Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας"

Transcript

1 Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Ηλεκτρικό φορτίο Εισγωγή στην έννοι του Ηλεκτρικού Φορτίου Κάθε σώμ περιέχει στην φυσική του κτάστση ένν πάρ πολύ μεγάλο ριθμό φορτίων. Κάθε άτομο πό το οποίο ποτελείτι το υλικό υτό έχει στον πυρήν του πρωτόνι (με θετικό φορτίο) κι νετρόνι (ουδέτερ), ενώ, τ ισόποσ με τ πρωτόνι, ρνητικά φορτισμέν ηλεκτρόνι του περιφέροντι γύρω πό τον πυρήν σε μικρές γενικά ποστάσεις. Το φορτίο κάθε πρωτονίου είνι ίσο με υτό κάθε άλλου πρωτονίου, ίσο με το φορτίο κάθε ηλεκτρονίου κτά πόλυτο τιμή κι είνι μι συγκεκριμένη (κβντισμένη) ποσότητ ίδι σε όλ τ άτομ στη φύση. Αν νλογιστούμε ότι έν γρμμομόριο κάθε τόμου έχει σύμφων με τον ριθμό του Avogado 6,03x10 3 άτομ, τότε μερικά γρμμάρι μόλις ενός οποιουδήποτε υλικού έχουν σημεικά φορτί νάλογ του ριθμού υτού. Ότν το σώμ βρίσκετι σε επφή με τη Γη είνι γενικά ουδέτερ φορτισμένο. Αυτό συμβίνει γιτί ο ριθμός των θετικών κι ρνητικών φορτίων είνι περίπου ίσος κι άρ το ντικείμενο υτό είνι ηλεκτρικά ουδέτερο. Αν γι οποιονδήποτε λόγο υτή η ισορροπί διτρχθεί τότε υπερισχύει έν πό τ δύο φορτί (το θετικό ή το ρνητικό). Μπορούμε επίσης ν ντιληφθούμε ότι το σώμ έχει φορτιστεί, έστω κι ν η φόρτιση του είνι μικρή σε σχέση με το συνολικό φορτίο των ηλεκτρονίων κι πρωτονίων του. Γνωρίζουμε πό την κθημερινή μς εμπειρί ότι ν βρισκόμστε σε ξηρό περιβάλλον κι τρίψουμε γι πράδειγμ τ πόδι μς σε έν χλί ή μι βελέντζ, τότε ν στη συνέχει πάμε ν κουμπήσουμε το μετλλικό πόμολο μις πόρτς ισθνόμστε έν μικρό τσίμπημ κι μπορεί μάλιστ ν δούμε ν βγίνει μι μικρή σπίθ μετξύ του χεριού μς κι του πόμολου. Αυτό οφείλετι στο φινόμενο που γνωρίζουμε ως σττικό ηλεκτρισμό. Έστω ότι τρίβουμε μι γυάλινη ράβδο σε έν μετξωτό ύφσμ. Στ σημεί επφής του γυλιού με το μετάξι, μικρές ποσότητες φορτίων ντλλάσσοντι μετξύ των δύο σωμάτων διτράσσοντς την ισορροπί φορτίου των δύο σωμάτων. Όσο πιο έντονη είνι η τριβή των δύο σωμάτων τόσο περισσότερ είνι τ σημεί επφής κι άρ τόσο μεγλύτερη η ντλλγή φορτίου. Αν δέσουμε το γυλί πό έν σκοινάκι κι φέρουμε έν δεύτερο φορτισμένο με πρόμοιο τρόπο γυλί τότε θ δούμε ότι το έν πωθεί το άλλο. Αν όμως ντί γι το γυλί φέρουμε μι πλστική ράβδο που είχμε νωρίτερ τρίψει με γούν τότε θ τις δούμε ν έλκοντι (σχήμ 1). Αυτό συμβίνει γιτί ν τρίψουμε γυλί με μετάξι, τότε φορτί πό το γυλί (ηλεκτρόνι) περνούν στο μετάξι κι το γυλί έχει έλλειμμ ρνητικών φορτίων άρ θετικό φορτίο στο σύνολο του. Αντίθετ ν τρίψουμε πλστικό με γούν τότε φορτί πό τη γούν περνούν στη πλστική ράβδο κι υτή φορτίζετι ρνητικά. Συνολικά βγάζουμε το συμπέρσμ ότι τ όμοι φορτί πωθούντι, ενώ τ ντίθετ έλκοντι.

