνώσεις που αφορούν βασικά μαθηματικά εργαλεία, για την αντιμετώπιση προβλημάτων που παρουσιάζονται στο σύγγραμμα, και

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή ΣΤΡΑΤΗΣ ΜΥΡΩΝ Α.Μ. ΜΑΕ/15042

Ονοματεπώνυμο φοιτητή ΣΤΡΑΤΗΣ ΜΥΡΩΝ Α.Μ. ΜΑΕ/15042 1 2 3 4 5 6 ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΜΣ «ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ» ΠΙΝΑΚΑΣ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ 9 ης ΣΕΙΡΑΣ Έγκριση Γ.Σ.Ε.Σ. 5 η /13.06.2016 Λήξη Εκπόνησης Διπλωματικών

Διαβάστε περισσότερα

Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών

Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2016-2017 Σκοπός Διαλέξεων Κίνητρα για προσομοίωση

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Μετασχηματισμός Δεδομένων

Μετασχηματισμός Δεδομένων ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 2ο Μετασχηματισμός Δεδομένων a. από τα Data demo.sav επιλέγουμε τη στήλη Income b. δημιουργούμε νέο Data Set μόνο με αυτήν τη στήλη c. Click Transform d. Compute Variable e. Επιλέγω

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns,

Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns, Crawford School of Public Policy CAMA Centre for Applied Macroeconomic Analysis Geographic Barriers to Commodity Price Integration: Evidence from US Cities and Swedish Towns, 1732-1860 CAMA Working Paper

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα