Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων"

Transcript

1 Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων

2 8 Μέθοδοι ανάλυσης κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Συστήματα εξισώσεων στην ανάλυση κυκλωμάτων Η μέθοδος των ρευμάτων βρόχων Η μεθοδος των ρευμάτων των κλάδων 2

3 Συστήματα εξισώσεων Τα συστήματα εξισώσεων αποτελούνται από μια ομάδα N εξισώσεων οι οποίες περιλαμβάνουν N αγνώστους. N είναι ένας αριθμός με τιμή 2 ή μεγαλύτερη Που θα το βρείτε: R. J. Fowler, ΗΛΕΚΤΡΟΤΕΧΝΙΑ AC-DC, σελ

4 Η στάνταρ μορφή ενός συστήματος εξισώσεων 2 ης τάξης Ένα σύστημα εξισώσεων 2 ης τάξης γραμμένο σε στάνταρ μορφή είναι: όπου: a, x + a,2 x 2 = b a 2, x + a 2,2 x 2 = b 2 τα a είναι οι συντελεστές των αγνώστων μεταβλητών x και x 2 και αντιπροσωπεύουν τις τιμές των συνιστωσών ενός κυκλώματος, όπως, π.χ., τιμές αντιστάσεων και τα b είναι οι σταθερές και αντιπροσωπεύουν τις τιμές των πηγών τάσης 4

5 Ένα σύστημα εξισώσεων 2 ης τάξης ΠΑΡΑΔΕΙΓΜΑ : Υποθέστε ότι οι παρακάτω δύο εξισώσεις 2I = 8-5I 2 4I 2-5I + 6 = περιγράφουν ένα ορισμένο κύκλωμα με δύο άγνωστα ρεύματα I και I 2 (οι συντελεστές είναι τιμές αντιστάσεων και οι σταθερές είναι τάσεις στο κύκλωμα). Γράψτε τις εξισώσεις σε στάνταρ μορφή. ΛΥΣΗ Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 2I + 5I 2 = 8-5I + 4I 2 = -6 5

6 Η στάνταρ μορφή ενός συστήματος εξισώσεων 3 ης τάξης Ένα σύστημα εξισώσεων 3 ης τάξης γραμμένο σε στάνταρ μορφή είναι: a, x + a,2 x 2 + a,3 x 3 = b a 2, x + a 2,2 x 2 + a 2,3 x 3 = b 2 a 3, x + a 3,2 x 2 + a 3,3 x 3 = b 3 6

7 Ένα σύστημα εξισώσεων 3 ου βαθμού ΠΑΡΑΔΕΙΓΜΑ 2: Υποθέστε ότι οι παρακάτω τρεις εξισώσεις ΛΥΣΗ 4I 3 + 2I 2 + 7I = 5I + 6I 2 + 9I 3-7 = 8 = I + 2I 2 + 5I 3 περιγράφουν ένα ορισμένο κύκλωμα με τρία άγνωστα ρεύματα I, I 2 και I 3. Γράψτε τις εξισώσεις σε στάνταρ μορφή. Αναδιατάσουμε τις εξισώσεις σε στάνταρ μορφή ως εξής: 7I + 2I 2 + 4I 3 = 5I + 6I 2 + 9I 3 = 7 I + 2I 2 + 5I 3 = 8 7

8 Λύση ενός συστήματος εξισώσεων Λύση με αντικατάσταση Λύση με ορίζουσες Λύση με τη βοήθεια υπολογιστή (PC ή χειρός) 8

9 Λύση ενός συστήματος εξισώσεων με αντικατάσταση Θεωρήστε το παρακάτω σύστημα δύο εξισώσεων 2x + 6x 2 = 8 (Εξ. ) 3x + 6x 2 = 2 (Εξ. 2) Βήμα : Λύστε την Εξ. ως προς x 2x = 8 6x 2 x = 8 6x 2 2 x = 4 3x 2 Βήμα 2: Αντικαταστήστε το αποτέλεσμα για το x στην Εξ. 2 και λύστε ως προς x x 2 + 6x 2 = 2 2 9x 2 + 6x 2 = 2 3x 2 = x 2 = 3 = 3.33 Βήμα 3: Αντικαταστήστε το αποτέλεσμα για το x 2 στην εξίσωση για το x στο Βήμα, x = =

10 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες Για να δείξουμε τη μέθοδο των οριζουσών στη λύση ενός συστήματος εξισώσεων, ας βρούμε τις τιμές των ρευμάτων I και I 2 στο παρακάτω σύστημα δύο εξισώσεων I + 5I 2 = 5 2I + 4I 2 = 8 Πρώτα, φτιάξτε τη χαρακτηριστική ορίζουσα για τον πίνακα των συντελεστών των άγνωστων ρευμάτων. η στήλη 2 η στήλη Ο πίνακας (matrix) των συντελεστών είναι η γραμμή 2 η γραμμή και η ορίζουσα (determinant) του πίνακα είναι 2 5 4

11 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (συνέχεια) Βήμα : Yπολογίστε την τιμή της ορίζουσας των συντελεστών ως εξής: πολλαπλασιάστε τον πρώτο αριθμό της πρώτης στήλης επί το δεύτερο αριθμό της δεύτερης στήλης ( 4 = 4) πολλαπλασιάστε τον δεύτερο αριθμό της πρώτης στήλης επί το πρώτο αριθμό της δεύτερης στήλης (2 5 = ) αφαιρέστε το δεύτερο γινόμενο από το πρώτο (4 = 3) Βήμα 2: Φτιάξτε την ορίζουσα του I, αντικαθιστώντας τους συντελεστές του I στην η στήλη της ορίζουσας των συντελεστών με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων και υπολογίστε την

