Συμπληρωματικά, διαβάστε όλο το Κεφάλαιο 2 των Μαθηματικών Θετικής Κατεύθυνσης της 3ης Λυκείου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συμπληρωματικά, διαβάστε όλο το Κεφάλαιο 2 των Μαθηματικών Θετικής Κατεύθυνσης της 3ης Λυκείου"

Transcript

1 Κεφάλαιο 2 Μιγαδικοί Αριθμοί Συμπληρωματικά, διαβάστε όλο το Κεφάλαιο 2 των Μαθηματικών Θετικής Κατεύθυνσης της 3ης Λυκείου Τα στοιχεία του συνόλου των μιγαδικών αριθμών είναι εκφράσεις της μορφής a+ib όπου a, b R,και iείναιένασύμβολο, C = {a+ib a, b R}. Με προφανή τρόπο μπορούμε να ταυτίσουμε τα στοιχεία του C με διατεταγμένα ζεύγη πραγματικών αριθμών, a+ib a, b) και μέσω αυτών με τα σημεία ενός επιπέδου στο οποίο έχει επιλεγεί ένα ορθοκανονικό σύστημα αναφοράς, a+ib a i +b j. Εάν z = a+ib,τότε a = Rezονομάζεταιπραγματικόμέροςτου z,ενώ b = Imz ονομάζεται φανταστικό μέρος του z. Προσέξτε ότι Re z και Im z είναι πραγματικοί αριθμοί. Τουποσύνολο {z C Imz = 0}τοταυτίζουμεμετουςπραγματικούς αριθμούς. Μέτρο του μιγαδικού αριθμού z = a+ib είναι ο μη αρνητικός πραγματικός αριθμός z = z z = a 2 +b 2. Στο C ορίζονται πρόσθεση και πολλαπλασιασμός έτσι ώστε να συμφωνούν με τις πράξειςστο Rότανπεριοριστούνστοσύνολο {z C Imz = 0}καιναικανοποιείται 30

2 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 31 ησχέση i i = 1. πρόσθεση : a+ib)+c+id) = a+c)+ib+d) πολλαπλασιασμός : a+ib) c+id) = ac bd)+iad+bc) Ομιγαδικόςαριθμός a ibονομάζεταισυζυγήςτου z = a+ib,καισυμβολίζεται z. Παρατηρούμε ότι z + z = 2a = 2Rez z z = i2b = i2imz z z = a 2 +b 2 = z 2 Κάθε μη μηδενικός μιγαδικός αριθμός έχει ) αντίστροφο. Παρατηρούμε ότι αφού z z = z 2 1 είναιπραγματικόςαριθμός, z = 1,καισυνεπώς z 2 z z 1 = 1 z 2 z ή a+ib) 1 = Απόεδώέχουμεκαιτονκανόναγιατηδιαίρεση z w = z w w 2 ή a a 2 +b i b 2 a 2 +b. 2 a+ib c+id = a+ib)c id) c 2 +d 2 Εύκολα ελέγχουμε τις ακόλουθες ιδιότητες των συζυγών μιγαδικών αριθμών: z 1 +z 2 = z 1 + z 2 z 1 z 2 = z 1 z 2 z n ) = z) n Σημειώνουμε τις ακόλουθες ιδιότητες του μέτρου μιγαδικού αριθμού z = z = z z 1 z 2 = z 1 z 2 z 1 z 2 z 1 +z 2 z 1 + z 2 Αναφέραμε τη δυνατότητα ταύτισης του συνόλου των μιγαδικών αριθμών, C, με το επίπεδο, εφοδιασμένο με ένα ορθοκανονικό σύστημα αναφοράς. Μέσω αυτής της ταύτισης θα μιλάμε για το μιγαδικό επίπεδο. Στο μιγαδικό επίπεδο έχουμε τον πραγματικόάξονα,τονοποίοταυτίζουμεμετο R,καιτονφανταστικόάξονα,τονοποίο συμβολίζουμε Ri. Θα αξιοποιήσουμε αυτή τη δυνατότητα, χρησιμοποιώντας και γεωμετρικές έννοιες στη μελέτη των μιγαδικών αριθμών. Ηδη έχουμε δει την έννοια του μέτρου μιγαδικού αριθμού,τοοποίοπροφανώςείναιίσομετηναπόστασηαπότο 0στομιγαδικόεπίπεδο. Μία άλλη παρατήρηση είναι ότι ζεύγη συζυγών μιγαδικών αριθμών αποτελούνται από σημεία συμμετρικά ως προς τον πραγματικό άξονα.