2 Τ πρόσημ βέβι στο σχήμ είνι συμβάσεις που έχει ορίσει ο άνθρωπος κι συγκεκριμέν ο Βενιμίν Φργκλίνος. Αν είχε θεωρήσει τ φορτί νάποδ, τότε γι εμάς το ηλεκτρόνιο θ ήτν θετικό κι το πρωτόνιο ρνητικό! γυλί γυλί γυλί - πλστικό Σχήμ 1. Δύο όμοι φορτισμένες ράβδοι (π.χ. δύο γυάλινες) πωθούντι. Δύο ντίθετ φορτισμένες έλκοντι (π.χ. γυλί πλστικό). Αγωγοί κι μονωτές Δεν έχουν όλ τ υλικά που υπάρχουν γύρω μς την ίδι συμπεριφορά όσον φορά τις ηλεκτρικές τους ιδιότητες. Σε μερικά πό υτά τ ηλεκτρόνι (το ρνητικό φορτίο) μπορεί ν κινείτι με σχετική ευκολί μέσ τους, σε άλλ όχι. Γι πράδειγμ σε υλικά όπως τ μέτλλ, το νερό της βρύσης κι το νθρώπινο σώμ τ φορτί υτά κινούντι σχετικά εύκολ κι γι υτό τ ονομάζουμε γωγούς (ή κλούς γωγούς). Αντίθετ σε υλικά όπως το πλστικό, το γυλί κι το χημικά κθρό νερό τ φορτί έχουν πολύ μεγάλη δυσκολί ν κινηθούν ελεύθερ (πρκτικά δεν κινούντι). Τ υλικά υτά τ ονομάζουμε μη γωγούς ή μονωτές. Όλ τ σώμτ που υπάρχουν γύρω μς ποτελούντι πό μι πληθώρ τόμων. Στους γωγούς ορισμέν πό τ ηλεκτρόνι των εξωτερικών στοιβάδων δεν είνι ενωμέν με τ άτομ τους λλά είνι σχετικά ελεύθερ ν κινηθούν σε όλο το υλικό (ηλεκτρόνι γωγιμότητς). Στους μονωτές υπάρχουν ελάχιστ έως κθόλου τέτοι ηλεκτρόνι. Εκτός των κλών γωγών κι των μονωτών, υπάρχουν κι υλικά που προυσιάζουν ενδιάμεσες ιδιότητες, όπως το πυρίτιο κι γερμάνιο που ονομάζοντι ημιγωγοί. Στους ημιγωγούς οφείλετι η τεχνολογική επνάστση που ζούμε σήμερ με την πληθώρ των εφρμογών τους κι κυριότερη υτή των επεξεργστών. Τέλος, τ τελευτί σχετικά χρόνι νκλύφθηκν κι μι σειρά πό κράμτ υλικών τ οποί εμφάνιζν την εξιρετική ιδιότητ ν εμφνίζουν μηδενική ντίστση στη κίνηση του ηλεκτρικού φορτίου μέσ τους. Ότν βέβι έχουμε κίνηση φορτίου έχουμε στην ουσί ηλεκτρικό ρεύμ. Συνεπώς οι υπεργωγοί σε ντίθεση με όλ τ υπόλοιπ υλικά εμφνίζουν μηδενική ντίστση στο ηλεκτρικό ρεύμ (οι γωγοί έχουν μικρή ντίστση, φού το ρεύμ κινείτι εύκολ σε υτούς, κι οι γωγοί πολύ μεγάλη). Αν δηλδή βάλουμε έν ρεύμ σε ένν υπεργωγό τότε υτός το διτηρεί όσος χρόνος κι ν περάσει. Το μονδικό πρόβλημ γι την εφρμογή τους σε μι πληθώρ συσκευών κι ντικειμένων στη κθημερινή μς ζωή (π.χ. μηδενισμός πωλειών κτά την μετφορά ενέργεις) είνι το γεγονός ότι πιτούν πολύ χμηλές θερμοκρσίες γι ν λειτουργήσουν. Έτσι, οι περισσότεροι υπεργωγοί που υπάρχουν σήμερ λειτουργούν

3 ως υπεργωγοί σε θερμοκρσίες έως 135 Kelvin (-138 o C). Από υτή τη θερμοκρσί κι πάνω λειτουργούν σε πολλές περιπτώσεις ως ημιγωγοί, ούτε κν δηλδή ως κλοί γωγοί. Αυτό σημίνει ότι γι ν λειτουργήσουν ως υπεργωγοί πρέπει ν ψύχοντι συνεχώς (μεγάλο κόστος λειτουργίς). Νόμος του Coulomb Η ηλεκτροσττική δύνμη της έλξης ή της πώθησης μετξύ δύο σωμτιδίων (ή κλύτερ σημεικών φορτίων) με μέγεθος φορτίου q 1 κι q, τ οποί πέχουν μετξύ τους πόστση, δίνετι πό τον τύπο: = k, (1) όπου k είνι μι στθερά. Η σχέση (1) ονομάζετι Νόμος του Coulomb. Ο νόμος συγκεκριμέν έχει την πρκάτω διτύπωση: «Το μέτρο της δύνμης που προκύπτει πό την λληλεπίδρση δύο σημεικών φορτίων, είνι νάλογο του γινομένου των φορτίων κι ντιστρόφως νάλογο του τετργώνου της πόστσης μετξύ τους.» H σχέση υτή έχει πρόμοι μορφή με το νόμο της Βρύτητς, ο οποίος λέει ότι: m1m = G, () Όπου G είνι η βρυτική στθερά. Κτά νλογί κι το k κλείτι ηλεκτροσττική στθερά. Οι δύο νόμοι είνι όμοιοι στο ότι i) η δύνμη που εμφνίζετι μετξύ των ιδιοτήτων των δύο σωμτιδίων είνι νάλογη του γινομένου τους (μάζες στο νόμο της Βρύτητς φορτί στο νόμο του Coulomb) κθώς κι στο ότι ii) είνι ντιστρόφως νάλογοι του τετργώνου της πόστσης τους. Οι νόμοι διφέρουν στο ότι ο νόμος της Βρύτητς μιλάει γι δύνμη που εμφνίζετι μετξύ μζών κι είνι πάντ ελκτική, ενώ ο νόμος του Coulomb μιλάει γι ελκτική ή πωστική δύνμη νάλογ με το είδος των φορτίων (βλέπε σχήμ ). + - ) β) Σχήμ. Δύο φορτισμέν σωμτίδι. ) Ελκτικές δυνάμεις μετξύ δύο ετερόσημων φορτίων. ) Απωστικές δυνάμεις μετξύ δύο ομόσημων (είτε δύο θετικών, είτε δύο ρνητικών). Μονάδ του φορτίου είνι το Coulomb (C). «Έν Coulomb είνι η ποσότητ του φορτίου μετφέρετι πό μι διτομή ενός γωγού (σύρμτος) σε έν δευτερόλεπτο ότν υπάρχει ρεύμ έντσης ενός Ampee σε υτό.»