12 Λύση ενός συστήματος εξισώσεων 2 ης τάξης με ορίζουσες (συνέχεια) Βήμα 3: Βήμα 4: Λύνουμε για το ρεύμα I διαιρώντας την ορίζουσα του I με την ορίζουσα των συντελεστων Κατασκευάζουμε την ορίζουσα του I 2, αντικαθιστώντας τους συντελεστές του I 2 στη 2 η στήλης της χαρακτηριστικής ορίζουσας με τους σταθερούς αριθμούς που είναι στο δεξιό μέλος των εξισώσεων A την υπολογίζουμε και λύνουμε για το ρεύμα I 2 : A 2

13 Ένα παράδειγμα σύστηματος εξισώσεων 2 ης τάξης ΠΑΡΑΔΕΙΓΜΑ 3: Λύστε το παρακάτω σύστημα εξισώσεων για τα άγνωστα ρεύματα: ΛΥΣΗ 2I - 5I 2 = 6I + I 2 = 2 Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών: (2)() (-5)(6) 5 Λύνουμε για το ρεύμα I : ()() 5 (-5)(6) ( ) A 3

14 ΛΥΣΗ (συνέχεια) Ομοίως, λύνουμε για το ρεύμα I 2 : (2)(2) (6)() A 4

15 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες Ας βρούμε τα άγνωστα ρεύματα I, I 2 και I 3 στο παρακάτω σύστημα τριων εξισώσεων I + 3I 2-2I 3 = 7 4I 2 + I 3 = 8-5I + I 2 + 6I 3 = 9 Η στάνταρ μορφή του συστήματος είναι I + 3I 2-2I 3 = 7 I +4I 2 + I 3 = 8-5I + I 2 + 6I 3 = 9 Η χαρακτηριστική ορίζουσα των συντελεστών των άγνωστων ρευμάτων. Συντελεστές του I Συντελεστές του I 2 Συντελεστές του I

16 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (συνέχεια) Βήμα : Ξαναγράψτε τις πρώτες δύο στήλες αμέσως στα δεξιά της ορίζουσας Βήμα 2: Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα κάτω διαγωνίους και προσθέστε τα τρία γινόμενο, ()(4)(6) + (3)()(-5) + (-2)()() = 9 Πολλαπλασιάστε τους τρεις αριθμούς στην κάθε μια από τις τρεις προς τα πάνω διαγωνίους και προσθέστε τα τρία γινόμενο, (-5)(4)(-2) + ()()() + (6)()(3) =

17 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (συνέχεια) Αφαιρέστε τα δύο παραπάνω αποτελέσματα, 9 4= Αυτή είναι η τιμή της ορίζουσας των συντελεστών Βήμα 3: Κατασκευάζουμε την ορίζουσα για το ρεύμα I (όπως στα συστήματα 2 ης τάξης) και η τιμή της υπολογίζεται όπως παραπάνω = (7)(4)(6) + (3)()(9) + (-2)(8)() (9)(4)(-2) ()()(7) (6)(8)(3) = 7

18 Λύση ενός συστήματος εξισώσεων 3 ης τάξης με ορίζουσες (συνέχεια) Βήμα 4: Λύνουμε για το ρεύμα I διαιρώντας την ορίζουσα του I με την ορίζουσα των συντελεστων A Με όμοιο τρόπο υπολογίζουμε τα ρεύματα I 2 και I 3. 8

19 Ένα παράδειγμα σύστηματος εξισώσεων 3 ης τάξης ΠΑΡΑΔΕΙΓΜΑ 4: Βρείτε την τιμή του ρεύματος I 2 από το παρακάτω σύστημα εξισώσεων α: ΛΥΣΗ 2I +.5I 2 + I 3 =.75I +I 2 + 2I 3 =.5 3I +.2I 2 + I 3 = - Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών ως εξής: = (2)()() + (.5)(2)(3) + ()(.75)(.2) (3)()() (.2)(2)(2) + ()(.75)(.5) = =

20 ΛΥΣΗ (συνέχεια) Υπολογίζουμε την ορίζουσα για το ρεύμα I = (2)(.5)() + ()(2)(3) + ()(.75)() (3)(.5)() ()(2)(2) ()(.75)() =.75.5 =.25 Τελικά, βρίσκουμε το I 2 διαιρώντας τις δύο ορίζουσες Ι A 532 ma 2

21 Μέθοδοι ανάλυσης κυκλωμάτων Η μέθοδος των ρευμάτων βρόχων Που θα το βρείτε: R. J. Fowler, ΗΛΕΚΤΡΟΤΕΧΝΙΑ AC-DC, σελ

22 Η μέθοδος των ρευμάτων βρόχων Εργαζόμαστε με τα ρεύματα βρόχων αντί για τα πραγματικά ρεύματα των κλάδων I, I 2 και Ι 3 : πραγματικά ρεύματα κλάδων I A και Ι B : ρεύματα βρόχων R R 3 I I 3 V S I A I 2 R 2 I B V S2 Τα ρεύματα βρόχων είναι μαθηματικές ποσότητες Χρησιμεύουν για την ευκολότερη ανάλυση του κυκλώματος 22

23 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα Βήμα. Σημειώνουμε ένα ρεύμα σε κάθε έναν βρόχο του κυκλώματος Η διεύθυνση είναι αυθαίρετη (συνηθίζουμε διεύθυνση CW) Μπορεί να μην είναι η πραγματική φορά του ρεύματος Ο αριθμός των ρευμάτων βρόχων πρέπει να είναι επαρκής, όχι μεγαλύτερος. R R 3 V S I A R 2 I B V S2 Βήμα 2. Σημειώνουμε την πολικότητα ( και ) της πτώσης τάσης σε κάθε αντίσταση Καθορίζεται από τις διευθύνσεις των ρευμάτων βρόχων 23