3 32 Επίπεδο και Χώρος Σχήμα 2.1: Σημεία του μιγαδικού επιπέδου Τριγωνομετρική μορφή μιγαδικών αριθμών Θεωρούμε ένα μιγαδικό αριθμό z 0, στο επίπεδο, και υποθέτουμε ότι η ημιευθεία απότο0μέσωτου z,σχηματίζειγωνία ϑμετηθετικήημιευθείατουπραγματικού άξονα,όπου 0 ϑ < 2π. Σχήμα 2.2: Τριγωνομετρική μορφή μιγαδικού αριθμού Ηγωνία ϑσυνδέεταιμετα x = Rezκαι y = Imzμέσωτωνσχέσεων cosϑ = x x2 +y 2, sinϑ = y x2 +y 2 2.1)

4 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 33 Εάν z 0,ημοναδικήτιμή ϑηοποίαικανοποιείτιςεξισώσεις2.1καιβρίσκεταιστο διάστημα 0 ϑ < 2πονομάζεταιπρωτεύονόρισματουμιγαδικούαριθμού z,και συμβολίζεται με Argz). Κάθε άλλη τιμή ϑ που ικανοποιεί τις εξισώσεις 2.1 ονομάζεται όρισμα του z και συμβολίζεται argz). Είναι φανερό οτι δύο ορίσματα του z διαφέρουν κατά πολλαπλάσιο του 2π. Χρησιμοποιούμε το συμβολισμό argz) argw) για να δηλώσουμε οτι οι πραγματικοί αριθμοί argz) και argw) διαφέρουν κατά πολλαπλάσιο του 2π. Εάνγνωρίζουμεέναόρισματου z,καιτηναπόσταση rτου zαπότο0,μπορούμενα προσδιορίσουμετο z.τοπραγματικόμέροςτου zείναι x = rcosϑ,ενώτοφανταστικό μέροςτου zείναι y = rsinϑ.συνεπώς Παρατηρούμεότι r = x 2 +y 2 = z. z = x+iy = rcosϑ+irsinϑ = rcosϑ+isinϑ). Παράδειγμα2.1Εάν ϑ = 11 πκαι r = 2,τότε 6 z = 2 cos 11 ) 11 π +isin 6 6 π 3 = 2 2 +i 1 ) ) 2 = 3 i Αυτή η τριγωνομετρική μορφή έκφρασης των μιγαδικών αριθμών μας επιτρέπει να περιγράψουμε τον πολλαπλασιασμό μιγαδικών αριθμών γεωμετρικά. Θεωρούμετουςαριθμούς z 1 = r 1 cosϑ 1 +isinϑ 1 )και z 2 = r 2 cosϑ 2 +isinϑ 2 ),και υπολογίζουμε το γινόμενο z 1 z 2 = r 1 r 2 cosϑ 1 +isinϑ 1 )cosϑ 2 +isinϑ 2 ) = r 1 r 2 [cosϑ 1 cosϑ 2 sinϑ 1 sinϑ 2 )+icosϑ 1 sinϑ 2 +sinϑ 1 cosϑ 2 )] = r 1 r 2 cosϑ 1 +ϑ 2 )+isinϑ 1 +ϑ 2 )). Βλέπουμεδηλαδήότιτοάθροισματωνορισμάτωντωνμιγαδικώναριθμών z 1 και z 2 είναι ένα όρισμα του γινομένου τους argz 1 z 2 ) argz 1 +argz 2, 2.2)

5 34 Επίπεδο και Χώρος καιτομέτροτουγινομένουτωνμιγαδικώναριθμών z 1 και z 2 είναιτογινόμενοτων μέτρων τους z 1 z 2 = z 1 z ) Σχήμα 2.3: Γεωμετρική ερμηνεία του πολλαπλασιασμού μιγαδικών αριθμών Στο Σχήμα 2.3, τα σημεία A, B, C, D αντιστοιχούν στους μιγαδικούς αριθμούς z 1, z 2, z 1 z 2 και1αντίστοιχα.απότιςσχέσεις2.2και2.3συμπεραίνουμεότιτατρίγωνα ODBκαι OACείναιόμοια.Οπολλαπλασιασμόςμετο z 2 στομιγαδικόεπίπεδοείναι μίαομοιοθεσία,έναςμετασχηματισμόςπουαπεικονίζεικάθεσημείο z 1 τουεπιπέδου σεένασημείο z 3 τέτοιοώστετοτρίγωνοπουσχηματίζουντα z 1 και z 3 μετο0,να είναιόμοιομετοτρίγωνοπουσχηματίζουντα1και z 2 μετο0.μεαυτήτηνέννοια, το z 1 z 2 είναιπροςτο z 1,όπωςτο z 2 είναιπροςτο1, z 1 z 2 : z 1 = z 2 : 1. όπουωςαναλογίαδενεννοούμεαπλώςτηνισότητατουλόγουτωνμηκώνόπωςστην ευθεία των πραγματικών αριθμών) αλλά και την ισότητα των αντίστοιχων γωνιών. Μεόρουςδιανυσμάτων,οπολλαπλασιασμόςμετο z 2,στρέφειτοδιάνυσμαθέσης του z 1 κατάγωνία Argz 2 ),καιτοπολλαπλασιάζειμετοναριθμό z 2. Παρατηρούμεότιοπολλαπλασιασμόςμε zτέτοιοώστε z = 1,είναιαπλώςστροφή του μιγαδικού επιπέδου κατά γωνία Argz). Ειδικότερα, ο πολλαπλασιασμός με τη φανταστική μονάδα i, είναι περιστροφή κατά π/2. Από αυτή την άποψη αποκτά γεωμετρικόνόημαηιδιότητα i 2 = 1: ηεπανάληψητηςπεριστροφήςκατά π/2δίδει περιστροφή κατά γωνία π, η οποία απεικονίζει κάθε σημείο στο αντίθετο του: i 2 z = z.