4 Γενικά δηλδή μπορούμε ν γράψουμε τη σχέση: dq = idt, (3) Όπου το dq είνι το φορτίο (σε Coulomb) που μετφέρετι πό τον γωγό έντσης ρεύμτος i (σε Ampee) μέσ σε χρόνο dt (σε δευτερόλεπτ). Η ηλεκτροσττική στθερά γι ιστορικούς λόγους γράφετι κι με τη μορφή 1/(4πε 0 ), όπου ε 0 είνι η διηλεκτρική στθερά οπότε ο νόμος του Coulomb γίνετι: 1 =. (4) 4πε Η ηλεκτροσττική στθερά έχει την τιμή: k = = 8, Nm /C 4πε 1 Αντίστοιχ η διηλεκτρική στθερά έχει την τιμή: ε 0 = 8, C /Nm Επίσης, όπως κι στ προηγούμεν οι ηλεκτροσττικές δυνάμεις υπκούουν στην ρχή της επλληλίς. Θεμελιώδες φορτίο Κάθε φορτίο που μετρούμε στη φύση ποτελείτι πό ηλεκτρόνι ή θετικά φορτισμένους πυρήνες ή πρωτόνι κι είνι συνεπώς κέριο πολλπλάσιο της ποσότητς του φορτίου ενός ηλεκτρονίου (το οποίο είνι ίσο με το φορτίο του πρωτονίου, όπως είπμε). Συνεπώς κάθε φορτίο q μπορεί ν γρφεί ως έν κέριο πολλπλάσιο της ποσότητς e του φορτίου του ηλεκτρονίου: q = ne, (5) Όπου το n είνι ο ριθμός των ηλεκτρονίων (ή πρωτονίων) που ποτελούν το φορτίο. 19 Το e έχει την τιμή: e = 1,6 10 C κι ονομάζετι θεμελιώδες φορτίο. Γι ν κτλάβουμε το μικρό μέγεθος υτή της τιμής ρκεί ν νλογιστούμε ότι σε μι λάμπ 100 Watt περίπου ηλεκτρόνι εισέρχοντι κι εξέρχοντι κάθε δευτερόλεπτο. Άσκηση 1. Η μέση πόστση μετξύ ενός ηλεκτρονίου κι του κεντρικού πρωτονίου στο άτομο του Υδρογόνου είνι =5,3x10-11 m. Ποι είνι η μέση τιμή της ηλεκτροσττικής δύνμης μετξύ πρωτονίου ηλεκτρονίου; Ποι είνι η δύνμη της βρύτητς (δίνοντι m e =9,11x10-31 kg, m p =1,67x10-7 kg); Η σχέση (1) (ή η σχέση (4)) μς δίνει την ηλεκτροσττική δύνμη: 1 8, , = k = = 8, 10 N 4πε ( 5,3 10 ) Η σχέση () μς δίνει τη δύνμη της βρύτητς: m m = G , , , = 3,6 10 N -11 ( 5,3 10 )

5 Η δύνμη της βρύτητς είνι πολύ μικρότερη της ηλεκτροσττικής κι γι υτό δεν πίζει ρόλο στη συγκρότηση του τόμου.. Έστω ότι έχουμε μι λάμπ υτοκινήτου η οποί διπερνάτι πό ρεύμ έντσης I=,8A. Ποιο είνι το φορτίο που διπερνά την λάμπ νά ώρ κι πόσ είνι τ ηλεκτρόνι; Το σύνολο του φορτίου, Q, που διπερνά την λάμπ σε μι ώρ σύμφων με την σχέση (3) δίνετι πό: Q = it =,8A 1h =,8A 60min =,8A 60 60sec 10000C = 10 C Ο ριθμός των ηλεκτρονίων, n, είνι ίσος με το συνολικό φορτίο προς το θεμελιώδες φορτίο: Q n = = e 1, , ηλεκτρόνι 3. Αν φέρουμε μι θετικά φορτισμένη ράβδο κοντά στην φόρτιστη μετλλική σφίρ του σχήμτος 3.) η οποί βρίσκετι σε μι μονωτική βάση. Τι θ συμβεί στο εσωτερικό της σφίρς τελικά, φού πρώτ του βάλουμε μι γείωση, την οποί μετά κόψουμε κι πάρουμε στη συνέχει μκριά κι τη ράβδο; Η λύση της άσκησης φίνετι στο πρκάτω σχήμ. 4 ) γ) ε) β) δ) ζ) Σχήμ 3. Έστω ένς μετλλικός γωγός πάνω σε μι μονωτική βάση. ) Ο γωγός είνι φόρτιστος, β) Φέρνουμε μι φορτισμένη γυάλινη ράβδο κοντά του, γ) μέσως εμφνίζοντι μέσ του φορτί στις δύο πλευρές, ρνητικά πό την πλευρά κοντά στη ράβδο κι θετικά πό την άλλη (ίσ σε ριθμό φυσικά), δ) βάζουμε τη γείωση κι μέσως τ θετικά φορτί λόγω γείωσης πομκρύνοντι (γι την κρίβει ηλεκτρόνι πό τη Γη μετφέροντι στη σφίρ), ε) φιρούμε τη γείωση κι ως ποτέλεσμ η σφίρ έχει πλέον συνολικά ρνητικό φορτίο εντοπισμένο όμως κοντά στη ράβδο κι ζ) φού πάρουμε τη ράβδο, τ ρνητικά φορτί της σφίρς λληλοπωθούντι κι