24 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (συνέχεια) Βήμα 3. Εφαρμόζουμε το νόμο των τάσεων του Kirchhoff σε κάθε βρόχο. Αν ένα στοιχείο (π.χ., R 2 ) διαρρέεται από περισσότερα από ένα ρεύματα βρόχων, τα περιλαμβάνουμε όλα. Προκύπτει μια εξίσωση για κάθε βρόχο. R R 3 V S I A R 2 I B V S2 Για βρόχο Α: V S R I A R 2 I A R 2 I B = Για βρόχο Β: V S2 R 2 I B R 2 I A R 3 I B = 24

25 Η μέθοδος των ρευμάτων βρόχων: Τα βήματα (συνέχεια) Βήμα 4. Συνδυάζουμε τους όμοιους όρους Φέρνουμε το σύστημα των εξισώσεων σε στάνταρ μορφή. Δεν ξεχνάμε: oι άγνωστες ποσότητες είναι τα ρεύματα βρόχων I A και I B. V S R I A R 2 I A R 2 I B = V S2 R 2 I B R 2 I A R 3 I B = (R R 2 )I A R 2 I B ) = V S R 2 I A (R 2 R 3 )I B = V S2 Τέλος, λύνουμε το σύστημα και υπολογίζουμε τα ρεύματα των βρόχων Συνοπτικός κανόνας για την εφαρμογή των βημάτων 4: (Άθροισμα αντιστάσεων στο βρόχο) (ρεύμα βρόχου) (κάθε αντίσταση κοινή σε δύο βρόχους) (ρεύμα γειτονικού βρόχου ) = (τάση πηγής στο βρόχο) 25

26 Ένα παράδειγμα της μεθόδου των βρόχων ΠΑΡΑΔΕΙΓΜΑ 5: Βρείτε τα ρεύματα των κλάδων στο παρακάτω κύκλωμα, χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων I A I B ΛΥΣΗ Σημειώνουμε τα ρεύματα βρόχων I A και I B δεξιόστροφα (CW) Οι τιμές των αντιστάσεων είναι σε Ohm και των τάσεων σε Volts. Χρησιμοποιούμε τον κανόνα για να φτιάξουμε τις εξισώσεις των δύο βρόχων: (47 22)I A 22I B = 69I A 22I B = 22I A (22 82)I B = 5 22I A 4I B = 5 για το βρόχο Α για το βρόχο Β 26

27 ΛΥΣΗ (συνέχεια) Χρησιμοποιούμε ορίζουσες για να βρούμε το ρεύμα I Α Ι A ()(4) - (-5)(-22) (69)(4) - (-22)(-22 ) ma Για το I B έχουμε: Ι B (69)(-5) - (-22)() (-22) ma Το αρνητικό πρόσημο του I B σημαίνει ότι η φορά που σχεδιάσαμε είναι αντίθετη από την πραγματική 27

28 ΛΥΣΗ (συνέχεια) I A I B Βρίσκουμε τα πραγματικά ρεύματα των κλάδων. Στην R, I = I A = 3.9 ma Στην R3, I 3 = I B =.87 ma. Το αρνητικό πρόσημο δηλώνει αντίθετη φορά από αυτή που σχεδιάσαμε αρχικά για το I B. Στην R2, I 2 = I A I B = 3.9 ma (.87 ma) = 5.8 ma. Γνωρίζοντας τα ρεύματα των κλάδων, μπορούμε να βρούμε τις τάσεις από το νόμο του Ohm. 28

29 Ένα παράδειγμα της μεθόδου των βρόχων για κύκλωμα με περισσότερους από δύο βρόχους ΠΑΡΑΔΕΙΓΜΑ 6: Για το κύκλωμα γέφυρας Wheatstone της εικόνας, βρείτε το ρεύμα σε κάθε αντίσταση (ρεύμα κλάδου), χρησιμοποιώντας τη μέθοδο των ρευμάτων βρόχων I B I A I C ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. 29

30 ΛΥΣΗ (συνέχεια) I B I A I C Για το βρόχο Α: (33 3)I A 33I B 3I C = 2 63I A 33I B 3I C = 2 Για το βρόχο B: 33I A (33 36 )I B I C = 33I A 69I B I C = Για το βρόχο C: 3I A I B (3 39 )I C = 3I A I B 69I C = H χαρακτηριστική ορίζουσα των συντελεστών είναι

31 ΛΥΣΗ (συνέχεια) Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών = (63)(69)(69) + (-33)(-)(-3) + (-3)(-33)(-) (-3)(69)(- 3) ()(-)(63) (69)(-33)(-33) = Λύνουμε για το I A : Ι A (2)(69) (69) - (2)(-)(-) A 35.mA 3

32 ΛΥΣΗ (συνέχεια) Λύνουμε για το I B : Ι B (2)(-) (-3) - (-33)(2)(69) A 6.2 ma Λύνουμε για το I C : Ι C (2)(-33) (-) - (-3)(69)(2) A 5.8mA 32

33 ΛΥΣΗ (συνέχεια) Έχουμε: I A = 35. ma I B = 6.2 ma I C = 5.8 ma I A I B I C Το ρεύμα στην αντίσταση R είναι: Ι = Ι Α Ι Β = 35. ma 6.2 ma = 8.9 ma Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι C = 35. ma 5.8 ma = 9.3 ma Το ρεύμα στην R3 είναι: Ι 3 = Ι B = 6.2 ma Το ρεύμα στην R4 είναι: Ι 4 = Ι C = 5.8 ma Το ρεύμα στην RL είναι: Ι L = Ι B Ι C = 6.2 ma 5.8 ma =.4 ma 33

34 Ένα άλλο χρήσιμο παράδειγμα κυκλώματος με τρεις βρόχους: Το κύκλωμα γέφυρας Τ ΠΑΡΑΔΕΙΓΜΑ 7: Η εικόνα δείχνει ένα κύκλωμα γέφυρας Τ (bridged-t circuit) τριών βρόχων. Κατασκευάστε τη στάνταρ μορφή των εξισώσεων και βρείτε το ρεύμα σε κάθε αντίσταση. I A I B I C ΛΥΣΗ Σημειώνουμε τρία δεξιόστροφα (CW) ρεύματα βρόχων I A, I B και I C. 34

