Θεωρι α Γραφημα των 2η Δια λεξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρι α Γραφημα των 2η Δια λεξη"

Transcript

1 Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

2 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) = N G (v) [ορισμο ς μο νο για απλα γραφη ματα] v 7 v 1 v 2 v 3 v 4 Ελάχιστος βαθμός γραφήματος: δ(g) = min {d G (v) : v V(G)} Μέγιστος βαθμός γραφήματος: (G) = max {d G (v) : v V(G)} Μέσος βαθμός γραφήματος: d(g) = d G (v)/ V(G) v V(G) Πυκνότητα γραφήματος: ϵ(g) = E(G) / V(G) v 6 Απομονωμένη κορυφή: κορυφη v με d G (v) = 0 Εκκρεμής κορυφή: κορυφη v με d G (v) = 1 r-κανονικό γράφημα: r-regular v 5 v V(G) ισχυ ει d G (v) = r Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

3 Θεώρημα 2.1: Για κα θε γρα φημα G ισχυ ουν: i. d G (v) = 2 E(G) v V(G) ii. δ(g) d(g) (G) iii. ϵ(g) = d(g)/2 Απόδειξη : i. Πι νακας Προ σπτωσης e 1 e 2 e 3 e 4 e 5 e 6 e 7 d(v) v 1 v v v v v 1 d(v) E(G) v 2 e 1 e 4 e 2 v 3 v 5 e 3 e 5 e 6 e 7 v 4 ii. απο τον ορισμο των δ(g), d(g) και (G) iii. απο τον ορισμο των ϵ(g) και d(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

4 Πρόταση 2.2 : Κα θε γρα φημα G ε χει α ρτιο αριθμο κορυφω ν περιττου βαθμου Απόδειξη : } Εστω V 1 V : συ νολο κορυφω ν περιττου βαθμου V 1 V 2 = V V 2 V : συ νολο κορυφω ν α ρτιου βαθμου Ισχυ ει d G (v) + d G (v) = 2 E(G) v V 1 v V 2 d G (v) ει ναι α ρτιος αριθμο ς v V 1 V 1 ει ναι α ρτιο, γιατι d G (v), v V 1 ει ναι περιττο ς Πρόταση 2.3 : Κα θε r-κανονικο γρα φημα G ε χει r V(G) 2 ακμε ς Απόδειξη : E(G) = d G (v) v V(G) = r V(G) 2 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

5 Ερώτηση 2.1: Το γρα φημα G ε χει ακριβω ς δυ ο κορυφε ς με περιττο βαθμο, ε στω τις u και v. Συνδε ονται οι u και v με μονοπα τι? Ερώτηση 2.2: Υπα ρχει 3-κανονικο γρα φημα G με 9 κορυφε ς? Ερώτηση 2.3: Υπα ρχει 9-κανονικο γρα φημα G με 13 κορυφε ς? Ερώτηση 2.4: Έστω 2 ο μιλοι ποδοσφαι ρου με 13 ομα δες ο καθε νας. Μπορου με να οργανω σουμε ε να πρωτα θλημα ε τσι ω στε κα θε ομα δα να συμμετε χει σε 9 αγω νες με ομα δες του ομι λου της και σε 4 αγω νες με ομα δες του α λλου ομι λου? Ερώτηση 2.5: Έστω ε να r-κανονικο διμερε ς γρα φημα με διαμερι σεις X και Y. Το τε X = Y. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

6 Πρόταση 2.4 : Κα θε απλο γρα φημα G ε χει δυ ο κορυφε ς ι διου βαθμου Απόδειξη : G απλο v V(G) : d G (v) {0, 1,..., n 1} ο που n = V(G) Αλλα, το συ νολο των δυνατω ν βαθμω ν για τις κορυφε ς του G δεν μπορει να περιε χει ταυτο χρονα τους βαθμου ς 0 και n 1 [Η κορυφη με βαθμο n 1 ει ναι ενωμε νη με ο λες τις α λλες κορυφε ς, οπο τε δεν υπα ρχει κορυφη με βαθμο 0] Συνεπω ς ε χουμε n 1 το πολυ δυνατου ς βαθμου ς για τις n κορυφε ς Άρα υπα ρχουν δυ ο κορυφε ς με τον ι διο βαθμο [αρχη του περιστερεω να] Πρόταση 2.5 : Σε κα θε ομα δα απο 2 η περισσο τερους ανθρω πους πα ντα υπα ρχουν δυ ο α τομα με τον ι διο αριθμο φι λων με σα στην ομα δα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

7 Πρόταση 2.6 : Έστω απλο γρα φημα G για το οποι ο ισχυ ει δ(g) V(G) 1 2. Το τε το G ει ναι συνδεδεμε νο Απόδειξη : Θα δει ξουμε ο τι u, v V(G) υπα ρχει μονοπα τι απο την u στην v. Περίπτωση 1: e = (u, v) E Το τε υπα ρχει μονοπα τι u v Περίπτωση 2: e = (u, v) / E δ(g) { V(G) 1 2 N G (u) V(G) 1 2 N G (v) V(G) 1 2 Παρατηρου με ο τι N G (u) N G (v) (1) Εα ν N G (u) N G (v) = N G (u) N G (v) = N G (u) + N G (v) V(G) 1 (2) Αλλα {u, v} / N G (u) N G (v) N G (u) N G (v) V(G) 2 (3) άτοπο λο γω της (2) (1) w N G (u) N G (v) e 1 = (u, w), e 2 = (w, v) υπα ρχει μονοπα τι u v Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