6 ισοκτνέμοντι στη σφίρ. Οπότε τελικά η σφίρ πρμένει στο τέλος ρνητικά φορτισμένη. 4. Έστω έξι σημεικά φορτί που βρίσκοντι στο χώρο όπως φίνετι στο σχήμ 4. Αν πέχουν μετξύ τους τις πόστσεις του σχήμτος κι η γωνί των φορτίων 6, 1 κι 5 είνι 60 ο, όση κι υτή των 3, 1 κι, βρείτε τη συνολική ηλεκτροσττική δύνμη που σκείτι στο φορτίο 1; Υποθέστε ότι η πόλυτη τιμή των φορτίων q 1, q, q 3, q 4, q 5, κι 6 q 6, είνι ίσες μετξύ τους κι ίση με q = q = q = q = q = q = 3 10 C κι ότι =cm q 3 -q 5 -q -q 1 q 6 -q 4 Σχήμ 4. Έξι σφιρικοί φορτισμένοι γωγοί. Γι ν βρούμε τη συνολική δύνμη στο φορτίο 1 πρέπει ν κάνουμε το διάγρμμ ελεύθερου σώμτος του φορτίου υτού όπου θ τοποθετήσουμε όλες τις δυνάμεις που σκούντι σε υτό. Συγκεκριμέν προκύπτει το σχήμ: 13 y 13y 14 13x 15x 60 o 60 o 1 16 x 15 15y Σχήμ 5. Διάγρμμ ελεύθερου σώμτος γι το φορτίο 1. Προφνώς επειδή έχουμε έξι φορτί κι νζητούμε τις δυνάμεις που σκούντι σε έν πό υτά θ βρούμε πέντε δυνάμεις. Τ μέτρ των δυνάμεων δίνοντι πό τη σχέση (1). Οπότε: q q q 1 4 ( )

7 3 q q q 13 4 q q q 14 4 ( ) 5 q q q q q q 16 Αλλά οι 13 κι 15 δεν είνι πάνω στον άξον x οπότε τις νλύουμε στις συνιστώσες τους. Είνι: ο q 1 ο q 3 13 x = 13συν60 = k, 13 y = 13ημ60 = k, ο q 1 ο q 3 15 x = 15συν60 = k, 15 y = 15ημ60 = k. Οπότε μπορούμε τώρ ν βρούμε τις Σ x κι Σ y : κι Σ 1x = q q q q q x 15x = k + k k k k = 3 q 3 q Σ 1y = 13 y 15y = k k = 0. Συνεπώς η συνολική δύνμη που σκείτι στο φορτίο 1 είνι = Σ 1 0

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3 ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για

ν = 2, από τους οποίους όμως γνωρίζουμε μόνο 5, αυτούς που προκύπτουν για 165 4.5 ΠΡΩΤΟΙ ΑΡΙΘΜΟΙ Εισγωγή Δύο πό τ σημντικότερ ποτελέσμτ σχετικά με τους πρώτους ριθμούς ήτν γνωστά ήδη πό την ρχιότητ. Το γεγονός ότι κάθε κέριος νλύετι με μονδικό τρόπο ως γινόμενο πρώτων εμφνίζετι

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο ΟΜ φοιτητές, ο Χρήστος κι η λένη κάθοντι σε πρόμοιες κρέκλες γρφείου (τ πόδι της λένης είνι στον έρ). Ο Χρήστος πιέζει με τ πόδι του τ γόντ της λένης. πίλεξε το σωστό: ) ίνι μεγλύτερη η δύνμη που σκεί

Διαβάστε περισσότερα

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι Έςτω :RR, ςυνεχήσ ςυνάρτηςη κι,,cr Αποδείξτε ότι ) d d β) d d γ) d c c d c c δ) d c c c d ε) d στ) d Απάντηση:, εάν η είνι περιττή d, εάν η είνι άρτι Πρόκειτι γι πολύ βσική άσκηση, που είνι εφρμογή της

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. 1 B K

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ.  1 B K ΕΡΩΤΗΣΕΙΣ ΙΚΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ Ερώτηση 1 η 1. Μι οµογενής λεπτή δοκός ισορροπεί κθώς βρίσκετι σε επή µε τον τοίχο κι το δάπεδο του σχήµτος. Οι ντιδράσεις του δπέδου κι του τοίχου

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου

Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου TINA ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις -Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» 1 ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f

Διαβάστε περισσότερα

Ηλώ σεις. 1 Άσκηση. 2 Άσκηση

Ηλώ σεις. 1 Άσκηση. 2 Άσκηση ΠΜΣ : Σχεδισμός & κτσκευή υπογείων έργων Ακδ. Έτος: 2013-2014 ΜΑΘΗΜΑ: Μέτρ Υποστήριξης Σηράγγων Διδάσκων : Κθηγητής Α.Ι. ΣΟΦΙΑΝΟΣ Επιμέλει σκήσεων: Π. Γιούτ Ηλώ σεις 1 Άσκηση Σχεδιάστε τη μέγιστη πίεση

Διαβάστε περισσότερα

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν. 367 ΡΩΤΗΣΙΣ ΘΩΡΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ! ΤΞΗΣ 368 ΡΩΤΗΣΙΙΣ ΘΩΡΙΙΣ ΠΟ ΤΗΝ ΥΛΗ ΤΗΣ!! ΤΞΗΣ 1. Τι ονομάζετε δύνμη ν ; Ονομάζετι δύνμη ν με άση τον ριθμό κι εκθέτη το φυσικό ν > 1, το γινόμενο πό ν πράγοντες ίσους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m.

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Πνεπιστήµιο Αθηνών Εργστήριο Φυσικών Επιστηµών, Τεχνολογίς, Περιβάλλοντος Μρτίου 008 Θεωρητικό Μέρος Θέµ o Λυκείου Συνοπτικές λύσεις των θεµάτων.

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005

ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005. Κυριακή 10-4-2005 ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2005 ΚΛΑ ΟΣ ΠΕ 70 ΑΣΚΑΛΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείµενο» Κυρική 10-4-2005 Α.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: Απαντήσεις ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: Απαντήσεις ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: Απαντήσεις ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπασταμάτης Στέφανος, Τσαβλίδου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.

Διαβάστε περισσότερα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα

3. ** Στο επίπεδο δίνονται τα µη µηδενικά διανύσµατα α r,β r και γ r, τα οποία ανά δυο είναι µη συγγραµµικά. Να βρείτε το άθροισµά τους αν το διάνυσµα Ερωτήσεις νάπτυξης 1 * Ν κτσκευάσετε το άθροισµ των δινυσµάτων + + 3 όπου 2 * ι ποιες τιµές του πρµτικού ριθµού λ ισχύει ( λ ) < 5 0 ; 3 ** Στο επίπεδο δίνοντι τ µη µηδενικά δινύσµτ, κι, τ οποί νά δυο

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Μρτίου 008 Θεωρητικό Μέρος Θέμ o B Λυκείου. Έν δοχείο με διβτικά τοιχώμτ περιέχει μονοτομικό ιδνικό έριο με σχετική μορική μάζ M r κι ενώ κινείτι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. 1. Σώματα, όπως ο πλαστικός χάρακας ή το ήλεκτρο, που αποκτούν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 172 ΚΑΤΟΠΤΡΑ

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 172 ΚΑΤΟΠΤΡΑ ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 7 ΚΑΤΟΠΤΡΑ ΕΠΙΠΕ Α ΚΑΤΟΠΤΡΑ: Θεωρούµε γρµµικό ντικείµενο που βρίσκετι σε πόστση (πόστση του ντικειµένου) πό επίπεδο κάτοπτρο. A B Σχήµ 95 Μερικές πό τις κτίνες που εκπέµπει το φωτεινό

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Ασκήσεις Θερµοδυναµικής. Καταστατικές Εξισώσεις Πρώτος Θερµοδυναµικός Νόµος

Ασκήσεις Θερµοδυναµικής. Καταστατικές Εξισώσεις Πρώτος Θερµοδυναµικός Νόµος Φυσικοχηµεί Ι / Β. Χβρεδάκη Ασκήσεις Θερµοδυνµικής Κτσττικές Εξισώσεις Πρώτος Θερµοδυνµικός Νόµος. Ν ποδειχθεί ότι σε ιδνικό έριο: / κι κ Τ /Ρ όπου ο συντελεστής διστολής κι κ ο ισόθερµος συντελεστής συµπιεστότητς..

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 6 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητ: ΠΕ 4 ΦΥΣΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο) Σάββτο 7--7

Διαβάστε περισσότερα

Η θεωρία στα μαθηματικά της

Η θεωρία στα μαθηματικά της Η θεωρί στ μθημτικά της Γ γυμνσίου ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ ΤΑΞΗΣ ((ΑΛΓΕΒΡΑ)) ο ΚΕΦΑΛΑΙΙΟ 1 Αλγγεεριικέέςς Πρσττάσεειιςς Α. 1. 1 1. Τι ονομάζετε δύνμη ν με άση τον πργμτικό κι εκθέτη το φυσικό

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ

ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Συστήµατα µονάδων Για το σχηµατισµό ενός συστήµατος µονάδων είναι απαραίτητη η εκλογή ορισµένων µεγεθών που ονοµάζονται θεµελιώδη. Στις επιστήµες χρησιµοποιείται αποκλειστικά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ 2012 - \ ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις - Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» ΒΡΕΝΤΖΟΥ ΤΙΝΑ ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή ΔΙΑΝΥΣΜΑΤΑ Εισγωγή Το διάνυσμ είνι έν χρκτηριστικό πράδειγμ έννοις που νπτύχθηκε μέσ πό τη στενή λληλεπίδρση Μθημτικών κι Φυσικής Ο κνόνς του πρλληλόγρμμου, σύμφων με τον οποίο το μέτρο κι η κτεύθυνση

Διαβάστε περισσότερα

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 =

τετραγωνικό εκατοστόµετρο 1 cm 2 1 10000 m2 = 3.5 ΜΟΝΑ ΕΣ ΜΕΤΡΗΣΗΣ ΘΕΩΡΙΑ. Μονάδες µέτρησης µήκους Βσική µονάδ το µέτρο. Συµβολίζετι m Υποδιιρέσεις του µέτρου : δεκτόµετρο dm = 0 m = 0, m Πολλπλάσιο του µέτρου : εκτοστόµετρο cm = 00 m = 0,0 m χιλιοστόµετρο

Διαβάστε περισσότερα

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7

ΡΑΔΙΕΝΕΡΓΕΣ ΥΛΕΣ ΚΛΑΣΗ 7 ΧΟΗ ΕΠΑΓΓΕΜΑΤΙΚΗ ΚΑΤΑΡΤΙΗ ΜΕΤΑΦΟΡΕΩΝ ΕΚOMEE (ΑDR) ΘΕΑΙΑ & ΚΕΝΤΡΙΚΗ ΕΑΔΟ ΓΡΑΦΕΙΑ & ΑΙΘΟΥΕ ΔΙΔΑΚΑΙΑ: ΚΟΥΤΑΡΕΙΑ 12 ΜΕΙΑOΝΟ (ΑΠΕΝΑΝΤΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΠΕΙΡΑΙΩ) Τ.Κ.: 38333 ΒΟΟ ΤΗ.: 24210 34944 / 6977 280182

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη 255 ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣΣ Α! ΤΑΞΗΣΣ Ο Ρωµίος που µχίρωσσε ε τον Αρχιµήδη Μ' έν κλά µελετηµένο κτύπηµ, σκότωσε τον κύκλο, την εφπτόµενη κι το σηµείο τοµής στο άπειρο. "'Επί ποινή" διµελισµού εξόρισε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Νίκος Ν. Αρπατζάνης Εισαγωγή Το άτομο αποτελείται από ένα θετικά φορτισμένο πυρήνα, που περιβάλλεται από αρνητικά φορτισμένα ηλεκτρόνια Άτομο Li πυρήνας με 3 πρωτόνια (+) και 3 ηλεκτρόνια

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. 1. Ποια σώματα ονομάζονται ηλεκτρισμένα; Ποιες δυνάμεις λέγονται ηλεκτρικές; Σώματα, όπως ο πλαστικός

Διαβάστε περισσότερα

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό *! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς

ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ. Γ. Αλεξίου, Α. Καλαμπούνιας, Ε. Αμανατίδης, Δ. Ματαράς ΚΙΝΗΤΙΚΗ ΔΙΑΣΠΑΣΗΣ ΣΙΛΑΝΙΟΥ ΣΕ ΗΛΕΚΤΡΙΚΕΣ ΕΚΚΕΝΩΣΕΙΣ ΕΝΑΠΟΘΕΣΗΣ ΠΥΡΙΤΙΟΥ Γ. Αλεξίου, Α. Κλμπούνις, Ε. Αμντίδης, Δ. Μτράς Εργστήριο Τεχνολογίς Πλάσμτος, Τμήμ Χημικών Μηχνικών, Πνεπιστήμιο Πτρών ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