35 ΛΥΣΗ (συνέχεια) Χρησιμοποιώντας τον κανόνα, γράφουμε τις εξισώσεις των τριών βρόχων. I A Οι τιμές των αντιστάσεων είναι σε kω Το ρεύμα θα είναι σε ma I B I C Για το βρόχο Α: ( )I A 22I B 7.5I C = 44.5I A 22I B 7.5I C = Για το βρόχο B: 22I A (22 8.2)I B 8.2I C = 2 22I A 3.2I B 8.2I C = 2 Για το βρόχο C: 7.5I A 8.2I B ( )I C = 7.5I A 8.2I B 25.7I C = H χαρακτηριστική ορίζουσα των συντελεστών είναι

36 ΛΥΣΗ (συνέχεια) Υπολογίζουμε την τιμή της χαρακτηριστικής ορίζουσας των συντελεστών = (44.5)(3.2)(25.7) + (-22)(-8.2)(-7.5) + (-7.5)(-22)(-8.2) (-7.5)(3.2)(-7.5) (8.2)(-8.2)(44.5) (27.5)(-22)(-22) = Λύνουμε για το I A : Ι A (-7.5)(2) (-8.2) - (25.7)(2)(-22) ma 36

37 ΛΥΣΗ (συνέχεια) Λύνουμε για το I B : Ι B (44.5)(2) (25.7) - (-7.5)(2)(-7.5) ma Λύνουμε για το I C : Ι C (-22)(2) (-7.5) - (-8.2)(2)(44.5) ma 37

38 ΛΥΣΗ (συνέχεια) Έχουμε: I A =.52 ma I B =.887 ma I C =.432 ma I A I B I C Το ρεύμα στην αντίσταση R είναι: Ι = Ι Α =.52 ma Το ρεύμα στην R2 είναι: Ι 2 = Ι Α Ι B =.52 A.887 ma =.375 ma Το αρνητικό πρόσημο δηλώνει ότι το ρεύμα Ι 2 είναι στην αντίθετη κατεύθυνση από αυτή του I A : Η θετική πλευρά της αντίστασης R2 είναι η αριστερή πλευρά. Το ρεύμα στην R3 είναι: Ι 3 = Ι A I C =.52 A.432 ma =.8 ma Το ρεύμα στην R4 είναι: Ι 4 = Ι B Ι C =.887 ma.432 ma =.455 ma Το ρεύμα στην RL είναι: Ι L = Ι C =.432 ma 38

39 Η μέθοδος των ρευμάτων των κλάδων Η μέθοδος αυτή χρησιμοποιεί τους νόμους τάσης και ρεύματος του Kirchhoff για να βρει το ρεύμα σε κάθε κλάδο ενός κυκλωματος Το κύκλωμα (παράδειγμα) έχει δύο ανεξάρτητους βρόχους Υπάρχουν δύο κόμβοι: κόμβος Α και κόμβος Β Κλάδος είναι κάθε διαδρομή που συνδέει δύο κόμβους (το κύκλωμα έχει τρεις κλάδους) R R 2 Κόμβος Α V S R 3 Βρόχος Βρόχος 2 V S2 Κόμβος Β 39

40 Η μέθοδος των ρευμάτων των κλάδων: Τα βήματα R R 2 I I 2 V S I 3 R 3 V S2 Βήμα. Σχεδιάζουμε ένα ρεύμα με αυθαίρετη κατεύθυνση σε κάθε κλάδο του κυκλώματος Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις σύμφωνα με την κατεύθυνση των ρευμάτων κλάδων που επιλέξαμε στο Βήμα. Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από κάθε κλειστό βρόχο (αλγεβρικό άθροισμα των τάσεων ίσο με μηδέν) Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff στον ελάχιστο αριθμό κόμβων έτσι ώστε να να περιλαμβάνονται όλα τα ρεύματα των κλάδων (αλγεβρικό άθροισμα των ρευμάτων σε ένα κόμβο ίσο με μηδέν). Βήμα 5. Λύνουμε το σύστημα των εξισώσεων που προκύπτει από τα βήματα 3 και 4. 4

41 Ένα παράδειγμα της μεθόδου των ρευμάτων των κλάδων ΠΑΡΑΔΕΙΓΜΑ 8: Χρησιμοποιήστε τη μέθοδο των ρευμάτων των κλάδων για να βρείτε το ρεύμα κάθε κλάδου στο παρακάτω κύκλωμα. I I 3 I 2 ΛΥΣΗ Βήμα. Σχεδιάζουμε τα ρεύματα των κλάδων με αυθαίρετη κατεύθυνση. Βήμα 2. Σημειώνουμε τις πολικότητες των τάσεων στις αντιστάσεις. Βήμα 3. Εφαρμόζουμε τον κανόνα των τάσεων του Kirchhoff γύρω από τον αριστερό βρόχο (διατρέχοντάς τον, π.χ., δεξιόστροφα), 47I 22I 2 = 47I 22I 2 = και γύρω από το δεξιό βρόχο (διατρέχοντάς τον, π.χ., αριστερόστροφα), 5 82I 3 22I 2 = 82I 3 22I 2 = 5 4

42 ΛΥΣΗ (συνέχεια) I I 3 I 2 Βήμα 4. Εφαρμόζουμε τον κανόνα των ρευμάτων του Kirchhoff, π.χ., στον κόμβο Α. I I 2 I 3 = Βήμα 5. Λύνουμε το σύστημα των εξισώσεων με αντικατάσταση. Πρώτα, λύνουμε την εξίσωση των ρευμάτων ως προς I I = I 2 I 3 και αντικαθιστούμε στην εξίσωση του αριστερού βρόχου 47I 22I 2 = 47(I 2 I 3 ) 22I 2 = 47I 2 47I 3 22I 2 = 69I 2 47I 3 = 42

43 ΛΥΣΗ (συνέχεια) Παίρνοντας την εξίσωση του δεξιού βρόχου και λύντοντας ως προς I 2, έχουμε 22I 2 = 5 82I I 3 I 2 22 Aντικαθιστώντας την παραπάνω σχέση για το I 2 στην εξίσωση 69I 2 47I 3 =, παίρνουμε 5 82I Ι I Ι I 47 Ι I I 3.87Α.87 ma

44 ΛΥΣΗ (συνέχεια) Aντικαθιστώντας την τιμή του I 3 στην εξίσωση του δεξιού βρόχου, έχουμε I (.87) Α Τέλος, αντικαθιστώντας τα I 2 και I 3 στην εξίσωση των ρευμάτων, βρίσκουμε I = I 2 I 3 = =.39 A = 3.9 ma Πρόβλημα: Βρείτε τα ρεύματα των κλάδων λύνοντας το σύστημα των εξισώσεων με τη μέθοδο των οριζουσών. 44

45 ΠΡΟΒΛΗΜΑΤΑ. Χρησιμοποιώντας τη μέθοδο των ρευμάτων των κλάδων, βρείτε το ρεύμα μέσω κάθε αντίστασης στο κύκλωμα της Εικ. Π. (Απ.: I = 5 ma, I 2 = 5 ma, I 3 = ma) 2. Προσδιορίστε την τάση στα άκρα της πηγής ρεύματος Is (σημεία Α και Β) της Εικ. Π. (Απ.: V AB = V A V B =.85 V) Εικόνα Π. 3. Χρησιμοποιώντας τη μέθοδο των βρόχων, βρείτε τα ρεύματα των κλάδων στην Εικ. Π.3 (Απ.: I = 5. ma, I 2 = 3.5 ma, I 3 =.6 ma) Εικόνα Π.3 45

46 ΠΡΟΒΛΗΜΑΤΑ (συνέχεια) 4. Προσδιορίστε τις τάσεις και τις πολικότητές τους σε κάθε αντίσταση στο κύκλωμα της Εικ. Π.3 (Απ.: V = 5. V, V 2 = 2.9 V, V 3 =.9 V) 46

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα Κεφ. 7: Θεωρήματα κυκλωμάτων Προβλήματα 1 Πρόβλημα 1 Χρησιμοποιώντας το θεώρημα της υπέρθεσης, υπολογίστε το ρεύμα μέσω της στο κύκλωμα της παρακάτω εικόνας 1.0kΩ 2 V 1.0kΩ 3 V 2.2kΩ Λύση Απομακρύνουμε

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Άσκηση 13. Θεωρήματα Δικτύων

Άσκηση 13. Θεωρήματα Δικτύων Άσκηση Θεωρήματα Δικτύων. Θεώρημα Βρόχων ΣΚΟΠΟΣ Πειραματική επαλήθευση της μεθόδου των βρογχικών ρευμάτων. ΘΕΩΡΙΑ Με τη μέθοδο των βρογχικών ρευμάτων, η επίλυση ενός κυκλώματος στηρίζεται στον υπολογισμό

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργαστριο Φυσικς Τμματος Πληροφορικς και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Ηλεκτρικά κυκλώματα συνεχούς ρεύματος Εισαγωγ στην έννοια των κυκλωμάτων Αν ανοίξετε μια ηλεκτρικ συσκευ (π.χ. παλιά τηλεόραση,

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26)

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΒΑΣΗ για την ΑΝΑΛΥΣΗ: R = V/I, V = R I, I = V/R (Νόμος Ohm) ΙΔΑΝΙΚΟ ΚΥΚΛΩΜΑ: Αντίσταση συρμάτων και Aμπερομέτρου (A) =, ενώ του Βολτομέτρου (V) =. Εάν η εσωτερική

Διαβάστε περισσότερα

Κεφάλαιο 7 Θεωρήματα κυκλωμάτων

Κεφάλαιο 7 Θεωρήματα κυκλωμάτων Κεφάλαιο 7 Θεωρήματα κυκλωμάτων 1 7 Θεωρήματα κυκλωμάτων (Circuits Theorems) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Η dc πηγή τάσης Η πηγή ρεύματος Μετασχηματισμοί πηγών Το Θεώρημα της Υπέρθεσης Το Θεώρημα Thevenin Το

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Από την προηγούμενη διάλεξη Στην κομβική ανάλυση προσδιορίζουμε ένα ουσιαστικό κόμβο ως τον κόμβο αναφοράς, και μετά εφαρμόζουμε τον νόμο του ρεύματος του Kichhoff στους

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ Αντιστάτες συνδεδεμένοι σε σειρά Όταν ν αντιστάτες ενός κυκλώματος διαρρέονται από το ίδιο ρεύμα τότε λέμε ότι οι αντιστάτες αυτοί είναι συνδεδεμένοι σε σειρά.