6 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 35 Οαντίστροφοςένοςμιγαδικούαριθμού z 0,υπολογίζεταιεύκολαεάνοzείναι σε τριγωνομετρική μορφή. Εστω z = rcosϑ+isinϑ),καιυποθέτουμεότιοαντίστροφοςέχειτριγωνομετρική μορφή z 1 = tcosϕ+isinϕ). Εχουμε 1 = zw = rtcosϑ+ϕ)+iϑ+ϕ)) αλλάομιγαδικόςαριθμός 1έχειμέτρο 1καιόρισμα 0.Συνεπώς rt = 1και ϑ+ϕ 0, και καταλήγουμε z 1 = 1 r cos ϑ)+isin ϑ)) δηλαδή z 1 = 1,και ϑείναιέναόρισματου z z 1, argz 1 ϑ. Ειδικότερα,για τοπρωτεύονόρισματου z 1 έχουμε { Arg z 1 2π Argz εάν Argz 0 = 0 εάν Argz = 0 Η τριγωνομετρική μορφή είναι ιδιαίτερα χρήσιμη για τον υπολογισμό δυνάμεων μιγαδικώναριθμών.θεωρούμετοναριθμό z = rcosϑ+isinϑ)καιτιςδυνάμειςτου z 2 = rr cosϑ+ϑ)+isinϑ+ϑ)) = r 2 cos2ϑ)+isin2ϑ)) z 3 = r 2 r cos2ϑ+ϑ)+isin2ϑ+ϑ)) = r 3 cos3ϑ)+isin3ϑ)) και, όπως δείχνουμε εύκολα με επαγωγή στο n, z n = r n cosnϑ)+isinnϑ)). Αυτό το αποτέλεσμα ονομάζεται Θεώρημα του De Moivre. Εφαρμόζοντας το Θεώρημα στο z 1,βλέπουμεότιμπορείναεπεκταθείκαισεαρνητικούςακέραιους.Εάν n N, z n = r n cos nϑ)+isin nϑ)). Θεώρημα2.1Θεώρημα De Moivre)Γιακάθεμιγαδικόαριθμό z 0,καικάθε ακέραιο n Z,εάν z = rcosϑ+isinϑ),τότε z n = r n cosnϑ)+isinnϑ)) Άσκηση2.1Εάν zβρίσκεταιπάνωστομοναδιαίοκύκλο S 1,τότε z 1 = z. Στη συνέχεια θα εξετάσουμε κλασματικές δυνάμεις.

7 36 Επίπεδο και Χώρος Ρίζες της μονάδας Στοσύνολοτωνπραγματικώναριθμών,γιακάθεφυσικόαριθμό n,οαριθμός 1έχει μίαμοναδική n-οστήρίζαεάν nείναιπεριττός,ενώέχειδύο n-οστέςρίζες, 1και 1, εάνοnείναιάρτιος. Θαδούμεότιστοσύνολοτωνμιγαδικώναριθμώνοαριθμός1 έχειακριβώς n n-οστέςρίζεςγιακάθεφυσικόαριθμό n. Αναζητούμε τις λύσεις της εξίσωσης z n = 1. Γράφουμετο zσετριγωνομετρικήμορφή, z = rcosϑ+isinϑ)καιέχουμε z n = r n cosnϑ)+isinnϑ)) = 1, συνεπώς r n = 1, cosnϑ) = 1και sinnϑ) = 0. Συμπεραίνουμεότικάθε n-οστή ρίζατηςμονάδαςγράφεταιστημορφή cosϑ + isinϑ,όπου ϑικανοποιείτιςσχέσεις cosnϑ) = 1και sinnϑ) = 0.Απότιςσχέσειςαυτέςέχουμεότι nϑ = 2kπγια k Z, και συνεπώς ότι ϑ = k 2π, k Z. n Απομένει να δούμε ποιές από αυτές τις τιμές του ορίσματος δίδουν διαφορετικούς μιγαδικούςαριθμούς.εάνσυμβολίσουμε ϑ k = 2kπ n,έχουμε ϑ k+n = ϑ k +2π καισυνεπώς cosϑ k+n +isinϑ k+n = cosϑ k +isinϑ k.για k = 0, 1,...,n 1,έχουμε τις τιμές ϑ 0 = 0, ϑ 1 = 2π n,..., ϑ k = 2kπ n,..., ϑ n 1 = 2n 1)π n οι οποίες δίδουν όλες διαφορετικούς μιγαδικούς αριθμούς. Συμπεραίνουμε ότι υπάρχουν ακριβώς n n-οστες ρίζες της μονάδας στο μιγαδικό επίπεδο, οι αριθμοί για k = 0, 1,...,n 1. cos 2kπ n +isin 2kπ n Εάντώραορίσουμε w n = cos 2π +isin 2π,έχουμε,για k = 0,...,n 1 n n wn k = cos 2kπ 2kπ +isin n n. Πούβρίσκονταιαυτοίοιαριθμοίστομιγαδικόεπίπεδο;Για k = 0έχουμετο 1. Ολεςοι n-οστέςρίζεςτηςμονάδαςβρίσκονταιστομοναδιαίοκύκλο, S 1 = {z C : z = 1}, και η γωνία που σχηματίζεται από το 0 μεταξύ διαφορετικών ριζών είναι πολλαπλάσιο του 2π n.συμπεραίνουμεότιοι n-οστέςρίζεςβρίσκονταιστιςκορυφέςενόςκανονικού πολυγώνου,με nκορυφές,μίαεκτωνοποίωνβρίσκεταιστο 1.