Γ Λυκείου. 6 Μαρτίου Θεωρητικό Μέρος Θέµα 1 ο

Γ Λυκείου. 6 Μαρτίου Θεωρητικό Μέρος Θέµα 1 ο Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 1 Θεωρητικό Μέρος Θέµ 1 ο Γ Λυκείου 6 Μρτίου 1 A. Μι χορδή βιολιού µε τ δύο άκρ της στερεωµέν, τλντώνετι µε συχνότητ 1 Ηz. Στο πρκάτω σχήµ φίνοντι δύο

Διαβάστε περισσότερα

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a, ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση

Διαβάστε περισσότερα

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο

Διαβάστε περισσότερα

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ

ΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι

Διαβάστε περισσότερα

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν

ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ. 2 Με τον ίδιο υπονοούμενο τρόπο η έννοια της συνάρτησης εμφανίζεται στους λογαριθμικούς πίνακες που κατασκευάστηκαν 1 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 191 Η έννοι της συνάρτησης ΙΣΤΟΡΙΚΟ ΣΗΜΕΙΩΜΑ Η έννοι της συνάρτησης, ως έκφρση μις εξάρτησης νάμεσ σε δύο συγκεκριμένες ποσότητες, εμφνίζετι μ ένν υπονοούμενο τρόπο ήδη πό την

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός

Θεωρία και Πολιτική της. Οικονομικής Μεγέθυνσης. Πανεπιστημιακές Παραδόσεις. Θεόδωρος Παλυβός Πνεπιστήμιο Μκεδονίς Τμήμ Οικονομικών Επιστημών Θερί κι Πολιτική της Οικονομικής Μεγέθυνσης Πνεπιστημικές Πρδόσεις Θεόδρος Πλυβός Ενότητ Εισγγή στη Γενική Ισορροπί κι την Οικονομική της Ευημερίς Mare-Esrt-Léon

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΔΥΝΑΜΗ ΚΑΙΙ ΦΟΡΤΙΙΟ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ ΑΝΤΩΝΗΣ ΚΥΡΙΑΚΟΠΟΥΛΟΣ Μθηµτικός Συγγρφές µέλος του Σ της ΕΜΕ Πρόεδρος της Συντκτικής Επιτροπής του περιοδικού «Ευκλείδης Β» ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998. ΠΡΟΛΟΓΟΣ Το βιβλίο υτό περιλμβάνει την ύλη των Μθημτικών, που προβλέπετι πό το πρόγρμμ σπουδών της Θετικής Κτεύθυνσης της Β τάξης του Ενιίου Λυκείου, του οποίου η εφρμογή ρχίζει πό το σχολικό έτος 998-999

Διαβάστε περισσότερα

1 Η μετρική Schwarzschild

1 Η μετρική Schwarzschild ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ - ΜΕΛΑΝΕΣ ΟΠΕΣ Διδάσκων: Θεόδωρος Ν. Τομράς 1 Η μετρική Schwazschil Οπως είπμε σε προηγούμενο μάθημ, η γεωμετρί του χωρόχρονου γύρω πό μιά σφιρικά συμμετρική κτνομή συνολικής μάζς Μ ή

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

x 3. Οι περιττές δυνάμεις άνισων αριθμών είναι ομοιοτρόπως άνισες: Αν α, β ε IR

x 3. Οι περιττές δυνάμεις άνισων αριθμών είναι ομοιοτρόπως άνισες: Αν α, β ε IR Σερίφης Κωννος Α. Βσικές γνώσεις Τυτότητες ± ) ± + ± ) 3 3 ± 3 +3 ± 3 + ± ) ++γ) + +γ ++γ+γ - -)+) 3-3 -) ++ ) ν - ν -) ν- + ν- + + ν- + ν- ) 3 + 3 +) -+ ) ν + ν +) ν- - ν- + - ν- + ν- ) ΜΟΝΟ ΓΙΑ ν ΠΕΡΙΤΤΟ.

Διαβάστε περισσότερα