Διαβάστε περισσότερα

Κεφάλαιο 6 Μικτά κυκλώματα

Κεφάλαιο 6 Μικτά κυκλώματα Κεφάλαιο 6 Μικτά κυκλώματα 1 6 Μικτά κυκλώματα (Series-Parallel Circuits) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Αναγνώριση Σειριακών και Παράλληλων Συνδεσμολογιών Ανάλυση Σειριακών-Παράλληλων Κυκλωμάτων Διαιρέτες Τάσης

Διαβάστε περισσότερα

Πόλωση των Τρανζίστορ

Πόλωση των Τρανζίστορ Πόλωση των Τρανζίστορ Πόλωση λέμε την κατάλληλη συνεχή τάση που πρέπει να εφαρμόσουμε στο κύκλωμα που περιλαμβάνει κάποιο ηλεκτρονικό στοιχείο (π.χ τρανζίστορ), έτσι ώστε να εξασφαλίσουμε την ομαλή λειτουργία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 0 Ηλεκτρικά κυκλώµατα Ηλεκτρικό κύκλωµα ονοµάζουµε ένα σύνολο στοιχείων που συνδέονται κατάλληλα έτσι ώστε να επιτελέσουν ένα συγκεκριµένο σκοπό. Για παράδειγµα το παρακάτω

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438)

Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438) Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438) ΘΕΜΑ Β2 (14731) Α. Σωστή απάντηση είναι η α. Β. Από τον ορισμό της έντασης: = = = 10 5 = 50 Β. Η σύνδεση που προτείνεται στο α δείχνει

Διαβάστε περισσότερα

Κεφάλαιο 3 Ο Νόμος του Ohm

Κεφάλαιο 3 Ο Νόμος του Ohm Κεφάλαιο 3 Ο Νόμος του Ohm 1 3 Ο Νόμος του Ohm (Ohm s Law) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Ο Νόμος του Ohm Εφαρμογή του Νόμου του Ohm Ενέργεια και Ισχύς Ισχύς σε ένα Ηλεκτρικό Κύκλωμα Οι Ονομαστικές Τιμές Ισχύος

Διαβάστε περισσότερα

Loop (Mesh) Analysis

Loop (Mesh) Analysis Loop (Mesh) Analysis Νικ. Α. Τσολίγκας Χρήστος Μανασής 1 Ανάλυση βρόγχων - Κυκλική Kirchhoff's Voltage Law (KVL) Νόμος τάσεων του Kirchhoff (KVL) Για οποιοδήποτε συγκεντρωμένο* κύκλωμα, για οποιονδήποτε

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 2 Νόμος του Ohm, Συνδέσεις αντιστάσεων σε σειρά Φ. Πλέσσας Βόλος 2015

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 4 Συνδεσµολογίες Παράλληλων Αντιστάσεων και Χρήση Ποτενσιόµετρου στη ιαίρεση Τάσης

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ

Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ A A N A B P Y T A 1 0 Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ ΟΜΑΔΑ: 1.... Ο σκοπός.... 3... 4... Η αντίσταση ενός αντιστάτη ορίζεται ως: V I, όπου V είναι

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HM Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ iezekiel@ucy.ac.cy reen Park, Γραφείο Τηλ. 899 Διάλεξη 4 Από την προηγούμενη διάλεξη Πραγματικές πηγές τάσης και πραγματικές πηγές ρεύματος έχουν εσωτερική

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0. Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος. Υπολογίστε τις ακόλουθες ορίζουσες a) 4 b) c) a b + a) 4 4 Παρατήρηση: Προσέξτε ότι ο συμβολισμός της ορίζουσας

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 5 Παράλληλα Κυκλώματα

Κεφάλαιο 5 Παράλληλα Κυκλώματα Κεφάλαιο 5 Παράλληλα Κυκλώματα 5 Παράλληλα Κυκλώματα (Parallel Circuits) ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Παράλληλοι Αντιστάτες Η Τάση σε ένα Παράλληλο Κύκλωμα Ο Νόμος των Ρευμάτων του Kirchhoff Ολική Παράλληλη Αντίσταση

Διαβάστε περισσότερα

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I

ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΤΕΧΝΙΑ I ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (Direct Current Circuits-DC ) Κωδ. ΗΝ0131 ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

1. Μεταβατικά φαινόμενα Κύκλωμα RC

1. Μεταβατικά φαινόμενα Κύκλωμα RC . Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R

Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: (Το πολύ 5 γραμμές συνοπτικά τι διεξήχθη στο πείραμα και γιατί) Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος Προβλήματα Σειρά # 6: Κυκλώματα Συνεχούς Ρεύματος Αντιστοιχεί (α) Στo Κεφάλαιο Η6 (εκτός

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α Α.1 Σωστή απάντηση είναι η β. ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α Α. Σωστή απάντηση είναι η δ. Σχόλιο: Η μετατροπή των αριθμών που δίνονται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 5: Επανάληψη στο Συνεχές Ρεύμα. Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Να

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

3. Στοιχεία ανάλυσης κυκλωμάτων

3. Στοιχεία ανάλυσης κυκλωμάτων 3.1 Εισαγωγή 3. Στοιχεία ανάλυσης κυκλωμάτων Επανερχόμαστε στην έννοια των κυκλωμάτων, όπως παρουσιάστηκε στο πρώτο κεφάλαιο, με σκοπό την α- νάλυση της λειτουργίας τους με όρους τάσης και έντασης ρεύματος.

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 6 Θεώρημα Thevenin Λευκωσία, 2010 Εργαστήριο 6 Θεώρημα Thevenin Σκοπός: Σκοπός

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 Αντίσταση Καλωδίων Σύνδεσης ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τίτλος: Λαμβάνοντας υπόψη την αντίσταση

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Κυκλώματα Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Τα ηλεκτρικά κυκλώματα ταξινομούνται σε διάφορες κατηγορίες,

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Άσκηση 6 ΔΙΟΔΟΣ ZENER ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ ΤΑΣΗΣ

Άσκηση 6 ΔΙΟΔΟΣ ZENER ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ ΤΑΣΗΣ Άσκηση 6 ΔΙΟΔΟΣ ZENER ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ ΤΑΣΗΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β'

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση

Διαβάστε περισσότερα

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης Παράρτημα Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης Σκοπός του παραρτήματος είναι η εξοικείωση των φοιτητών με τη χρήση και τη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2 ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα )

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης απλών πειραματικών κυκλωμάτων του ηλεκτρικού ρεύματος. Η εξοικείωση με το

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 7 Θεωρήματα Thevenin, Norton, Υπέρθεσης Φ. Πλέσσας Βόλος 2015 Στόχοι Στόχοι