8 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 37 Σχήμα 2.4: Τρίτες και τέταρτες ρίζες της μονάδας Ρίζεςτου a C Εάν a = 0,τότεγιακάθε n,ημοναδική n-οστήρίζατου aείναι 0: z n = 0 z = 0. Εάν a 0,υποθέτουμεότι aγράφεταισετριγωνομετρικήμορφήως a = scosϕ+ isinϕ). Οπραγματικόςαριθμός sείναιθετικός,καισυμβολίζουμε s 1/n τηθετική πραγματική n-οστήρίζατου s. Θέτουμε z 0 = s 1/n cos ϕ n +isin ϕ n),καιπαρατηρούμε ότι z0 n = a,δηλαδή z 0 είναιμίααπότις n-οστέςρίζεςτου ) a. n z Εάν z k είναιμιαάλλη n-οστήρίζατου a,έχουμε k z0 = 1,καισυνεπώς z k z0 είναι μία n-οστή ρίζα της μονάδας. Καταλήγουμε στο ακόλουθο αποτέλεσμα. Θεώρημα 2.2 Κάθε μιγαδικός αριθμός a 0, έχει n διαφορετικές μιγαδικές n-οστές ρίζες,καιεάν a = scosϕ+isinϕ)είναιμίατριγωνομετρικήμορφήτου a,οι n-οστές ρίζες είναι ϕ z k = s cos 1/n n + 2kπ ) ϕ +isin n n + 2kπ )) n για k = 0, 1,...,n 1. Εκθετική μορφή μιγαδικού αριθμού Θεωρούμετουςαριθμούς t + iϑκαι s + iϕ,καθώςκαιτους e t cosϑ + isinϑ)και e s cosϕ+isinϕ).παρατηρούμεότι e t cosϑ+isinϑ) e s cosϕ+isinϕ) = e t+s cosϑ+ϕ)+siniϑ+ϕ))

9 38 Επίπεδο και Χώρος και [ e t cosϑ+isinϑ) ] n = e nt cosnϑ)+isinnϑ)), δηλαδή ότι η αντιστοίχηση t+iϑ e t cosϑ+isinϑ) έχει τις ιδιότητες της εκθετικής συνάρτησης, να απεικονίζει αθροίσματα σε γινόμενα και ακέραια πολλαπλάσια σε δυνάμεις. Με βάση αυτή την παρατήρηση θα ορίσουμε τη μιγαδική εκθετική συνάρτηση e t+iϑ = e t cosϑ+isinϑ), ή e z = e Rez) cosimz)+isinimz)). Κάθε μη μηδενικός μιγαδικός αριθμός μπορεί να εκφραστεί σε εκθετική μορφή z = e log z +iargz. Η μιγαδική εκθετική συνάρτηση έχει τις ιδιότητες αʹ. e z e w = e z+w βʹ. e z ) n = e nz γʹ. e z ) 1 = e z δʹ. e z = e z εʹ. e z = e Rez και arge z ) Imz Άσκηση 2.2 Επαληθεύσατε τις παραπάνω ιδιότητες της μιγαδικής εκθετικής συνάρτησης. Εφαρμογές Παράδειγμα 2.2 Αναπτύγματα δυνάμεων των cos ϑ, sin ϑ. Εάν z = cosϑ+isinϑ,τότε 1 z = cosϑ isinϑκαι 2cosϑ = z + 1 z 2isinϑ = z 1 z.

10 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 39 Απότουςτύπουςτου De Moivre, z n = cosnϑ+isinnϑκαι z n = cosnϑ isinnϑ. Άρα 2cosnϑ = z n + 1 z n 2.4) 2isinnϑ = z n 1 z n 2.5) Θαχρησιμοποιήσουμετην2.4γιαναεκφράσουμετο cos 6 ϑσεπολλαπλάσιατης ϑ: 2 6 cos 6 ϑ = z + 1 ) 6 z και καταλήγουμε Ανάλογα υπολογίζουμε ότι = z 6 +6z 4 +15z z z z 6 = z 6 + 1z ) +6 z 4 + 1z ) +15 z 2 + 1z ) = 2cos6ϑ+12cos4ϑ+30cos2ϑ+20 cos 6 ϑ = 1 32 cos6ϑ+6cos4ϑ+15cos2ϑ+10) 2i) 5 sin 5 ϑ = καιαπότην2.5έχουμε = z 1 ) 5 z z 5 1z ) 5 5 z 3 1z ) +10 z 1 ) 3 z 2 5 sin 5 ϑ = 2sin5ϑ 5sin3ϑ+10sinϑ) και sin 5 ϑ = 1 16 sin5ϑ 5sin3ϑ+10sinϑ). Παράδειγμα 2.3 Αναπτύγματα των cos nϑ, sin nϑ σε δυνάμεις. Από την ταυτότητα cos6ϑ+isin6ϑ) = cosϑ+isinϑ) 6 = cos 6 ϑ+6icos 5 ϑsinϑ+15i 2 cos 4 ϑsin 2 ϑ +20i 3 cos 3 ϑsin 3 ϑ+15i 4 cos 2 ϑsin 4 ϑ +6i 5 cosϑsin 5 ϑ+i 6 sin 6 ϑ,

11 40 Επίπεδο και Χώρος χωρίζοντας το πραγματικό και το φανταστικό μέρος, έχουμε cos6ϑ = cos 6 ϑ 15cos 4 ϑsin 2 ϑ+15cos 2 ϑsin 4 ϑ sin 6 ϑ και sin6ϑ = 6cos 5 ϑsinϑ 20cos 3 ϑsin 3 ϑ+6cosϑsin 5 ϑ. Παράδειγμα2.4Οιδιωνυμικοίσυντελεστές n,για k = 0, 1,..., nορίζονταιως οι συντελεστές του αναπτύγματος του διωνύμου 1+x) n = n k=0 n x k, και μπορούμε να τους υπολογίσουμε από τον τύπο n n! n k +1)n k +2) n 1)n = = k!n! 1 2 k Προσέξτεοτι 0! = 1,καισυνεπώς n 0) = n = 1. Θεωρούμε τα αθροίσματα και C = n k=0 n coskϑ = 1+ncosϑ+ nn 1) 2 S = n k=0 n sinkϑ = nsinϑ+ nn 1) 2 cos2ϑ+...+cosnϑ sin2ϑ+...+sinnϑ. Παρατηρούμε ότι C και S είναι το πραγματικό και το φανταστικό μέρος, αντίστοιχα, τουαναπτύγματοςτου 1+e iϑ ) n : 1+e iϑ ) n = = n k=0 n k=0 = C +is. n e ikϑ Χρησιμοποιώντας τις τριγωνομετρικές ταυτότητες n coskϑ+isinkϑ) cos2ϕ = cos 2 ϕ sin 2 ϕ = 2cos 2 ϕ 1.

12 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 41 έχουμε sin2ϕ = 2sinϕcosϕ Συμπεραίνουμε ότι και 1+e iϑ ) n = 1+cosϑ+isinϑ) n = 2cos 2 ϑ 2 +2isin ϑ 2 cos ϑ ) n 2 = 2cos ϑ ) n cos ϑ 2 2 +isin ϑ ) n 2 = 2cos ϑ ) n cos nϑ ) nϑ +isin C = S = 2cos ϑ ) n cos nϑ 2 2 2cos ϑ ) n sin nϑ 2 2. Παράδειγμα 2.5 Εξετάζουμε το άθροισμα των n οστών ριζών της μονάδας, Παρατηρούμε ότι Q = 1+w n +w 2 n +...+w n 1 n. w n Q = w n 1+w n +...+w n 1 n ) = w n +w 2 n +...+w n 1 n = Q +w n n Συμπεραίνουμεότι w n 1)Q = 0,καιεφ όσον w n 1,έχουμε 1+w n +w 2 n +...+w n 1 n = 0. Ευθείες και κύκλοι στο μιγαδικό επίπεδο Η ευθεία που είναι παράλληλη στο διάνυσμα με συντεταγμένες a, b) και διέρχεται από το σημείο με συντεταγμένες c, d) αποτελείται από όλα τα σημεία με συντεταγμένες τηςμορφής x, y) = c, d) + ta, b)για t R. Απόαυτήτηνσχέσηπαίρνουμε,με

13 42 Επίπεδο και Χώρος απαλοιφή του t, την εξίσωση που ικανοποιούν οι συντεταγμένες x, y) των σημείων της ευθείας: bx c) = ay d) ή bx ay = cb da. Μπορούμε να εκφράσουμε την εξίσωση της ευθείας χρησιμοποιώντας μιγαδικούς αριθμούς.εάν α = a+ibκαι γ = c+id,τογενικόσημείο z = x+iyτηςευθείαςπου διέρχεταιαπότο γκαιείναιπαράλληληπροςτηνευθείαπουδιέρχεταιαπότο 0καιτο αικανοποιείτησχέση z = γ+tαγια t R.Γιανααπαλείψουμετο tαπότιςσχέσεις z = γ+tακαι z = γ+tᾱπολλαπλασιάζουμετηνπρώτημε ᾱκαιτηδεύτερημε ακαι παίρνουμε ᾱz ᾱγ = tᾱα = α z α γ. Ετσι καταλήγουμε στην εξίσωση που ικανοποιούν τα σημεία z της ευθείας, ᾱz γ) α z γ) = ) Οκύκλοςμεκέντροτοσημείομεσυντεταγμένες c, d)καιακτίνα r > 0αποτελείται απόόλατασημείαμεσυντεταγμένες x, y)πουαπέχουν rαπότοσημείο c, d),δηλαδή που ικανοποιούν την εξίσωση x c) 2 +y d) 2 = r 2. Στομιγαδικόεπίπεδοοκύκλοςμεκέντρο κ = c+idκαιακτίνα r > 0αποτελείται απότασημεία z = x+iyπουικανοποιούντηνεξίσωση z κ = r,δηλαδή z κ) z κ) = r ) Οι απεικονίσεις αντιστροφής στο μιγαδικό επίπεδο Στην πραγματική ευθεία R η απεικόνιση αντιστροφής t 1/t διατηρεί σταθερά τα σημεία 1και 1καιαπεικονίζειτασημείατουδιαστήματος 0, 1)στοδιάστημα 1, ) καιτασημείατουδιαστήματος 1, 0)στοδιάστημα, 1),καιαντίστροφατα σημεία του διαστήματος 1, ) στο διάστημα 0, 1) και τα σημεία του διαστήματος, 1) στο διάστημα 1, 0). Η απεικόνιση αντιστροφής δεν ορίζεται στο 0. Στο μιγαδικό επίπεδο θα θεωρήσουμε δύο απεικονίσεις αντιστροφής, την z 1/z, τηνοποίαθαονομάσουμεαναλυτικήαντιστροφή,καιτην z 1/ z,τηνοποίαθα ονομάσουμε γεωμετρική αντιστροφή. Και οι δύο αυτές απεικονίσεις ορίζονται σεόλοτομιγαδικόεπίπεδοεκτόςαπότο 0.

14 Κεφάλαιο 2 Μιγαδικοί Αριθμοί 43 Ηαναλυτικήαντιστροφήαπεικονίζειτο z = re iϑ = rcosϑ + isinϑ)στο z 1 = r 1 e iϑ = r 1 cosϑ isinϑ),δηλαδήστοσημείοτουοποίουτομέτροείναιτοαντίστροφοτουμέτρουτου z,καιτοόρισμαείναιτοαντίθετοτουορίσματοςτου z. Ηγεωμετρικήαντιστροφήαπεικονίζειτο z = re iϑ = rcosϑ + isinϑ)στο z 1 = r 1 e iϑ) = r 1 cosϑ + isinϑ),δηλαδήστοσημείοτουοποίουτομέτροείναιτο αντίστροφοτουμέτρουτουz,καιτοόρισμαείναιίσομετοόρισματουz.ηγεωμετρική αντιστροφήδιατηρείσταθεράτασημείαστομοναδιαίοκύκλο S 1 μεκέντροστο 0,για ταοποία z = 1καιστέλνειτασημείαστοεσωτερικότου S 1 σεσημείαστοεξωτερικό του S 1. Θεωρούμεένακύκλομεκέντρο κκαιακτίνα r,τουοποίουτασημείαικανοποιούν τηνεξίσωση z κ = r.θέλουμεναπροσδιορίσουμετηνεικόνατουκύκλουαπότην απεικόνιση fz) = 1/z,δηλαδήτοσύνολο {w C : w = 1z } {, z κ = r = w C : Από την εξίσωση του κύκλου έχουμε 1 w κ ) 1 w κ ) Εάν r 2 κ κ 0,ηεξίσωσηγίνεται = r 2 1 w w κ +κ κ = r2 w κ w 1 κ w κw = r 2 κ κ. w w w w = r2 κ κ κ w +κw r 2 κ κ) 2 r 2 κ κ } 1 w κ = r. w w + κ w r 2 κ κ + κw r 2 κ κ + κ κ = r 2 κ κ) ) ) 2 κ κ w w = κ κ r 2 κ κ r 2 w κ κ κ r 2 = r 2 r 2 κ κ) 2 r 2 κ κ r 2 ) 2 r κ κ r ) Δηλαδήτοσημείο wβρίσκεταισεκύκλομεκέντρο κ κ κ r 2 καιακτίνα r κ κ r 2. Εάν r 2 κ κ = 0,ηεξίσωσηγίνεται που είναι η εξίσωση μίας ευθείας. κw + κ w = 1 2.9) Συνοψίζοντας, η αναλυτική αντιστροφή z 1/z απεικονίζει τον κύκλο C

15 44 Επίπεδο και Χώρος σεκύκλο,εάν 0 C σεευθεία,εάν 0 C, και απεικονίζει την ευθεία ε σεκύκλο,εάν 0 ε σεευθεία,εάν 0 ε, Άσκηση 2.3 Δείξτεοτιηευθείαμεεξίσωση2.9)περνάειαπότοσημείο 1 2κ και είναικάθετηπροςτηνευθείαπουδιέρχεταιαπότο 0καιτο κ.

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014

Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήσ τος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Σημειώσεις μαθήματος Μ1113 Επίπεδο και Χώρος Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Εισαγωγή Θα συμπληρωθεί 1 Κεφάλαιο 1 Γεωμετρικά διανύσματα στο επίπεδο Ενα γεωμετρικό διάνυσμα

Διαβάστε περισσότερα

4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3)

4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3) 4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Η εκθετική συνάρτηση Η εκθετική συνάρτηση την σχέση e, ή exp( ) όπως εναλλακτικά συμβολίζεται, ορίζεται από x e = e (os y+ isin y) (0.) όπου = x + iy. Όταν = iy τότε ο ανωτέρω

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση Μιχάλης Παπαδημητράκης Μιγαδική Ανάλυση Περιεχόμενα Οι μιγαδικοί αριθμοί.. Οι μιγαδικοί αριθμοί..................................2 Το Ĉ, η στερεογραφική προβολή και η σφαίρα του Riemann............ 0

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ ΣΗΜΕΙΩΣΕΙΣ ΥΠΟ ΠΡΟΕΤΟΙΜΑΣΙΑ για το μάθημα ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ I Τμήμα Μαθηματικών Πανεπιστήμιο Ιωαννίνων Εαρινό Εξάμηνο 2018 Ιωάννης Γιαννούλης Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM

Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM 1 Τριγωνοµετρική (ή πολική µορφή µιγαδικού αριθµού Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM η αντίστοιχη διανυσµατική ακτίνα του Ονοµάζοµε όρισµα του µιγαδικού αριθµού z κάθε µια από τις

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z) ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Μιγαδική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Οι μιγαδικοί αριθμοί.. Οι μιγαδικοί αριθμοί..................................2 Το Ĉ, η στερεογραφική προβολή και

Διαβάστε περισσότερα

t : (x, y) x 2 +y 2 y x

t : (x, y) x 2 +y 2 y x Σύνοψη Κεφαλαίου 5: Αντιστροφική Γεωμετρία Αντιστροφή 1. Η ανάκλαση σε μία ευθεία l στο επίπεδο απεικονίζει ένα σημείο A σε ένα σημείο A που απέχει ίση απόσταση από την l αλλά βρίσκεται στην άλλη πλευρά

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.

Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1. .. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.

Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Στις σύντομες σημειώσεις που ακολουθούν θα περιγράψουμε την αξιωματική θεμελίωση των

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης Μιγαδική Ανάλυση Δρ. Θ. Ζυγκιρίδης 2 Περιεχόμενα 1 Μιγαδικοί αριθμοί 1 1.1 Βασικοί ορισμοί και ιδιότητες............................. 1 1.2 Γεωμετρική αναπαράσταση των μιγαδικών αριθμών.................

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

2 ΑΛΓΕΒΡΑ. 2.1 Ταυτότητες

2 ΑΛΓΕΒΡΑ. 2.1 Ταυτότητες SECTIN ΑΛΓΕΒΡΑ. Ταυτότητες ( ) + ( + ) + + ( ) 3 3 3 + 3 3 ( + ) 3 3 + 3 + 3 + 3 ( ) 4 4 4 3 + 6 4 3 + 4 ( + ) 4 4 + 4 3 + 6 + 4 3 + 4 ( )( + ) 3 3 ( )( + + ) 3 + 3 ( + )( + ) 4 4 ( )( + )( + ) 4 + 4 (

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΛΥΚΕΙΟΥ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Διάλεξη 1 - Σημειώσεις 1

Διάλεξη 1 - Σημειώσεις 1 Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς

Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Επαναληπτικά ϑέµατα στους Μιγαδικούς Αριθµούς ιδάσκων : Αντώνης Λουτράρης Μαθηµατικός M.S.c Αύγουστος, 2012 Σελίδα 1 Ο συντοµότερος δρόµος ανάµεσα

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός. gxkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ- ΚΑΡΡΑΣ 1. Να αποδειχθεί ότι a +

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z). εθοδολογία Παραδείγματα σκήσεις. ν α,β,γ,δ και ο OA, w a βi γ δi OB, των a βi, γ δi. α λυθεί η ανίσωση 0 πιμέλεια.: άτσιος Δημήτρης είναι φανταστικός, να δειχθεί ότι οι διανυσματικές ακτίνες αντίστοιχα,

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί

Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί Κεφάλαιο 1ο. Μιγαδικοί Αριθμοί 1η. Άσκηση Να αποδείξετε ότι Α) όπου Β) Αν με τότε Γ) όπου ν Δ) Αν με τότε Ε) αν για τους μιγαδικούς z, w ισχύει τότε 2η. Άσκηση Α) Εφαρμογή 1 σελίδα 93. Β) Να βρείτε τους

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: z r(cosϑ + isi ϑ) Τότε z r (cos ϑ + isi ϑ ) Ν-οστή ρίζα µιγαδικού / ϑ + π ϑ+ π z r cos + isi όπου 0,,,, Συνθήκες

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

f(z) 1 + z a lim f (n) (0) n! = 1

f(z) 1 + z a lim f (n) (0) n! = 1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 3η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Υποθέτουμε ότι η f : C C είναι ακέραια συνάρτηση και ότι το όριο Αποδείξτε ότι η f είναι σταθερή.