8 Θεώρημα 2.7: Κα θε γρα φημα G χωρι ς βρο γχους ε χει διμερε ς υπογρα φημα H G με τουλα χιστον E(G) /2 ακμε ς Απόδειξη [Κατασκευαστική]: Θα κατασκευα σουμε διμερε ς υπογρα φημα H G με E(G) /2 ακμε ς. 1. Έστω αυθαι ρετη διαμε ριση X, του V(G) και H G το διμερές επαγόμενο απο τα X, γρα φημα Εα ν E(H) E(G) /2 τελειω σαμε 2.2 Αλλιω ς [E(H) < E(G) /2] Έστω v V(G) : d H (v) < d G (v)/2 (πα ντα υπα ρχει) Μετε θεσε την v στο α λλο μερι διο Προσα ρμοσε το H ω στε να ει ναι διμερε ς: αφαι ρεσε τις ακμε ς απο το H που ενω νονταν με την v πριν την μετα θεση [d H (v) ακμε ς] και προ σθεσε τις ακμε ς που ενω νονται με την v στο G αλλα ο χι στο H [>d H (v) ακμε ς] Πη γαινε στο 2. Ο αριθμο ς των ακμω ν του H αυξα νει μετα απο κα θε μετακι νηση Ο αλγο ριθμος τερματι ζει Το γρα φημα H ει ναι διμερε ς [απο κατασκευη ] E(H) E(G) /2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

9 E(H) E(G) /2 Απόδειξη : Στο τε λος του αλγορι θμου ισχυ ει v V(G) : d H (v) d G (v)/2 E(H) = 1 d 2 H (v) v V(H) 1 d 2 G (v)/2 [V(H) = V(G)] v V(G) = E(G) /2 Ερώτηση 2.6: Δι νει πα ντοτε ο αλγο ριθμος το με γιστο διμερε ς υπογρα φημα? g f h e a d b c H 1 : {a, b, c, d}, {e, f, g, h} E(H 1 ) = 12 H 2 : {g, h, a, b}, {c, d, e, f} E(H 1 ) = 16 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

10 Θεώρημα 2.8: Κα θε μη τετριμμε νο γρα φημα G χωρι ς βρο γχους ε χει διμερε ς υπογρα φημα H G με > E(G) /2 ακμε ς [τετριμμε νο γρα φημα: γρα φημα χωρι ς ακμε ς η κορυφε ς] Απόδειξη [Επαγωγή στο V(G) ]: βα ση V(G) = 2 G = H, ισχυ ει Ε.Υ. Κα θε μη τετριμμε νο χωρι ς βρο γχους γρα φημα G με V(G) k, k 2 ε χει διμερε ς υπογρα φημα H G με > E(G) /2 ακμε ς Ε.Β. Έστω αυθαι ρετο γρα φημα G με V(G) = k + 1 Έστω αυθαι ρετη κορυφη v V(G) Θεωρω το G\v [ε χει k κορυφε ς] Ε.Υ. = H G\v : E(H ) > E(G\v) /2 Έστω X και Y τα μερι δια του H Προσθε τω την v στην διαμε ριση ο που η v συνδε εται με τις λιγο τερες ακμε ς γρα φημα H Προσθε τουμε στο H τουλα χιστον d G (v)/2 ακμε ς. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

11 E(H) E(H ) + d G (v)/2 > E(G\v) /2 + d G (v)/2 = ( E(G\v) + d G (v))/2 = E(G) /2 Ερώτηση 2.7: Εστω A ο πι νακας γειτνι ασης ενο ς απλου γραφη ματος G. Να δειχθει ο τι η διαγω νιος του A 2 περιε χει τους βαθμου ς των κορυφω ν του G. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

12 Θεώρημα 2.9[Köning-1916]: Κα θε γρα φημα G ει ναι επαγο μενο υπογρα φημα κα ποιου (G)-κανονικου γραφη ματος Απόδειξη : Για κα θε γρα φημα G ορι ζουμε την ποσο τητα ( (G) d G (v)) v V(G) z(g) = V(G) Το z(g) αποτελει με τρο του πο σο απε χει το G απο το να ει ναι (G)-κανονικο Εφαρμο ζουμε επαναληπτικα την παρακα τω διαδικασι α η οποι α μειω νει το z(g) 1. G 1 = G G 2. Προ σθεσε ακμε ς μεταξυ αντι στοιχων κορυφω ν (σε διαφορετικα αντι γραφα) που ε χουν βαθμο < (G) G G 1 και z(g) > z(g 1 ) 3. Εα ν G 1 ει ναι (G)-κανονικο τελειω σαμε αλλιω ς G = G 1 πη γαινε στο 1. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

13 Γραφικη Ακολουθι α Έστω η ακολουθι α (d 1, d 2,..., d n ) ο που 0 d i < n, d i N Με sorted((d 1, d 2,..., d n)) συμβολι ζουμε την ακολουθι α που προκυ πτει απο την ταξινο μηση σε φθι νουσα δια ταξη της (d 1, d 2,..., d n ) Έστω G = (V, E) και s = (d(v 1 ), d(v 2 ),..., d(v n )), v i V(G), V(G) = n η ακολουθι α βαθμω ν του G Η ακολουθι α sorted((d(v 1 ), d(v 2 ),..., d(v n))) ονομα ζεται γραφικη ακολουθι α του G. G v1 v4 v8 v10 Γραφικη ακολουθι α του G v3 v5 v7 v2 ( ) v6 v9 v5 v3 v7 v4 v6 v8 v9 v1 v2 v10 Γραφική ακολουθία: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n) ονομα ζεται γραφική αν υπα ρχει γρα φημα G(V, E) και μι α 1 1 και επι απεικο νιση σ : V {1, 2,..., n}: d(v) = d σ(v) Το γρα φημα G υλοποιει την ακολουθι α s Η ακολουθι α s ει ναι η ακολουθι α βαθμω ν του G Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

14 Ερώτηση 2.8: Υπα ρχουν διμερη γραφη ματα με τις παρακα τω ακολουθι ες βαθμω ν? i. (3, 3, 2, 2, 2) ii. (3, 2, 2, 2, 2, 1) iii. (5, 2, 1, 1, 1) iv. (3, 3, 2, 2) Ερώτηση 2.9: Να δειχθει ο τι για κα θε n 2 η ακολουθι α (0, 1, 2,..., n 1) δεν ει ναι γραφικη. Ερώτηση 2.10: Να δειχθει ο τι η ακολουθι α (d 1 d 2, d n ) ει ναι γραφικη ανν η ακολουθι α sorted(n d 1 1, n d 2 1,..., n d n 1) ει ναι γραφικη. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

15 Μεταγωγή: Έστω κορυφε ς x, y, z, w V(G) ενο ς απλου γραφη ματος G και (x, y), (z, w) E(G) αλλα (x, z)(y, w) / E(G). Ορι ζουμε ως μεταγωγή πα νω στο συ νολο {x, y, z, w} την αντικατα σταση στο G των ακμω ν (x, y), (z, w) απο τις (x, z)(y, w) Παρα δειγμα: u v w u v w u v w (u,v)(y,x) (u,v)(y,x) x y z x y z x y z Σημείωση: Μια μεταγωγη σε ε να συ νολο 4 κορυφω ν ενο ς γραφη ματος G δεν αλλα ζει την ακολουθι α βαθμω ν του G. Ανηγμένη ακολουθία: Έστω η ακολουθι α s = (d 1 d 2, d n ). Η ακολουθι α (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n) ορι ζεται ως η ανηγμένη ακολουθία της s Παρα δειγμα: Έστω s = (4, 3, 2, 2, 2, 2, 1). Η ανηγμε νη ακολουθι α της s ει ναι η s 1 = (2, 1, 1, 1, 2, 1) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

16 Θεώρημα 2.10[Havel-Hakimi]: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n) ει ναι γραφικη ανν η ανηγμε νη ακολουθι α της s ει ναι γραφικη Απόδειξη : Έστω s 1 = (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n) η ανηγμε νη ακολουθι α της s και ε στω ο τι η s 1 ει ναι γραφικη s 1 γραφικη G 1 με V(G { 1 ) = {v 2, v 3,..., v n} d(v i ) = d i 1 2 i d d i d i n Κατασκευα ζω γρα φημα G(V, E): V(G) = V(G 1 ) {v 1 } Ο G υλοποιει την ακολουθι α s Η ακολουθι α s ει ναι γραφικη E(G) = E(G 1 ) {(v 1, v i ) : 2 i d 1 + 1} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

17 Παρα δειγμα: v 4 G 1 v 4 v 3 v 3 v 1 v 5 v 6 v 5 v 6 v 2 v 7 v 2 v 7 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

18 s = (d 1 d 2, d n ) ει ναι γραφικη s = (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ) ει ναι γραφικη s γραφικη G = (V, E) με V(G) = {v 1, v 2,..., v n } : d(v i ) = d i, i = 1,..., n Περίπτωση 1: u V(G) : d(u) = d 1 και η u ει ναι γειτονικη με κορυφε ς με βαθμου ς d 2, d 3,..., d d1 +1 G\u ε χει ακολουθι α βαθμω ν την s Περίπτωση 2: κορυφη u ο πως στην περι πτωση 1 Έστω η κορυφη v i ε χει βαθμο d(v i ) = d i, i = 1,..., n Επειδη η v 1 δεν ει ναι γειτονικη με ο λες τις v 2, v 3,..., v d1 +1 v j και v k με d j > d k : Λο γω του ο τι d(v j ) > d(v k ) κορυφη v l : v 1 δεν ει ναι γειτονικη με v j v 1 ει ναι γειτονικη με v k v l ει ναι γειτονικη με v j και v l δεν ει ναι γειτονικη με v k Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

19 v 1 v k Μι α μεταγωγη στις v 1, v k, v j, v l δι νει γρα - φημα G με ι δια ακολουθι α βαθμω ν με το G. ΑΛΛΑ: το α θροισμα των βαθμω ν των γειτο - νων της v 1 στο G ει ναι μεγαλυ τερο απο το ι διο α θροισμα στο G v 1 v j v k v l μεταγωγή Συνεχι ζοντας ομοι ως θα φτα σουμε στην περι πτωση 1. η s ει ναι γραφικη v j v l Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

20 Παρα δειγμα: Ει ναι η ακολουθι α (5, 4, 3, 2, 2, 1, 1) γραφικη? Εα ν ναι, να δοθει γρα φημα G που την υλοποιει. s 1 = (5, 4, 3, 2, 2, 1, 1) s 1 = ( 3, 2, 1, 1, 0, 1) s 2 = sorted(s 1 ) s 2 = ( 3, 2, 1, 1, 1, 0) s 2 = ( 1, 0, 0, 1, 0) s 3 = sorted(s 2 ) s 2 = ( 1, 1, 0, 0, 0) Γραφικη G 3 : s G 2 : s G 1 : s 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

21 Θεώρημα 2.11[Erdös-Gallai]: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n ), n 2, d 1 1 ει ναι γραφικη ανν n k n i. d i ει ναι α ρτιο και ii. k : 1 k < n d i k(k 1) + min {k, d i } i=1 i=1 i=k+1 Απόδειξη : i. Προφανε ς V 1 V \V 1 k ii. d i : v 1 v 2... v k v k+1... v n i=1 E 2 : ακμε ς απο το V 1 στο V\V 1 E 1 E 2 Κα θε κορυφη u του V\V 1 ενω νεται} με ( ) το πολυ με d u κορυφε ς του V 1 ακμε ς ανα μεσα το πολυ με k κορυφε ς του V 1 E 1 : 2 στις κορυφε ς του V το πολυ με min {k, d u } 1 n k(k 1) Συνολικα : min {k, d i } i=k+1 k n d i k(k 1) + min {k, d i }, 1 k < n i=1 i=k+1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

22 Ερώτηση 2.11: Να δειχθει ο τι για πολυγραφη ματα ισχυ ει: η φθι νουσα ακολουθι α n s = (d 1 d 2, d n ), n 2, d 1 1 d i ει ναι α ρτιο. i=1 ει ναι γραφικη Σύνολα βαθμών κορυφών: Παρα δειγμα: Δεδομε νου γραφη ματος G συμβολι ζουμε με D G το σύνολο των [διακριτών] βαθμών των κορυφω ν του G G : s = (4, 3, 3, 2, 2, 2, 2, 1, 1) D G = {4, 3, 2, 1} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

23 Θεώρημα 2.12[Kapoor-Polimeni-Wall]: Για κα θε συ νολο S = {a 1, a 2,..., a n }, n 1, θετικω ν ακεραι ων με a 1 < a 2 < < a n υπα ρχει γρα φημα G με συ νολο βαθμω ν D G = S. Επιπλε ον υπα ρχει τε τοιο γρα φημα G με V(G) = a n + 1. Απόδειξη [Κατασκευαστικά με επαγωγή στο n]: Ο βαθμο ς του G ει ναι a n + 1. Συνεπω ς θα δει ξουμε ο τι υπα ρχει G με V(G) = a n + 1 n = 1 Το πλη ρες γρα φημα K an +1 με a n + 1 κορυφε ς ει ναι το ζητου μενο. Όλες οι κορυφε ς του ε χουν βαθμο a 1. n = 2 Συμβολι ζουμε με A λ το γρα φημα με λ κορυφε ς και χωρι ς ακμε ς. A λ = ({v 1, v 2,..., v λ }, ) Το γρα φημα K a1 A a2 a 1 +1 [ : συ νδεση γραφημα των] a 1 1 K a1 a 2 a βαθμός a 2 a a 1 a a 2 a βαθμός = a 2 a 1 ε χει συ νολο βαθμω ν {a 1, a 2 } V(G) = a 2 a a 1 = a Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

24 Ε.Υ. Για κα θε συ νολο S = {a 1, a 2,..., a m } με θετικου ς ακεραι ους a 1 < a 2 < < a m και 1 m < n ισχυ ει ο τι: i. υπα ρχει γρα φημα G με συ νολο βαθμω ν S ii. V(G) = a m + 1 Ε.B. Έστω συ νολο S = {a 1, a 2,..., a n, a n+1 } με a i N +, a 1 < < a n < a n+1 Απο Ε.Υ. γρα φημα G 1 με συ νολο βαθμω ν {a 2 a 1, a 3 a 1,..., a n a 1 } και V(G 1 ) = a n a Θεωρη στε το γρα φημα G = K a1 A an+1 a n G 1 a 1 1 K a1 a n a G 1 V (G 1) = a n a βαθμοί: {a 2, a 3,..., a n} βαθμός: a 1 1+ a n a a n+1 a n = a n+1 a n+1 a n A an+1 an βαθμός a 1 ε χει συ νολο βαθμω ν {a 1, a 2,..., a n, a n+1 } V(G) = }{{} a 1 + a n+1 a n + a }{{} n a = a }{{} n K a1 A an+1 G an 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

25 Παρα δειγμα: Να κατασκευαστει γρα φημα με 8 κορυφε ς και συ νολο βαθμω ν {2, 4, 6, 7} D 1 = {2, 4, 6, 7} D 2 = {d 2 d 1, d 3 d 1 } = {2, 4} G 2 V (G 2 ) = 5 G 1 a n+1 = 7 G 2 {d 2, d 3 } = {4, 6} K 2 A 3 D G1 = {2, 4, 6, 7} V(G 1 ) = 8 K 2 A an+1 an a 1 = 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 3η Δια λεξη

Θεωρι α Γραφημα των 3η Δια λεξη Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος 2015 48 / 71 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 9η Δια λεξη

Θεωρι α Γραφημα των 9η Δια λεξη Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο

Διαβάστε περισσότερα

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos

Διαβάστε περισσότερα

Δομές Ελέγχου και Επανάληψης

Δομές Ελέγχου και Επανάληψης Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί

Διαβάστε περισσότερα

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28

Διαβάστε περισσότερα

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο

Διαβάστε περισσότερα

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.

ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11

Διαβάστε περισσότερα

Αποτελεσματικός Προπονητής

Αποτελεσματικός Προπονητής ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï

Διαβάστε περισσότερα

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ε πι λο γές & σχέ σεις στην οι κο γέ νεια ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο

Διαβάστε περισσότερα

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ. σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ

Διαβάστε περισσότερα

των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09

των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ ΛΕΙ

Διαβάστε περισσότερα

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ ΤΥΙΚΑ & ΜΑΚΑΡΙΣΜΟΙ Ἦχος Νη Μ Α Ν µην Ευ λο γει η ψυ χη µου τον Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ λο γει η ψυ χη µου τον Κυ ρι ον και πα αν τα τα εν τος µου το ο νο µα το α γι ον αυ του Ευ λο γει η ψυ

Διαβάστε περισσότερα

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ

Διαβάστε περισσότερα

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 2 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΕ

Διαβάστε περισσότερα

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι

σε τα σημε α να ε ναι υπ λ γι τι ζ χαι ι Υ αμμ ζ να αντιπρ σωπει υν τι Φ Λ Ι Ι ι αγωγτ ρι μ Π λλι πρα τν πρ βλτ ματα χαι χαταστι αει τη αθημ ριν ζω μπ ρ ι ν να περιγραφ ν με τη β θεια ν διαγρι μματ ζ απ τελ μεν υ απ να ι ν λ ημε ων αι να ν λ γραμμι ν π υ να ενι ν υν υγ ε

Διαβάστε περισσότερα

Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης

Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Γα υ ρι ι ε ε κε ε κρα ξα προ ος σε ε ε ει σα κου ου σο ο ο ο ον μου ου ει σα κου σο ον μου Κυ ρι ε ε Κυ ρι ε ε κε κρα ξα προς σε ε ει σα κου σο ο ο ον μου ου προ

Διαβάστε περισσότερα

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A

οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A οξαστικὸν Ἀποστίχων Ὄρθρου Μ. Τετάρτης z 8 a A δ ` 3kς 3qz 3{9 ` ]l 3 # ~-?1 [ve 3 3*~ /[ [ ` ο `` ο ~ ο ```` ξα ~ ``` Πα```` α ` τρι ```ι ``` ι ` ι ~ και ``αι [D # ` 4K / [ [D`3k δδ 13` 4K[ \v~-?3[ve

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras

ΔΕΛΤΙΟ ΤΥΠΟΥ. Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras ΔΕΛΤΙΟ ΤΥΠΟΥ Κατέθεσε την καινοτόμα ιδέα σου στον 1ο Διαγωνισμό BlueGrowth Patras Στο πλαι룱綟σιο της Παγκο룱綟 σμιας Εβδομα룱綟 δας Επιχειρηματικο룱綟 τητας*, o ΕΣΥΝΕΔΕ και η Ομοσπονδι룱綟α ΕΣΥΝΕ, σε συνεργασι룱綟α

Διαβάστε περισσότερα

Αρ χές Ηγε σί ας κα τά Πλά τω να

Αρ χές Ηγε σί ας κα τά Πλά τω να . Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09

των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 των Φορ το εκ φορ τω τών πρα κτο ρεί ων µε τα φο ρών ό λης της χώρας O46R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΦOΡ ΤO ΕΚ ΦOΡ ΤΩΩ ΤΩΩΝ ΠΡΑ ΚΤO ΡΕΙ ΩΩΝ ΜΕ ΤΑ ΦO ΡΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.

Διαβάστε περισσότερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα Ιο νιο Πανεπιστη μιο, Κε ρκυρα 17-5-2012 Παύλος Σταμπουλι δης, Με λος ΔΣ Hellenic Startup

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Μάνατζμεντ και Μάνατζερς

Μάνατζμεντ και Μάνατζερς Κ Ε ΦΑ ΛΑΙΟ 1 Μάνατζμεντ και Μάνατζερς Κά θε μέ ρα ε πι σκε πτό μα στε διά φο ρους ορ γα νισμούς με γά λους ή μι κρούς και ερ χό μα στε σε επα φή με τους υ παλ λή λους και τους μά να τζερ ς. Α νά λο γα

Διαβάστε περισσότερα

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Νη υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ ος σε ε ε ει σα κου ου ου σο ο ον μου ου ει σα κου σον μου Κυ υ υ υ ρι ι ι ι ε Κυ ρι ι ε ε κε κρα α ξα α προ ο ος σε ε ε ει

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

Πρός τούς ἀδελφούς μου

Πρός τούς ἀδελφούς μου Πρός τούς ἀδελφούς μου Συμεων μητροπολιτου νεασ ΣμυρνηΣ Πρός τούς ἀδελφούς μου EOρτια ΠοιμαντικA μηνyματα Ἐπιμέλεια ἔκδοσης: Βασίλης Ἀργυριάδης Ἐκδόσεις κολοκοτρώνη 49, Ἀθήνα 105 60 τηλ.: 210 3226343

Διαβάστε περισσότερα

Χαιρετισμοί. Περιεχόμενα Ενότητας

Χαιρετισμοί. Περιεχόμενα Ενότητας Χαιρετισμοί Περιεχόμενα Ενότητας Χαιρετισμός του Διευθυντή Μέσης Τεχνικής και Επαγγελματικής Εκπαίδευσης, κ. Ηλία Μαρκάτζιη Χαιρετισμός από τον Πρόεδρο του Συνδέσμου Γονέων και Κηδεμόνων της Σχολής, κ.

Διαβάστε περισσότερα

Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ

Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ Η ΤΡΥ ΠΑ ΤΟΥ Ο ΖΟ ΝΤΟΣ ΚΕΙΜΕΝΟ: Α θα νά σιος Πα παν δρέ ου, Φαρ μα κο ποιός-το ξι κο λό γος- Ε πι στη μο νι κός συ νερ γά της του Ο φθαλ μο λο γι κού Ιν στι τού του Α θη νών Χρό νια τώ ρα, το κλα σι κό

Διαβάστε περισσότερα

Στις α ντιπα λό τη τες με τα ξύ των

Στις α ντιπα λό τη τες με τα ξύ των Υ ΠΟ ΣΤΗ ΡΙ ΞΗ ΤΩΝ ΨΕ ΓΙΑ ΕΠΙΤΥΧΗ ΣΧΕΔΙΑΣΗ ΚΑΙ ΔΙΕΞΑΓΩΓΗ ΣΤΟ ΣΥΓ ΧΡΟ ΝΟ Ε ΠΙ ΧΕΙ ΡΗ ΣΙΑ ΚΟ ΠΕ ΡΙ ΒΑΛ ΛΟΝ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ: Αν χης (ΠΖ) Ιω άν νης Ιω άν νου Στις α ντιπα λό τη τες με τα ξύ των αν θρώπων,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ Ο Ό μη ρος και ο Η σί ο δος έ χουν δη μιουρ γή σει κα τά τον Η ρό δο το 1, τους ελ λη νι κούς θε ούς. Ο Ό μη ρος στη θε ο γο νί α του έ χει ιε ραρ

Διαβάστε περισσότερα

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29 ΠΕΡΙEΧΟΜΕΝΑ Οδηγός χρησιμοποίησης του βιβλίου και των τριών ψηφιακών δίσκων (DVD)...11 Σκο πός του βι βλί ου και των 3 ψηφιακών δί σκων...15 Λί γα λό για α πό το Σχο λι κό Σύμ βου λο Φυ σι κής Α γω γής...17

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ)

ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ) ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝΕΡΓΕΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ (EEY) ESCO s και ΣΥΜΒΑΣΕΙΣ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗΣ (ΣΕΑ) Η ΕΛΛΗΝΙΚΗ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ Θεσσαλονίκη, 9 Σεπτεμβρίου 2014 Κώστας ΚΩΝΣΤΑΝΤΙΝΟΥ Δρ. Μηχανολόγος Μηχανικός Διευθυντής

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO

BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ

ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ ΚΛΙ ΜΑ ΚΩ ΣΗ ΤΩΝ ΒΗ ΜΑ ΤΩΝ ΓΙΑ Ε ΠΙ ΤΥ ΧΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ 12 Το γε γο νός ό τι δια βά ζεις αυ τό το βι βλί ο ση μαί νει ό τι έ χεις μολυν θεί α πό έ να μι κρόβιο το μι κρό βιο του πο δο σφαί ρου και σίγου

Διαβάστε περισσότερα

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά Πρώϊος Μιλτιάδης Αθαναηλίδης Γιάννης Ηθική στα Σπορ Θεωρία και οδηγίες για ηθική συμπεριφορά ΘΕΣΣΑΛΟΝΙΚΗ 2004 1 ΗΘΙΚΗ ΣΤΑ ΣΠΟΡ ΘΕΩΡΙΑ ΚΑΙ ΟΔΗΓΙΕΣ ΓΙΑ ΗΘΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ : Εκδόσεις Χριστοδουλίδη Α. & Π.

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ε ε λε η σον Κυ ρι ε ε ε

ε ε λε η σον Κυ ρι ε ε ε Ἡ τάξις τοῦ ἑωθινοῦ Εὐαγγελίου ᾶσα νοὴ Αἰνεσάτω ὁ ιάκονος: Τοῦ Κυρίου δεηθῶµεν Κυ ρι ε ε λε η σον ὁ Ἱερεύς: Ὅτι Ἅγιος εἶ ὁ Θεὸς ἡµῶν, Ἦχος η α σα πνο η αι νε σα α τω τον Κυ ρι ον Αι νε σα α τω πνο η πα

Διαβάστε περισσότερα

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση Εισαγωγή Η επι λο γή ενό ς co m p a ct συ στή µ α το ς β ι ολο γι κο ύ κα θ α ρι σµ ο ύ θ α πρέπει να πραγµ α τοπο ι είτα ι β ά σει τη ς α

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ

ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ CIMIC CIMIC CIMIC ΚΕΙΜΕΝΟ: Υπλγος (ΜΧ) Ευ ρι πί δης Κ. Χα νιάς ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση CIMIC εί ναι τα αρ χι κά των λέ ξε ων Civil Military Co-operation

Διαβάστε περισσότερα

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής Κωνσταντίνος Αλεξανδρής, PhD Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής β βελτιωμένη έκδοση ΘΕΣΣΑΛΟΝΙΚΗ 2011 ΠΕΡΙEΧΟΜΕΝΑ Εισαγωγή... 11 ΠΡΩΤΗ ΕΝΟΤΗΤΑ 1.0 Η Αθλητική

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες Ο ΡΟ ΛΟΣ ΤΩΝ ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες ΚΕΙΜΕΝΟ: Α να στά σιος Γ. Ρούσ σης Κοι νω νιο λό γος - Ε γκλη μα το λό

Διαβάστε περισσότερα

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης**

Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 23-39 Νικολέττα Ισπυρλίδου* & Δημήτρης Χασάπης** Η συγκρότηση μιας ευκλείδειας έννοιας της ευθείας γραμμής με τη διαμεσολάβηση

Διαβάστε περισσότερα

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ, Ν.Π.Δ.Δ. ΚΑΙ O.Τ.Α. Α. ΓΙΑ ΤΗΝ ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ Ε ΛΗ ΦΘΗ ΣΑΝ Υ ΠO ΨΗ 1. H 15/1981

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 11η Διάλεξη Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ (ΠΕΡΙΕΧΕΙ ΑΚΗΕΙ ΚΑΙ ΑΠΟ ΣΗΝ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ ΣΗ Ε.Μ.Ε) ΑΚΗΗ 1 Έςτω ςυνεήσ ςυνάρτηςη :RR, με (0)=2 η οποία ικανοποιεί τη ςέςη ( ) 4 = 6 ια κά ε R α) Να βρείτε τισ τιμέσ (2) και (-2) β) Να απο είξετε τι υπάρει

Διαβάστε περισσότερα

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ

Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 1941-1944 Ε ΓΚΛΗ ΜΑ ΤΑ ΔΗ Ω ΣΕΙΣ 19 Ε ΓΚΛΗ ΜΑ ΤΑ ΚΑΙ ΔΗ Ω ΣΕΙΣ ΣΤΗ ΔΙΑΡ ΚΕΙΑ ΤΗΣ ΚΑΤΟ ΧΙ ΚΗΣ ΠΕ ΡΙΟ ΔΟΥ 1941-1944 ΣΤΟ ΝΟ ΜΟ Α ΧΑ Ϊ ΑΣ ΜΕ ΒΑ ΣΗ ΤΟ ΑΡ ΧΕΙΟ ΤΗΣ ΔΙΣ ΚΕΙΜΕΝΟ-ΦΩΤΟΓΡΑΦΙΕΣ:

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής Η Ο ΜΑ ΔΙ ΚΗ ΨΥ ΧΗ η αν θο δέ σµη της ζω ής ΚΕΙΜΕΝΟ: Υ πτγος ε.α. Ά ρης Δια μα ντό που λος, Διδάκτωρ Φιλοσοφίας-Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση ΕΙ ΣΑ ΓΩ ΓΙ ΚΕΣ ΕΝ ΝΟΙΕΣ Ό πως υ πάρ χει

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον

Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι. Κς πι ε ε ε λε η ζον Κς ς πι ε ε ε λε η ζον. Κς πι ε ε λε ε ε η η ζον Κς πι ε ε ε λε η ζον d Ἀρχιμ. Ἀριστοβούλου Κυριαζῆ, Μαθήματα Ἐκκλ. Μουσικῆς 1 Μέρος 6 ο, Λειτουργικά, Θ. Λειτουργία Μ. Βασιλείου Λειτουργία Μ. Βασιλείου Ἦχος υ5 Δι msdja0dagixad Dad.zaQdd]d0agIxaqd Daz.' Κς πι ε ε ε λε η ζον

Διαβάστε περισσότερα

Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ

Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ Θ Ρ Η Σ Κ Ε Ι Α- Π Ο Λ Ι Τ Ι Σ Μ Ο Σ & Α Ξ Ι Ε Σ Στον πο λι τι σμό των μη χα νών έ χει δι α φα νεί ο ρι στι κά ό τι δεν προβλέ πε ται θέ ση γι α τη λει τουρ γί α της ψυ χής. Τους δύ ο τε λευ ταίους αι

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

áåé þñïò ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1

áåé þñïò ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1 áåé þñïò ÊÅÉ ÌÅÍÁ Ð ÏËÅÏÄÏÌÉ ÁÓ, Ù ÑÏÔ ÁÎÉÁÓ ÊÁÉ ÁÍÁÐÔÕ ÎÇÓ ÔÏÌÏÓ 2 VOLUME 2 ÔÅÕ ÏÓ 1 ISSUE 1 ÌÁ ÏÓ 2003 MAY 2003 ΣΥΝΤΑΚΤΙΚH ΕΠΙΤΡΟΠH - Πανεπιστήµιο Θεσσαλίας ΚΟΚΚΩΣΗΣ ΧΑΡΗΣ ΟΙΚΟΝΟΜΟΥ ΗΜΗΤΡΗΣ ΓΟΥΣΙΟΣ ΗΜΗΤΡΗΣ

Διαβάστε περισσότερα

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ

ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ ΜΕ ΤΑΛ ΛΙΟ Ε ΞΑΙΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΚΕΙ ΜΕ ΝΟ-ΦΩ ΤΟΓΡΑ ΦΙΕΣ: Υ πτγος ε.α. Ορ θό δο ξος Ζω τιά δης ΚΑ ΘΙΕ ΡΩ ΣΗ ΤΟΥ ΜΕ ΤΑΛ ΛΙ ΟΥ Ε ΞΑΙ ΡΕ ΤΩΝ ΠΡΑ ΞΕ ΩΝ ΩΣ ΠΟ ΛΕ ΜΙ ΚΗΣ Η ΘΙ ΚΗΣ Α ΜΟΙ ΒΗΣ Το Με τάλ λιο Ε ξαι

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

Lecture 8: Random Walks

Lecture 8: Random Walks Randomized Algorithms Lecture 8: Random Walks Sotiris Nikoletseas Associate Professor CEID - ETY Course 2016-2017 Sotiris Nikoletseas, Associate Professor Randomized Algorithms - Lecture 8 1 / 33 Overview

Διαβάστε περισσότερα

Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10

Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10 Χει ρι στών Μη χα νη µά των Λα το µεί ων Μαρµάρου, Πέτρας & Χώ µα τος ό λης της χώρας O53R10& O54R10 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΧΕΙ ΡΙ ΣΤΩΩΝ ΕΚ ΣΚΑ ΠΤΙ ΚΩΩΝ, Α ΝY

Διαβάστε περισσότερα

Σκελετοί, μυστικά και η εορτή της αλή θειας

Σκελετοί, μυστικά και η εορτή της αλή θειας Σκελετοί, μυστικά και η εορτή της αλή θειας Είναι αλή θεια ό τι, ό ταν έχεις πίσω σου σαρά ντα χρό νια αδιά κοπης και αξιό λογης καλλιτεχνικής παραγωγής, πρέπει να μπορείς κά θε φορά να διαχειρίζεσαι τον

Διαβάστε περισσότερα

εξειδίκευση στη γνώση

εξειδίκευση στη γνώση εξειδίκευση στη γνώση Εκηβόλος Ετήσια έκδοση της Ελληνικής Ακαδημίας Φυσικής Αγωγής Τεύχος 7, Φεβρουάριος 2010 Το πε ριο δι κό διευ θύ νε ται α πό συ ντα κτι κή ε πι τρο πή Υ πεύ θυ νος σύ ντα ξης: Ευάγγελος

Διαβάστε περισσότερα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα

14 Ἰουνίου. Προφήτου Ἐλισσαίου. Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Τῇ ΙΔ τοῦ µηνὸς Ἰουνίου. Μνήµη τοῦ Ἁγίου Προφήτου Ἐλισσαίου Ἐν τῷ Ἑσπερινῷ. Δόξα. Ἦχος Πα Nε ε δο ο ο ξα Πα α τρι ι ι ι και Υι υι ω και Α γι ι ω Πνε ευ µα α α τι Προ φη τα κη η η ρυ υξ Χρι ι ι στου του

Διαβάστε περισσότερα

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ

ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ ΠΡΟ ΛΟ ΓΟΣ ΤΗΣ ΕΛ ΛΗ ΝΙ ΚΗΣ ΕΚ ΔΟ ΣΗΣ Η ε πο χή μας χα ρα κτη ρί ζε ται, ή του λά χι στον έ τσι θα έ πρε πε, α πό πλη θώ ρα ε πιλο γών ε λεύ θερου χρό νου. Η δια θε σι μό τη τα πα ράλ λη λα κα τάλ λη λης

Διαβάστε περισσότερα

Το Σύ στη μα Συν θη κών των Βερ σαλ λιών και οι συνέ πειές του

Το Σύ στη μα Συν θη κών των Βερ σαλ λιών και οι συνέ πειές του Το Σύ στη μα Συν θη κών των Βερ σαλ λιών και οι συνέ πειές του Η Συν θή κη του Νε ϊ γύ και η Σύμ βα ση της Ελ λη νο βουλ γα ρι κής Με τανά στευ σης ΚΕΙΜΕΝΟ: Τχης (ΠΒ) Δη μή τριος Α. Κα τσι κώ στας ΕΙΚΟΝΟΓΡΑΦΗΣΗ:

Διαβάστε περισσότερα

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0

F h, h h 2. Lim. Lim. f h, h fyx a, b. Lim. h 2 y 2. Lim. Lim. Lim. x 2 k 2. h 0 ΜΑ 1 Μ.2 Ν ΟΙ ΠΑΡ ΓΩΓΟΙ fx ΚΑΙ fy ΥΠ ΡΧΟΥΝ ΚΑΙ ε ΝΑΙ ΙΑφΟΡ ΣΙΜε Σε Κ ΠΟΙΑ ΠεΡΙΟΧ ΤΟΥ a, b Τ Τε ΝΑ ΑΠΟ ειχθε ΤΙ fxy fyx. Α εξετ ΣεΤε ΑΝ fxy fyx ΣΤΟ 0, 0 ΓΙΑ ΤΗΝ ΣΥΝ ΡΤΗΣΗ f x, y xy x2 y 2 ΓΙΑ x, y 0, 0

Διαβάστε περισσότερα