Διαβάστε περισσότερα

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις

Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις 1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

1. Ρεύμα επιπρόσθετα

1. Ρεύμα επιπρόσθετα 1. Ρεύμα Ρεύμα είναι οποιαδήποτε κίνηση φορτίων μεταξύ δύο περιοχών. Για να διατηρηθεί σταθερή ροή φορτίου σε αγωγό πρέπει να ασκείται μια σταθερή δύναμη στα κινούμενα φορτία. r F r qe Η δύναμη αυτή δημιουργεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5:

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5: ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5: Παράλληλα ηλεκτρικά κυκλώματα Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

dv C Στον πυκνωτή η ένταση προηγείται της τάσης ενώ στο πηνίο η ένταση υστερεί της τάσης.

dv C Στον πυκνωτή η ένταση προηγείται της τάσης ενώ στο πηνίο η ένταση υστερεί της τάσης. Ανακεφαλαίωση: Οι εξισώσεις τάσης και έντασης για τον πυκνωτή είναι dv V = I d I =, d για το πηνίο οι σχετικές εξισώσεις είναι di V = I = V d d Και για την ωµική αντίσταση V = I Στα ac κυκλώµατα που ηλεκτροδοτούνται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Τεχνικές ανάλυσης κυκλωµάτων

Τεχνικές ανάλυσης κυκλωµάτων Τεχνικές ανάλυσης κυκλωµάτων Μέχρι τώρα έχουµε αναλύσει σχετικά απλά ωµικά κυκλώµατα µε την εφαρµογή των νόµων Kirchhoff σε συνδυασµό µε το νόµο του Ohm. Μπορούµε να χρησιµοποιήσουµε αυτήν την προσέγγιση

Διαβάστε περισσότερα

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β' Σκοπός της εργαστηριακής

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 17/06/2011 ΣΕΙΡΑ Β: 16:00 18:30 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 17/06/2011 ΣΕΙΡΑ Β: 16:00 18:30 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 7/0/0 ΣΕΙΡΑ Β: :00 8:0 ΘΕΜΑ ο (4 μονάδες) Ο ενισχυτής του διπλανού σχήματος περιλαμβάνει ένα τρανζίστορ τύπου npn (Q ) και ένα τρανζίστορ τύπου pnp (Q ), για τα οποία δίνονται:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: Γιάννης Τζαγκαράκης ΗΜΕΡΟΜΗΝΙΑ: 6/12/2015

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: Γιάννης Τζαγκαράκης ΗΜΕΡΟΜΗΝΙΑ: 6/12/2015 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: Γιάννης Τζαγκαράκης ΗΜΕΡΟΜΗΝΙΑ: 6//05 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Μάθημα: Στοιχεία Ηλεκτροτεχνίας

Μάθημα: Στοιχεία Ηλεκτροτεχνίας Κεφάλαιο 3 Αλέξανδρος Φλάμος, Επ.. Καθηγητής email: aflamos@unipi.gr 3 ος όροφος, Γραφείο 304, κτίριο Γρηγορίου Λαμπράκη 126 *Σημειώσεις ασκήσεις από ανάλυση ηλεκτρικών κυκλωμάτων, Νίκος Μάργαρης,, εκδόσεις

Διαβάστε περισσότερα

Εφόσον στα άκρα ενός στοιχείου σύνδεσης εφαρμόζεται η τάση U και εφόσον το στοιχείο

Εφόσον στα άκρα ενός στοιχείου σύνδεσης εφαρμόζεται η τάση U και εφόσον το στοιχείο Άσκηση Η4 Μέτρηση αντιστάσεων Εφόσον στα άκρα ενός στοιχείου σύνδεσης εφαρμόζεται η τάση U και εφόσον το στοιχείο σύνδεσης διαρρέεται από ρεύμα έντασης I, τότε το πηλίκο U I είναι η αντίσταση του U στοιχείου.

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Green Park, Γραφείο Τηλ. 899 Διάλεξη Από την προηγούμενη διάλεξη Στο ΗΜΥ θα επικεντρωθούμε σε γραμμικά και συγκεντρωμένα κυκλώματα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 8 Κυκλώματα RLC και Σταθερή Ημιτονοειδής Κατάσταση Λευκωσία, 2010 Εργαστήριο 8

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά)

ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά) Σκοπός ΑΣΚΗΣΗ 5 Συνδεσμολογία Αντιστάσεων Ι (αντιστάσεις σε σειρά) Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε σειρά και να μετράει άγνωστα στοιχεία του

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2013

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2013 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8/0/0 ΘΕΜΑ ο ( μονάδες) H διάταξη του παρακάτω σχήματος χρησιμοποιείται για τη μέτρηση της θερμοκρασίας σε ηλεκτρικό φούρνο και περιλαμβάνει

Διαβάστε περισσότερα

του διπολικού τρανζίστορ

του διπολικού τρανζίστορ D λειτουργία - Πόλωση του διπολικού τρανζίστορ ρ Παραδείγματα D ανάλυσης Παράδειγμα : Να ευρεθεί το σημείο λειτουργίας Q. Δίνονται: β00 και 0.7. Υποθέτουμε λειτουργία στην ενεργό περιοχή. 4 a 4 0 7, 3,3

Διαβάστε περισσότερα

Εργαστήριο Φυσικής II Ηλεκτρομαγνητισμός Άσκηση 1: Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων

Εργαστήριο Φυσικής II Ηλεκτρομαγνητισμός Άσκηση 1: Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Άσκηση : Βασικές μετρήσεις συνεχούς ρεύματος και όργανα μετρήσεων Σκοπός της άσκησης: Ο σκοπός της άσκησης είναι η εξοικείωση με τα βασικά όργανα μετρήσεων συνεχούς ρεύματος, και οι τρόποι χρήσης τους

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC)

HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC) Ths mag canno currnly b dsplayd. Τρία είναι τα βασικά παθητικά στοιχεία στη θεωρία γραμμικών κυκλωμάτων:, και HMY 12 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα ( και ) απορροφά ενέργεια και

Διαβάστε περισσότερα

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους

ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους ΘΕΜΑ : ΗΛΕΚΤΡΟΝΙΚΑ ΔΙΑΡΚΕΙΑ: 2 περιόδους 11/10/2011 08:28 καθ. Τεχνολογίας Τι είναι Ηλεκτρισμός Ηλεκτρισμός είναι η κατευθυνόμενη κίνηση των ηλεκτρονίων μέσα σ ένα σώμα το οποίο χαρακτηρίζεται σαν αγωγός

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Δύναμη Laplace με Μαγνητικό ζυγό

Δύναμη Laplace με Μαγνητικό ζυγό Δύναμη Laplace με Μαγνητικό ζυγό Εργ. Άσκηση 4 Όνομα Τμήμα ΤΑΞΗ: Β Λυκείου Κατεύθυνση ΣΤΟΧΟΙ: Να αντιληφθούν οι μαθητές 1. Την επίδραση του μαγνητικού πεδίου στο ηλεκτρικό ρεύμα Δύναμη Laplace. Την εξάρτηση

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΔΙΟΔΟΥ ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ ΚΕΦΑΛΑΙΟ 2

EΦΑΡΜΟΓΕΣ ΔΙΟΔΟΥ ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ ΚΕΦΑΛΑΙΟ 2 Εφαρμογές Διόδου 61 ΦΑΡΜΟΓΕΣ ΔΙΟΔΟΥ ΚΕΦΑΛΑΙΟ.1..3.4.5.6.7.8.9.1.11.1.13.14 Εισαγωγή Ανάλυση Ευθείας Φόρτου Συνδεσμολογίες Διόδων σε Σειρά Συνδεσμολογίες Διόδων Παράλληλα και σε Σειρά/Παράλληλα Πύλες AND/O

Διαβάστε περισσότερα

A1.1 Σε κύκλωμα εναλλασσόμενου ρεύματος δίνεται η διανυσματική παράσταση των διανυσμάτων τάσης V 0 και έντασης ρεύματος I 0 που

A1.1 Σε κύκλωμα εναλλασσόμενου ρεύματος δίνεται η διανυσματική παράσταση των διανυσμάτων τάσης V 0 και έντασης ρεύματος I 0 που ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ)

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΠΑΡΑΜΕΤΡΙΚΗ ΕΞΙΣΩΣΗ 1ΟΥ ΒΑΘΜΟΥ

ΠΑΡΑΜΕΤΡΙΚΗ ΕΞΙΣΩΣΗ 1ΟΥ ΒΑΘΜΟΥ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΤΑΞΗ: Α ΠΑΡΑΜΕΤΡΙΚΗ ΕΞΙΣΩΣΗ 1ΟΥ ΒΑΘΜΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Όνομα: Ανοίξτε το αρχείο dierevnisiparametrikis.ggb Στο αριστερό «παράθυρο» της οθόνης βλέπετε ένα τραπέζιο ΑΒΓΔ με βάσεις

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΩΜΟΜΕΤΡΟΥ ΚΑΙ ΜΕΤΡΗΤΗ ΤΑΣΗΣ DC

ΥΛΟΠΟΙΗΣΗ ΩΜΟΜΕΤΡΟΥ ΚΑΙ ΜΕΤΡΗΤΗ ΤΑΣΗΣ DC ΥΛΟΠΟΙΗΣΗ ΩΜΟΜΕΤΡΟΥ ΚΑΙ ΜΕΤΡΗΤΗ ΤΑΣΗΣ DC ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΙΚΕΙΜΕΝΟ

Διαβάστε περισσότερα

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι:

ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι: ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Χρήσεις της διαστατικής ανάλυσης Η διαστατική ανάλυση είναι μία τεχνική που κάνει χρήση της μελέτης των διαστάσεων για τη λύση των προβλημάτων της Ρευστομηχανικής. Οι εφαρμογές της διαστατικής

Διαβάστε περισσότερα

Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί

Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί Μάθημα 1 Πρώτα Βήματα στη Σχεδίαση μίας Εγκατάστασης: Απαιτούμενες Ηλεκτρικές Γραμμές και Υπολογισμοί Φορτίων Περίληψη Πως σχεδιάζουμε μία ηλεκτρική εγκατάσταση? Ξεκινώντας από τα αρχιτεκτονικά σχέδια

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative

Διαβάστε περισσότερα

Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs

Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ενισχυτής

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ

Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις

Διαβάστε περισσότερα

Άσκηση 10 ANTIKEIMENO: ΣΤΟΧΟΙ ΑΥΤΟΥ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ: ΕΞΟΠΛΙΣΜΟΣ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΟΥΜΕ: Σύγχρονη τριφασική γεννήτρια. Η Σύγχρονη τριφασική γεννήτρια.

Άσκηση 10 ANTIKEIMENO: ΣΤΟΧΟΙ ΑΥΤΟΥ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ: ΕΞΟΠΛΙΣΜΟΣ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΟΥΜΕ: Σύγχρονη τριφασική γεννήτρια. Η Σύγχρονη τριφασική γεννήτρια. Άσκηση 10 ANTIKEIMENO: Η Σύγχρονη τριφασική γεννήτρια. ΣΤΟΧΟΙ ΑΥΤΟΥ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ: Κατανόηση των βασικών αρχών λειτουργίας της σύγχρονης τριφασικής γεννήτριας. ΕΞΟΠΛΙΣΜΟΣ ΠΟΥ ΘΑ ΧΡΕΙΑΣΤΟΥΜΕ: Τροφοδοτικό

Διαβάστε περισσότερα