Διαβάστε περισσότερα

cos ϑ sin ϑ sin ϑ cos ϑ

cos ϑ sin ϑ sin ϑ cos ϑ ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 33 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Νοε 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-33 Νοε 2014 1 / 11 Μετασχηματισμοί του επιπέδου Πολλοί μετασχηματισμοί

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ Περιεχόµενα Eισαγωγή στους µιγαδικούς αριθµούς Στοιχειώδεις µιγαδικές συναρτήσεις 3 Οριο-Συνέχεια-Παράγωγος Αναλυτικές Συναρτήσεις 4 Μιγαδική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ ΚΑΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΓΕΩΜΕΤΡΙΚΙ ΤΠΙ ΚΑΙ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ ΒΑΣΙΚΕΣ ΕΝΝΙΕΣ ΣΥΝΤΜΗ ΕΠΑΝΑΛΗΨΗ ΑΠΣΤΑΣΗ ΣΗΜΕΙΥ Α( 1, y 1 ΑΠ ΤΗΝ ΑΡΧΗ (0, 0 των αξόνων: (A = + y 1 1 Αν έχουμε τον μιγαδικό αριθμό 1 = 1 + i y 1 με εικόνα στο μιγαδικό

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1) Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Τ Ε Τ Υ Π Κ Εφαρμοσμένα Μαθηματικά Σημειώσεις Διαλέξεων Σ Σ Copyright 2016 2017 Σταμάτης Σταματιάδης, stamatis@uoc.gr Το έργο αυτό αδειοδοτείται από την άδεια Creative Commons Αναφορά Δημιουργού - Μη Εμπορική

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΑ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ 4 α Να βρείτε τον γεωμετρικό τόπο των εικόνων του Έστω οι μιγαδικοί για τους οποίους

Διαβάστε περισσότερα

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΑΣΚΗΣΕΙΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΑΣΚΗΣΕΙΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΑΣΚΗΣΕΙΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Έστω συγκεκριμένος πραγματικός αριθμός χ και η οικογένεια των μιγαδικών : z ν =(ν+2)χ 2 +(ν+1)χ+ν+iln[νχ 2 +(ν+1)χ+(ν+2)], ναν * Να αποδείξετε ότι, ανεξάρτητα

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Μεθοδολογία στους Μιγαδικούς

Μεθοδολογία στους Μιγαδικούς ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στους ΜΙΓΑΔΙΚΟΥΣ Α. ΜΙΓΑΔΙΚΟΙ.Περιγράψτε το σύνολο των μιγαδικών αριθμών και δώστε τους ορισμούς της πρόσθεσης, του πολ/σμού και της ισότητας δύο μιγαδικών αριθμών.(σελ. 86-87, τα μπλε

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΩΝ ΣΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (000-03) ΘΕΜΑ 000 α. Αν, είναι οι ρίζες της εξίσωσης + + = 0, να αποδείξετε ότι 0-0 =0. β. Αν είναι ρίζα της εξίσωσης του α. ερωτήματος, με φανταστικό μέρος

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι Ασκήσεις

Απειροστικός Λογισμός Ι Ασκήσεις Απειροστικός Λογισμός Ι Ασκήσεις Μ. Παπαδημητράκης . Για καθεμία από τις ανισότητες ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ + >, +, + > +3 3+, ( )( 3) ( ) 0 γράψτε ως διάστημα ή ως ένωση διαστημάτων το σύνολο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 1η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση 1. Να λυθεί η εξίσωση: 4 1 + 3i. Λύση. Επειδή 1 + 3i e πi/3, οι λύσεις της εξίσωσης 4 1 + 3i

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο

Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Σημειώσεις ια το μάθημα Μιαδική Ανάλυση Ι Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Στις σημειώσεις αυτές, αν η απόδειξη κάποιου θεωρήματος δεν δίνεται, τότε είτε είναι σχεδόν αυτολεξεί

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Μαθηματικά. Μιγαδικοί Αριθμοί. x + Tolaso Network P R I) = No. 2. X x! dy = LN x MATHEMATICS. Απρίλιος 2019

Μαθηματικά. Μιγαδικοί Αριθμοί. x + Tolaso Network P R I) = No. 2. X x! dy = LN x MATHEMATICS. Απρίλιος 2019 dx = dt x + 5 x + (A I A- Μιγαδικοί Αριθμοί ( ) Tolaso Network 5 =0 P R i 5 + -1 ( t de I) = ( ) 1 A= y 5 Y 5 5y =5 dy = dt Μαθηματικά - - -1 SI N X x! -1 S CO CO x x 1 S X -1 N TA TA X N x e LN x 10 -

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΣΥΜΜΟΡΦΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ MÖBIUS ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ

ΣΥΜΜΟΡΦΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ MÖBIUS ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΥΜΜΟΡΦΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ MÖBIUS ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΤΣΑΝΕΒΑΚΗ

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

w = f(z) = z + i C(0,4) 2πi z 2 (z 2) 3 dz = 1 8. f(z) = (z 2 + 1)(z + i). e z 1 e z 1 = 3 cos 2θ

w = f(z) = z + i C(0,4) 2πi z 2 (z 2) 3 dz = 1 8. f(z) = (z 2 + 1)(z + i). e z 1 e z 1 = 3 cos 2θ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιαδική Ανάλυση ΟΜΑΔΑ: Β Θ. (αʹ) Εστω ο μετασχηματισμός w f() + i i, C, i. 6 Μαρτίου, 25 Δείξτε ότι η w f() απεικονίζει

Διαβάστε περισσότερα

v a v av a, τότε να αποδείξετε ότι ν <4.

v a v av a, τότε να αποδείξετε ότι ν <4. ΘΕΜΑ ο ΑΣΚΗΣΕΙΣ-ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς αριθμούς για τους οποίους ισχύει η σχέση: Α. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών είναι ο κύκλος με Κ(,0) και

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα