Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών"

Transcript

1 Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3 Περιεχόμενα 1. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΥΠΙΚΗΣ ΤΕΓΙΔΑΣ ΣΤΕΓΑΣΤΡΟΥ a. Φορτία... 6 b. Συνδυασμοί φορτίσεων σε οριακή κατάσταση αστοχίας... 6 c. Εντατικά μεγέθη... 6 d. Επιλογή διατομής... 7 e. Κατηγορία διατομής... 7 f. Πλαστικός έλεγχος σε τέμνουσα... 7 g. Έλεγχος απομείωσης της αντοχής σε ροπή κάμψης λόγω παρουσίας τέμνουσας... 8 h. Πλαστικός έλεγχος σε μονοαξονική κάμψη... 8 i. Συνδυασμοί φορτίσεων σε οριακή κατάσταση λειτουργικότητας... 8 j. Βέλη κάμψεως ΠΛΑΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΥΠΙΚΗΣ ΤΕΓΙΔΑΣ ΣΤΕΓΑΣΤΡΟΥ... 9 a. Γεωμετρία... 9 b. Φορτία... 9 c. Συνδυασμοί φορτίσεων σε οριακή κατάσταση αστοχίας d. Εντατικά μεγέθη e. Πλαστικός έλεγχος σε τέμνουσα f. Έλεγχος απομείωσης της αντοχής σε ροπή κάμψης λόγω παρουσίας τέμνουσας... 1 g. Πλαστικός έλεγχος σε διαξονική κάμψη... 1 h. Συνδυασμοί φορτίσεων σε οριακή κατάσταση λειτουργικότητας i. Βέλη κάμψεως

4 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες :Χ. Γαντές Δ.Βαμβάτσικος Ξ. Λιγνός Α. Σπηλιόπουλος Μ.Ε.Δασίου Κ. Κουλάτσου Δεκέμβριος 01 Άσκηση 6 Η κάλυψη βιομηχανικού χώρου γίνεται από μεταλλική κατασκευή από χάλυβα ποιότητας S35 με κύριους φορείς δίστυλα πλαίσια, τοποθετημένα ανά 6,00m (Σχήμα 1). Εξετάζονται δύο παραλλαγές πλαισίων, με οριζόντιο ζύγωμα (στέγαστρο 1) και με δικλινές ζύγωμα (στέγαστρο ). Η κάτοψη των στεγάστρων δίνεται στο Σχήμα 1, ενώ η τομή του στεγάστρου 1 και δίνονται στα Σχήματα και 3, αντίστοιχα. Κάθετα στο επίπεδο των πλαισίων και επί των ζυγωμάτων, διατάσσονται τεγίδες, σε αποστάσεις μεταξύ τους ίσες με 1,65m. Η κάθε τεγίδα μορφώνεται ως συνεχής δοκός δύο ίσων ανοιγμάτων. Ζητείται: α) Να επιλεγεί η ελάχιστη απαιτούμενη διατομή από τη σειρά IPE για τις τεγίδες του στεγάστρου 1 β) Να γίνει έλεγχος στην οριακή κατάσταση αστοχίας και έλεγχος λειτουργικότητας της διατομής που επιλέχθηκε για τις τεγίδες του στεγάστρου 1. γ) Να ελεγχθεί εάν η ίδια διατομή επαρκεί και για τις τεγίδες του στεγάστρου. Δίνονται: Μόνιμα φορτία g=0,0 kn/m (σε οριζόντια προβολή περιλαμβάνει το ίδιο βάρος των τεγίδων και το βάρος των φύλλων επικάλυψης) Χιόνι s=0,75kn/m Υποπίεση ανέμου w=0,60kn/m (κάθετα στην προσβαλλόμενη επιφάνεια) Επισημαίνεται ότι στα σχήματα απεικονίζονται μόνο τα μέλη που αφορούν στην άσκηση, ενώ τα υπόλοιπα μέλη (οριζόντιοι και κατακόρυφοι σύνδεσμοι δυσκαμψίας, μετωπικοί στύλοι, μηκίδες) δεν έχουν σχεδιαστεί για λόγους ευκρίνειας. Σχήμα 1: Κάτοψη στεγάστρων 1 και

5 Σχήμα : Στέγαστρο 1 Σχήμα 3: Στέγαστρο 5

6 ΛΥΣΗ ΑΣΚΗΣΗΣ 6 1. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΥΠΙΚΗΣ ΤΕΓΙΔΑΣ ΣΤΕΓΑΣΤΡΟΥ 1 a. Φορτία Τα φορτία που λαμβάνονται υπόψη είναι: Μόνιμα g = 0,0kN/m Χιόνι s = 0,75kN/m Υποπίεση ανέμου w= -0,60kN/m Το πλάτος επιρροής της τεγίδας είναι 1,65m Η κατανομή των φορτίων ανά τεγίδα θα είναι: g = 0,0kN/m 1,65m = 0,33kN/m s = 0,75kN/m 1,65m = 1,kN/m w = -0,60kN/m 1,65m = -0,99kN/m Σχήμα 1: Φορτία στο στέγαστρο 1 b. Συνδυασμοί φορτίσεων σε οριακή κατάσταση αστοχίας Οι δύο συνδυασμοί που μορφώνονται για τα δύο κινητά φορτία είναι: Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό το χιόνι) = γ G g + γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό ο άνεμος) Ε d Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w=1,35 g+1,50 s+0,00 0,60 w =1,35 0,33kN/m+1,50 1, kn/m =,30kN/m Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ G g + γ Q,1 w + γ Q, ψ 0, s =1,00 g +1,50 w+0,00 0,50 s =1,00 0,33kN/m-1,50 0,99 kn/m= -1,16kN/m Κρίσιμος είναι ο πρώτος συνδυασμός φορτίσεων. c. Εντατικά μεγέθη Εξετάζεται η τεγίδα ως συνεχής δύο ίσων ανοιγμάτων με μήκος κάθε ανοίγματος L=6,00m Φορτίο ομοιόμορφα κατανεμημένο στην τεγίδα q=e d1 =,30kN/m Υπολογισμός αντιδράσεων: V α =3q z L/8=3,30kN/m 6,0m/8=5,18kN (στην ακραία στήριξη) V μ =10q z L/8=10,30kN/m 6,0m/8=17,5kN (στη μεσαία στήριξη) Υπολογισμός μεγίστων ροπών κάμψεως τεγίδας στη μεσαία στήριξη: M Ed, =0,07q z L =0,07,30kN/m (6,0m) =5,80kNm (στα ανοίγματα) 6

7 M Ed, =q z L /8=,30kN/m (6,0m) /8=10,35kNm (στη μεσαία στήριξη) Υπολογισμός μεγίστων τεμνουσών δυνάμεων τεγίδας στη μεσαία στήριξη: V Ed,z =3q z L/8=3,30kN/m 6,0m/8=5,18kN (στην ακραία στήριξη) V Ed,z =5q z L/8=5,30kN/m 6,0m/8=8,63kN (στη μεσαία στήριξη) d. Επιλογή διατομής Σχήμα : Εντατικά μεγέθη τεγίδας στεγάστρου 1 Η κατ αρχήν επιλογή της διατομής γίνεται με βάση την αντοχή σε κάμψη (υποτίθεται ότι η διατομή θα είναι κατηγορίας 1 ή, οπότε η αντοχή της σε κάμψη προκύπτει από την ροπή πλήρους διαρροής): Wpl,Rdf MEd Mpl,Rd MEd 1035kNcm W pl 3,5kN/cm /1,00 W pl,0 cm 3 γ Μ0 Από τους πίνακες επιλέγεται διατομή IPE10 με W pl =60,73cm 3 e. Κατηγορία διατομής Προϋπόθεση για την επιλογή διατομής με βάση την πλαστική αντοχή σε κάμψη είναι η διατομή να κατατάσσεται σε μία εκ των κατηγοριών 1 ή, διαφορετικά, αν κατατάσσεται στην κατηγορία 3 δεν έχουμε δικαίωμα πλαστικού ελέγχου και η επιλογή της διατομής θα πρέπει να γίνει με βάση την ελαστική αντοχή σε κάμψη. Με βάση τους πίνακες των προτύπων διατομών η διατομή IPE10 από χάλυβα S35 που υπόκειται σε κάμψη κατατάσσεται σε κατηγορία 1. Πιο αναλυτικά μπορεί να γίνει η κατάταξη ως εξής: Κατηγορία κορμού d=93,mm c/t=d/t w =93,/,=1,3<7ε όπου ε 35 / f 1 και f =35MPa, το όριο διαρροής του χάλυβα. Επομένως ο κορμός ανήκει στην κατηγορία 1. Κατηγορία πέλματος c (b t w ) / r (6,)mm / 7mm 3,6 t t f 6,3mm όπου ε=1 Επομένως και το πέλμα ανήκει στην κατηγορία 1. 9ε Συνεπώς: Κατηγορία διατομής 1 Επιτρέπεται πλαστικός έλεγχος. Παρατήρηση: Η επιλογή και ο έλεγχος θα μπορούσε (συντηρητικά) να γίνει με βάση την ελαστική αντοχή (όπως στην άσκηση 5). Σε τέτοια περίπτωση θα έπρεπε να επιλέγαμε διατομή IPE10. Δηλαδή, ο ελαστικός έλεγχος είναι συντηρητικότερος και πιο αντιοικονομικός από τον πλαστικό. Όταν επιτρέπεται, δηλαδή όταν η εξεταζόμενη διατομή είναι κατηγορίας 1 ή, κάνουμε πλαστικό έλεγχο, εκτός αν ζητείται διαφορετικά. f. Πλαστικός έλεγχος σε τέμνουσα Σύμφωνα με τον πλαστικό έλεγχο διάτμησης θα πρέπει να ισχύει: 7

8 VEd V c,rd όπου V Ed =8,63kN f Vc,Rd Vpl,Rd A v 3 γμ0 και Α v =A- b t f +(t w + r) t f =13,cm - 6,cm 0,63cm+(0,cm+ 0,7cm) 0,63cm=6,30cm Έλεγχος: f 3,5kN / cm Vc,Rd Vpl,Rd A v 6,30cm 85,8kN VEd 8,63kN 3 γμ0 3 1,00 Επομένως ο πλαστικός έλεγχος της τεγίδας σε τέμνουσα ικανοποιείται. g. Έλεγχος απομείωσης της αντοχής σε ροπή κάμψης λόγω παρουσίας τέμνουσας Ισχύει: V Ed =8,63kN<0,50V pl,rd =,7kN Επομένως δεν χρειάζεται απομείωση της αντοχής σε ροπή κάμψης λόγω παρουσίας διάτμησης. h. Πλαστικός έλεγχος σε μονοαξονική κάμψη Ο έλεγχος αυτός έχει ουσιαστικά ήδη εκτελεστεί κατά την επιλογή διατομής, και επαναλαμβάνεται εδώ απλώς για λόγους πληρότητας. Αφού η διατομή είναι κατηγορίας 1, επιτρέπεται να εκτελεστεί πλαστικός έλεγχος. Σύμφωνα με τον πλαστικό έλεγχο σε μονοαξονική κάμψη θα πρέπει να ισχύει: MEd M pl,rd όπου 3 Mpl,Rd Wpl, f / γ M0 60,73cm 3,5kN / cm /1,00 17,16kNcm Ισχύει Μ pl,rd =17,16kNcm>M Ed =1035kNcm Επομένως ο πλαστικός έλεγχος της τεγίδας σε μονοαξονική κάμψη ικανοποιείται. i. Συνδυασμοί φορτίσεων σε οριακή κατάσταση λειτουργικότητας Δυσμενείς συνδυασμοί με μόνιμα και κινητά φορτία Οι δύο συνδυασμοί που μορφώνονται για τα δύο κινητά φορτία είναι: Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό φορτίο το χιόνι) = γ G g + γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό φορτίο ο άνεμος) Ε d Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w=1,00 g+1,00 s+0,00 0,60 w =1,00 0,33kN/m+1,00 1, kn/m =1,57kN/m Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ G g + γ Q,1 w + γ Q, ψ 0, s =1,00 g +1,00 w+0,00 0,50 s =1,00 0,33kN/m-1,00 0,99 kn/m= -0,66kN/m Κρίσιμος ο πρώτος συνδυασμός φορτίσεων. Δυσμενείς συνδυασμοί με κινητά φορτία Ε d3 = γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό φορτίο το χιόνι) = γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό φορτίο ο άνεμος) Ε d Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d3 = γ Q,1 s + γ Q, ψ 0, w=1,00 s+0,00 0,60 w= (1,00 1, kn/m)=1,kn/m 8

9 Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ Q,1 w + γ Q, ψ 0, s =1,00 w+0,00 0,50 s=- 1,00 0,99 kn/m = -0,99kN/m Κρίσιμος είναι ο πρώτος συνδυασμός j. Βέλη κάμψεως ql Μέγιστο βέλος δοκού δύο ίσων ανοιγμάτων: w= 19,8EI Συνδυασμός για μόνιμα και κινητά ql 0,0157kN/cm (600cm) w 1,58cm <w 19,8EI max =600/00=3,00cm 19,8 1000kN/cm 317,8cm όπου q=e d1 =1,57kN/m=0,0157kN/cm Συνδυασμός μόνο για πρόσθετα φορτία (κινητά) για υπολογισμό του βέλους διακύμανσης ql 0,01kN/cm (600cm) w 19,8EI 19,8 1000kN/cm 317,8cm όπου q=e d3 =1,kN/m=0,01kN/cm Επομένως ο έλεγχος βελών της τεγίδας ικανοποιείται. 1,cm <w 3 =600/50=,0cm. ΠΛΑΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΥΠΙΚΗΣ ΤΕΓΙΔΑΣ ΣΤΕΓΑΣΤΡΟΥ Εξετάζεται το στέγαστρο με διατομή τεγίδας IPE10. Πλέον, λόγω της κλίσης του ζυγώματος, οι τεγίδες καταπονούνται από εγκάρσια φορτία τα οποία προκαλούν κάμψη και περί τους κύριους άξονες της διατομής. a. Γεωμετρία Η γωνία φ θα είναι sin(7,07)=0,19 φ=arctan(1,30/10,00)=7,07 o cos(7,07)=0,99 b. Φορτία Τα φορτία που λαμβάνονται υπόψη είναι: Μόνιμα (σε οριζόντια προβολή) g = 0,0kN/m Χιόνι (σε οριζόντια προβολή) s = 0,75kN/m Υποπίεση ανέμου (κάθετα στο επίπεδο της στέγης) w= -0,60kN/m Η κατανομή των φορτίων ανά τεγίδα θα είναι: g = 0,0kN/m 1,65m = 0,33kN/m s = 0,75kN/m 1,65m = 1,kN/m w = -0,60kN/m 1,65m/cosφ = -0,60kN/m 1,65m/0,99 = -1,00kN/m Η υποπίεση ανέμου εφαρμόζεται κάθετα στο επίπεδο της στέγης. 9

10 Σχήμα 3: Φορτία στο στέγαστρο Προκειμένου να συνδυαστούν τα φορτία μεταξύ τους θα πρέπει πρώτα να αναλυθούν σε δύο συνιστώσες σύμφωνα με το τοπικό σύστημα αξόνων της τεγίδας. Έτσι τα κατακόρυφα φορτία των μόνιμων φορτίων και του φορτίου χιονιού θα πρέπει να αναλυθούν σε δύο συνιστώσες q και q z όπως δίνεται στο παρακάτω σχήμα, ενώ το φορτίο υποπίεσης του ανέμου, το οποίο ασκείται παράλληλα με τον τοπικό άξονα z, δεν χρειάζεται να αναλυθεί. Σχήμα : Τοπικοί άξονες και ανάλυση κατακόρυφων φορτίων τεγίδας στεγάστρου c. Συνδυασμοί φορτίσεων σε οριακή κατάσταση αστοχίας Οι δύο συνδυασμοί που μορφώνονται για τα δύο κινητά φορτία είναι: Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό το χιόνι) = γ G g + γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό ο άνεμος) Ε d Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w=1,35 g+1,50 s+0,00 0,60 w Ε d1,z = (1,35 0,33kN/m+1,50 1, kn/m) cosφ=,30 0,99=,8kN/m = (1,35 0,33kN/m+1,50 1, kn/m) sinφ=,30 0,19=0,30kN/m Ε d1, Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ G g + γ Q,1 w + γ Q, ψ 0, s =1,00 g +1,50 w+0,00 0,50 s Ε d,z =1,00 g cosφ - 1,50w= (1,00 0,33kN/m) 0,99-1,50 1,00 kn/m = -1,17kN/m =1,00 g sinφ=1,00 0,33 kn/m 0,19=0,0kN/m Ε d, Κρίσιμος είναι ο πρώτος συνδυασμός φορτίσεων. d. Εντατικά μεγέθη Εξετάζεται η τεγίδα ως συνεχής δύο ίσων ανοιγμάτων με μήκος κάθε ανοίγματος L=6,00m Λόγω του ομοιόμορφα κατανεμημένου φορτίου στην τεγίδα κατά τον άξονα z (q z =E d1,z =,8kN/m) αναπτύσσονται καμπτικές ροπές M και τέμνουσες δυνάμεις V z, ενώ λόγω του ομοιόμορφα κατανεμημένου φορτίου κατά τον άξονα (q =E d1, =0,30kN/m) αναπτύσσονται καμπτικές ροπές Μ z και τέμνουσες δυνάμεις V. Οι αντιδράσεις και τα εντατικά μεγέθη δίνονται ως εξής: Φορτία q z : Υπολογισμός αντιδράσεων: V α,z =3q z L/8=3,8kN/m 6,0m/8=5,13kN (στην ακραία στήριξη) V μ,z =10q z L/8=10,8kN/m 6,0m/8=17,10kN (στη μεσαία στήριξη) Υπολογισμός μεγίστων ροπών κάμψεως τεγίδας στη μεσαία στήριξη: M Ed, =0,07q z L =0,07,8kN/m (6,0m) =5,75kNm (στα ανοίγματα) 10

11 M Ed, =q z L /8=,8kN/m (6,0m) /8=10,6kNm (στη μεσαία στήριξη) Υπολογισμός μεγίστων τεμνουσών δυνάμεων τεγίδας στη μεσαία στήριξη: V Ed,z =3q z L/8=3,8kN/m 6,0m/8=5,13kN (στην ακραία στήριξη) V Ed,z =5q z L/8=5,8kN/m 6,0m/8=8,55kN (στη μεσαία στήριξη) Φορτία q : Υπολογισμός αντιδράσεων: V α, =3q L/8=3 0,30kN/m 6,0m/8=0,68kN (στην ακραία στήριξη) V μ, =10q L/8=10,8kN/m 6,0m/8=,5kN (στη μεσαία στήριξη) Υπολογισμός μεγίστων ροπών κάμψεως τεγίδας στη μεσαία στήριξη: M Ed,z =0,07q L =0,07 0,30kN/m (6,0m) =0,76kNm (στα ανοίγματα) M Ed,z =q L /8=0,30kN/m (6,0m) /8=1,35kNm (στη μεσαία στήριξη) Υπολογισμός μεγίστων τεμνουσών δυνάμεων τεγίδας στη μεσαία στήριξη: V Ed, =3q L/8=3 0,30kN/m 6,0m/8=0,68kN (στην ακραία στήριξη) V Ed, =5q L/8=5 0,30kN/m 6,0m/8=1,13kN (στη μεσαία στήριξη) Οι αντιδράσεις και τα διαγράμματα των εντατικών μεγεθών της τεγίδας δίνονται στα παρακάτω σχήματα: Σχήμα 5: Εντατικά μεγέθη τεγίδας στεγάστρου για φορτία κατά τον τοπικό άξονα z Σχήμα 6: Εντατικά μεγέθη τεγίδας στεγάστρου για φορτία κατά τον τοπικό άξονα Η διατομή, όπως και στο στέγαστρο 1, είναι κατηγορίας 1, επομένως εκτελούνται πλαστικοί έλεγχοι επάρκειας σε οριακή κατάσταση αστοχίας. e. Πλαστικός έλεγχος σε τέμνουσα Kατά τον τοπικό άξονα z Σύμφωνα με τον πλαστικό έλεγχο διάτμησης θα πρέπει να ισχύει: VEd,z Vc,Rd,z όπου V Ed,z =8,55kN 11

12 V c,rd,z V pl,rd,z A και όπως υπολογίστηκε στην περίπτωση του στεγάστρου 1: Α vz =6,30cm vz f 3 γ Μ0 Επομένως θα έχουμε: f 3,5kN / cm Vc,Rd Vpl,Rd,z A v 6,30cm 85,8kN V 3 γ Μ0 3 1,00 Kατά τον τοπικό άξονα Σύμφωνα με τον πλαστικό έλεγχο διάτμησης θα πρέπει να ισχύει: VEd, Vc,Rd, όπου V Ed, =1,13kN f Vc,Rd, Vpl,Rd, A v 3 γ Μ0 και η επιφάνεια διάτμησης είναι: Α v =bt f = 6,cm 0,63cm=8,06cm Επομένως θα έχουμε: f 3,5kN / cm Vc,Rd, Vpl,Rd, A v 8,06cm 109,36kN VEd, 1,13kN 3 γμ0 3 1,00 Επομένως ο πλαστικός έλεγχος της τεγίδας σε τέμνουσα ικανοποιείται. Ed, z 8,55kN f. Έλεγχος απομείωσης της αντοχής σε ροπή κάμψης λόγω παρουσίας τέμνουσας Ισχύει: V Ed,z =8,55kN<0,50V pl,rd,z =,7kN V Ed, =1,13kN<0,50V pl,rd, =5,68kN Επομένως δεν χρειάζεται απομείωση των αντοχών σε ροπές κάμψης M pl,rd, και M pl,rd,z αντίστοιχα, λόγω παρουσίας διάτμησης. g. Πλαστικός έλεγχος σε διαξονική κάμψη Σύμφωνα με τον πλαστικό έλεγχο σε διαξονική κάμψη θα πρέπει να ισχύει: α β MEd, MEd,z 1 M pl,rd, M pl,rd,z όπου Μ pl,rd, =W pl, f /γ M0 Μ pl,rd,z =W pl,z f /γ M0 και για διατομές διπλού ταυ: α=, β=5n n=n Ed /N pl,rd με β 1 Στην περίπτωση της τεγίδας Ν Ed =0 επομένως n=0 και β=1 Έλεγχος MEd, Mpl,Rd, α M M Ed,z pl,rd,z β W M pl, f Ed, / γ Μ0 M Wpl,zf 106kNcm 135kNcm 0,7 0, 0, ,73cm 3,5kN / cm 13,58cm 3,5kN / cm 1,00 1,00 Επομένως ο πλαστικός έλεγχος της τεγίδας σε διαξονική κάμψη ικανοποιείται. Ed,z z / γ Μ0 1

13 h. Συνδυασμοί φορτίσεων σε οριακή κατάσταση λειτουργικότητας Δυσμενείς συνδυασμοί με μόνιμα και κινητά φορτία Οι δύο συνδυασμοί που μορφώνονται για τα δύο κινητά φορτία είναι: Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό το χιόνι) Ε d = γ G g + γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό ο άνεμος) Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d1 = γ G g+ γ Q,1 s + γ Q, ψ 0, w=1,00 g+1,00 s+0,00 0,60 w Ε d1,z = (1,00 0,33kN/m+1,00 1, kn/m) cosφ=1,57 0,99=1,56kN/m = (1,00 0,33kN/m+1,00 1, kn/m) sinφ=1,57 0,19=0,0kN/m Ε d1, Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ G g + γ Q,1 w + γ Q, ψ 0, s =1,00 g +1,00 w+0,00 0,50 s Ε d,z = γ G g cosφ + γ Q,1 w = =1,00 0,33kN/m 0,99-1,00 1,00 kn/m = -0,67kN/m Ε d, = γ G g sinφ = =1,00 g sinφ=1,00 0,33 kn/m 0,19=0,0kN/m Κρίσιμος είναι ο πρώτος συνδυασμός Δυσμενείς συνδυασμοί με κινητά φορτία Ε d3 = γ Q,1 s + γ Q, ψ 0, w (κύριο κινητό το χιόνι) Ε d = γ Q,1 w + γ Q, ψ 0, s (κύριο κινητό ο άνεμος) Δυσμενής συνδυασμός με φορτία προς τα κάτω (δυσμενής επιρροή για φορτία προς τα κάτω, ευμενής επιρροή για φορτία προς τα πάνω) Ε d3 = γ Q,1 s + γ Q, ψ 0, w=1,00 s+0,00 0,60 w Ε d3,z = (1,00 1, kn/m) cosφ=1, 0,99=1,3kN/m Ε d3, = (1,00 1, kn/m) sinφ=1, 0,19=0,16kN/m Δυσμενής συνδυασμός με φορτία προς τα πάνω (δυσμενής επιρροή για φορτία προς τα πάνω, ευμενής επιρροή για φορτία προς τα κάτω) Ε d = γ Q,1 w + γ Q, ψ 0, s =1,00 w+0,00 0,50 s Ε d,z = - 1,00 1,00 kn/m = -1,00kN/m = 0kN/m Ε d, Κρίσιμος είναι ο πρώτος συνδυασμός i. Βέλη κάμψεως Το μέγιστο βέλος της τεγίδας παρουσιάζεται στο μέσον του ανοίγματός της, λόγω των φορτίων κατά z και κατά. Και κατά τους δύο άξονες η τεγίδα συμπεριφέρεται ως συνεχής δοκός δύο ανοιγμάτων. Συνδυασμός για μόνιμα και κινητά ql Μέγιστο βέλος δοκού δύο ίσων ανοιγμάτων: w= 19,8EI qzl 0,0156kN/cm (600cm) w z 1,57cm 19,8EI 19,8 1000kN/cm 317,8cm ql w 19,8EI όπου z 0,000kN/cm (600cm) 19,8 1000kN/cm 7,67cm q z = Ε d1,z =1,56kN/m=0,0156kN/cm q = Ε d1, =0,0kN/m=0,000kN/cm Το συνολικό βέλος δίνεται ως εξής: w w z w 1,57,31,31cm,79cm <w max =600/00=3,0cm 13

14 Συνδυασμός μόνο για πρόσθετα φορτία (κινητά) για υπολογισμό του βέλους διακύμανσης qzl 0,013kN/cm (600cm) w z 1,cm 19,8EI 19,8 1000kN/cm 317,8cm q L 0,0016kN/cm (600cm) w 1,85cm 19,8EI z 19,8 1000kN/cm 7,67cm όπου q z = Ε d3,z =1,3kN/m=0,013kN/cm q = Ε d3, =0,16kN/m=0,0016kN/cm Το συνολικό βέλος δίνεται ως εξής: w w z w 1, 1,85,3cm <w 3 =600/50=,0cm Επομένως ο έλεγχος βελών της τεγίδας ικανοποιείται. 1

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2013.099

Νέα έκδοση προγράμματος STeel CONnections 2013.099 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2013.099 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 9Α: ΕΛΛΗΝΙΚΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΑΚ, 2003) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΑΝΩ ΔΙΑΒΑΣΗ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/14

ΑΝΩ ΔΙΑΒΑΣΗ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/14 ΑΝΩ ΔΙΑΒΑΣΗ ver. Πρόκειται για ένα υπολογιστικό φύλλο που εφαρμόζει διαδικασία στατικού και αντισεισμικού υπολογισμού ενός φορέα 3 ανοιγμάτων με συνεχές προεντεταμένο κατάστρωμα (συνήθως αφορά οδικές άνω

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1)

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Υπολογισμός συνδέσεως διαγωνίου Σύνδεση διαγωνίου Δ 100.1 (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Έργο Υπολογισμός συνδέσεως διαγωνίου COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου... 7 3

Διαβάστε περισσότερα

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών

Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών Ενότητα 4: Δοκιμή Εφελκυσμού Χάλυβα Οπλισμού Σκυροδέματος Ευάγγελος Φουντουκίδης

Διαβάστε περισσότερα

fk = K fb 0,70 fm 0,30 Κ=0,45 από Πίνακα 3.3 fb = 4,675 MPa fm= 5 MPa fk = 0,45 4,675 0,70 5,0 0,30 = 2,15 N/mm 2

fk = K fb 0,70 fm 0,30 Κ=0,45 από Πίνακα 3.3 fb = 4,675 MPa fm= 5 MPa fk = 0,45 4,675 0,70 5,0 0,30 = 2,15 N/mm 2 3. Υπολογισμός χαρακτηριστικών αντοχών 3.1. Αντοχή σε θλίψη της τοιχοποιίας, fk Για κονίαμα γενικής χρήσης η αντοχή σε θλίψη της τοιχοποιίας προσδιορίζεται από τη σχέση: fk = K fb 0,70 fm 0,30 Κ=0,45 από

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Μάθημα: Τεχνική Μηχανική

Μάθημα: Τεχνική Μηχανική Μάθημα: Τεχνική Μηχανική Ενότητα 1: Τεχνική Μηχανική Διδάσκων: Γκούντας Ιωάννης Τμήμα: Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Μελέτη τοίχου ανιστήριξης

Μελέτη τοίχου ανιστήριξης FESPA 5.2.0.88-2012 LH Λογισμική Μελέτη τοίχου ανιστήριξης Σύμφωνα με τους Ευρωκώδικες Ο Μηχανικός Σχέδιο τοίχου αντιστήριξης 0 0.55 1.1 1.65 2.2 2.75 3.3 3.85 4.4 4.95 5.5 0 0.53 1.06 1.59 2.12 2.65 3.18

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Σχόλιο [h1]: Παράδειγμα: https://ocp.teiath.gr/modules/ exercise/exercise_result.php?course=pey101&eurid=16 9 ΜΑΘΗΜΑ: ΣΤΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 1 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Σκοπός και Στόχος του μαθήματος Στόχος του μαθήματος

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών -01», Μάρτιος 2001. ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ Εργασία Νο B3 ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετάται το πώς

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 11η: Δοκιμή Ανεμπόδιστης Θλίψης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Σχεδιασμός κόμβων μεταλλικών κατασκευών

Σχεδιασμός κόμβων μεταλλικών κατασκευών Σύμφωνα με το Μέρος 1.8 του Ευρωκώδικα 3 (ΕΝ1993) Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 2009 Περιεχόμενα παρουσίασης Εισαγωγή

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙΙ Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Σύγχρονη Μηχανή με Έκτυπους Πόλους 1 Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 12η: Δοκιμή Άμεσης Διάτμησης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις

ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις ΚΕΦΑΛΑΙΟ 1 Οριακές Καταστάσεις Σχεδιασµού - Συντελεστές Ασφαλείας - ράσεις Σχεδιασµού - Συνδυασµοί ράσεων - Εντατικές Καταστάσεις 1.1. Οριακές καταστάσεις σχεδιασµού (Limit States) Κατά τη διάρκεια ζωής

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΟ ΚΤΗΡΙΟ ΠΑΡΑΔΕΙΓΜΑ ΕΙΣΑΓΩΓΗΣ. (Ευρωκώδικες 1 & 3) Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Ι Ρ Ι Ω Ν Εκδ. 5.xx

ΜΕΤΑΛΛΙΚΟ ΚΤΗΡΙΟ ΠΑΡΑΔΕΙΓΜΑ ΕΙΣΑΓΩΓΗΣ. (Ευρωκώδικες 1 & 3) Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Ι Ρ Ι Ω Ν Εκδ. 5.xx Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Ι Ρ Ι Ω Ν Εκδ. 5.xx ΠΑΡΑΔΕΙΓΜΑ ΕΙΣΑΓΩΓΗΣ ΜΕΤΑΛΛΙΚΟ ΚΤΗΡΙΟ (Ευρωκώδικες 1 & 3) ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Δεκέμβριος 2015 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 1

ΤΥΠΟΛΟΓΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ 1 ΣΕΙΣΜΙΚΗ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑ Περίοδος επανάληψης σεισμού για πιανότητα υπέρβασης p του

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Ο Δ Η Γ Ο Σ Χ Ρ Η Σ Η Σ ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Οκτώβριος 2012 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού 60, 71201

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων. ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2008-2009 ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ασκήσεις 1 έως 12 Για αποκλειστική

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό. 1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ Ενίσχυση Προβόλου που έχει Υποστεί Βέλος Κάμψης ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ ΒΕΝΙΟΣ ΚΥΡΙΑΚΟΣ ΚΟΥΦΟΠΟΥΛΟΥ ΣΤΥΛΙΑΝΗ Περίληψη Η παρούσα εργασία εξετάζει την δημιουργία βέλους κάμψης σε

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών Τ.Ε.Ι. ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΣΚΗΣΕΙΣ ΣΤΤΙΚΗΣ I ιαγράμματα M, Q, N Ισοστατικών οκών Κόκκινος Τριαντ., Ph.D. εκέμβριος 2010 σκήσεις Στατικής I 1 Άσκηση 1 60 N/m 180

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Α. ΑΒΔΕΛΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. Α. ΑΒΔΕΛΑΣ 1986: Οδηγίες Σχεδιασμού της ECCS (European Convention

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΟΧΕΤΟΣ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/9

ΟΧΕΤΟΣ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/9 ΟΧΕΤΟΣ ver. Πρόκειται για ένα υπολογιστικό φύλλο που εφαρμόζει διαδικασία στατικού και υδραυλικού υπολογισμού ενός κιβωτιοειδούς φορέα (συνήθως οδικές κάτω διαβάσεις αρτηριών ή οχετοί εκτόνωσης ρεμμάτων).

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΧΝΟΛΟΙΚΟ ΚΠΙΔΥΤΙΚΟ ΙΔΡΥΜ ΚΝΤΡΙΚΗΣ ΜΚΔΟΝΙΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΡΜΟΩΝ ΤΜΗΜ ΜΗΧΝΟΛΟΩΝ ΜΗΧΝΙΚΩΝ Τ ΜΗΧΝΙΚΗ Ι ΡΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΡΡΣ, ΣΠΤΜΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα