Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K."

Transcript

1 Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne

2 Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη εύρεση-ένωση Γρήγορη εύρεση Γρήγορη ένωση Σταθµισµένη γρήγορη ένωση Σταθµισµένη γρήγορη ένωση µε συµπίεση µονοπατιών Δοµές Δεδοµένων 02-2

3 Προβλήµατα Συνδετικότητας Γράφος (graph): Ένα σύνολο από αντικείµενα (κόµβοι ή κορυφές) Πλευρές (σύνδεσµοι µεταξύ αντικειµένων) Αν έχουµε Ν αντικείµενα, τα ονοµατίζουµε από 0 ως Ν Δοµές Δεδοµένων 02-3

4 Προβλήµατα Συνδετικότητας Τα αντικείµενα µπορεί να απεικονίζουν: Κόµβους σε ένα δίκτυο υπολογιστών (δροµολογητές, πάροχοι δικτύου, κτλ) Ιστοσελίδες (web graph) Τρανζίστορ ενός µικροτσιπ Χρήστες του facebook (κοινωνικά δίκτυα) Πρωτείνες (βιολογικά δίκτυα για την αλληλεπίδραση πρωτεϊνών) Δοµές Δεδοµένων 02-4

5 Συνδετικότητα δικτύου Είσοδος: Δίνεται µία ακολουθία από ζεύγη ακεραίων Κάθε ακέραιος είναι ένα αντικείµενο Κάθε ζεύγος αντιπροσωπεύει µία σύνδεση Η συνδετικότητα είναι µεταβατική σχέση: Αν συνδέεται(p,q) και συνδέεται(q,r) τότε συνδέεται(p,r) Πρόβληµα: εντοπισµός των περιττών ζευγών Ένα ζεύγος (p, q) είναι περιττό αν από τα ζεύγη που έχουν εξεταστεί πριν το (p, q) συνεπάγεται ότι συνδέεται(p,q). Στην έξοδο τυπώνονται µόνο τα µη περιττά ζεύγη Προσοχή στο τι ακριβώς ζητάει το πρόβληµα! Δεν ζητάει το µονοπάτι ανάµεσα στα αντικείµενα Η εύρεση του µονοπατιού µπορεί να είναι πιο δύσκολη Δοµές Δεδοµένων 02-5

6 Παράδειγµα Είσοδος Έξοδος Δοµές Δεδοµένων 02-6

7 Συνδετικότητα δικτύου u v Συνδέεται το u µε το v? Δοµές Δεδοµένων 02-7

8 Αφαιρέσεις Ποιες είναι οι βασικές λειτουργίες που χρειαζόµαστε? Απλό µοντέλο της φύσης της συνδεσιµότητας Αντικείµενα κόµβοι του γράφου Σύνολα από αντικείµενα που συνδέονται µεταξύ τους (ανανεώνεται κατά τη διάρκεια του αλγορίθµου) 0 1 { } { 5 6 } 7 { 4 8 } συνδεδεµένα υποσύνολα Ερώτηση εύρεσης: τα 2 και 9 ανήκουν στο ίδιο σύνολο; 0 1 { } { 5 6 } 7 { 4 8 } συνδέονται δύο σηµεία; Εντολή ένωσης: συγχώνευσε τα σύνολα µε το 3 και το { } { 5 6 } 7 νέα σύνδεση µεταξύ σηµείων Δοµές Δεδοµένων 02-8

9 Αφαιρέσεις Οι αλγόριθµοι ένωσης-εύρεσης (union-find) διαχειρίζονται αντικείµενα στα οποία αντιστοιχίζουµε τους ακεραίους 0 έως N-1 Αποκρύπτονται λεπτοµέρειες άσχετες µε την ένωση-εύρεση Οι ακέραιοι επιτρέπουν γρήγορη προσπέλαση στα αντικείµενα Χρήση ως δείκτες σε πίνακες Πίνακας συµβόλων για αντιστοίχιση Μετάφραση ονοµάτων σε αριθµούς Δοµές Δεδοµένων 02-9

10 Συνδεδεµένα συστατικά Σύνολο συνδεδεµένων σηµείων: Συνδεδεµένο συστατικό (connected component) Κάθε εντολή ένωσης µειώνει τα σύνολα κατά ένα Είσοδος Έξοδος Έχουµε 10 7 = 3 συστατικά Δοµές Δεδοµένων 02-10

11 Αφηρηµένη ένωση-εύρεση Γενική µορφή της λύσης του προβλήµατός µας Για κάθε νέο ζεύγος (p, q) που διαβάζουµε: Κάνε µία ερώτηση εύρεσης για να δούµε αν ήδη συνδέεται το p µε το q Αν ναι, τότε το (p, q) είναι περιττό ζεύγος Αν όχι, το (p, q) δεν είναι περιττό: εκτέλεσε µία εντολή ένωσης για να ενώσουµε τα σύνολα που περιέχουν το p και το q Στόχος: Σχεδιασµός αποδοτικής δοµής δεδοµένων Παρατηρήσεις Οι ευρέσεις και οι ενώσεις µπορούν να αναµειγνύονται Τα ερωτήµατα εύρεσης απαντώνται µόλις τεθούν Το πλήθος των εντολών M µπορεί να είναι τεράστιο Το πλήθος των αντικειµένων N µπορεί να είναι τεράστιο Δοµές Δεδοµένων 02-11

12 Γρήγορη εύρεση (Quick Find) Δοµή δεδοµένων Χρήση πίνακα ακεραίων id[] µεγέθους N Ερµηνεία: τα p και q συνδέονται αν έχουν το ίδιο id i id[i] Υλοποίηση Εύρεσης: Έλεγξε αν τα p και q έχουν το ίδιο id Π.χ. Αν (p,q) = (3,6), id[3]=9 και id[6]=6 άρα τα 3 και 6 δεν συνδέονται Υλοποίηση Ένωσης: Συγχώνευση των συστατικών των p και q Αλλαγή των καταχωρήσεων µε id[p] σε id[q] Ένωση των συστατικών που περιέχουν τα 3 και 6 i id[i] Δοµές Δεδοµένων 02-12

13 Γρήγορη εύρεση public class QuickF { public static void main(string[] args) { int N = Integer.parseInt(args[0]); int id[] = new int[n]; for (int i = 0; i < N ; i++) id[i] = i; for( In.init();!In.empty(); ) { int p = In.getInt(), q = In.getInt(); int t = id[p]; if (t == id[q]) continue; //περιττό ζεύγος for (int i = 0;i<N;i++) if (id[i] == t) id[i] = id[q]; Out.println(" " +p+""+q); } } } Δοµές Δεδοµένων 02-13

14 Γρήγορη εύρεση Πρόβληµα: µπορεί να αλλάζουν πολλά στοιχεία του πίνακα id[] πολύ συχνά Δοµές Δεδοµένων 02-14

15 Γρήγορη εύρεση Πόσο γρήγορη είναι η γρήγορη εύρεση; Μπορεί να πάρει MN βήµατα για M ενώσεις µε N αντικείµενα Αριθµητικό παράδειγµα Δίνονται ζεύγη που συνδέουν Ν =10 9 αντικείµενα Με πρόχειρους υπολογισµούς για ένα σύγχρονο υπολογιστή η γρήγορη ένωση απαιτεί περίπου 300 χρόνια Τι γίνεται αν δεκαπλασιαστεί η ταχύτητα/χωρητικότητα; Στη µνήµη χωράει δεκαπλάσιο πρόβληµα Ο χρόνος που θα χρειαστεί όµως είναι κι αυτός δεκαπλάσιος! 10N x 10M / 10 = 10 x N x M Δοµές Δεδοµένων 02-15

16 Γρήγορη ένωση (Quick Union) Ιδέα: Απεικόνιση κάθε συνδεδεµένου συνόλου ως δέντρο Κάνει πολύ γρήγορη την ένωση µε αντίτιµο στην εύρεση Δοµή δεδοµένων Πίνακας ακεραίων id[] µεγέθους N Ερµηνεία: το id[i]είναι ο πατέρας του i Η ρίζα στο δέντρο που βρίσκεται ο i είναι το id[id[id[ id[i] ]]] Σταµατάµε όταν id[j]=j (μόνο η ρίζα έχει πατέρα τον εαυτό της) i id[i] Εύρεση: Έλεγξε αν τα p και q έχουν την ίδια ρίζα έστω π.χ. το (4, 9) Ένωση: Συγχώνευση των συστατικών των p και q «Κρεµάµε» το δέντρο του p στη ρίζα του q i id[i] Δοµές Δεδοµένων 02-16

17 Γρήγορη ένωση public class QuickU { public static void main(string[] args) { int N = Integer.parseInt(args[0]); int id[] = new int[n]; for (int i = 0; i < N ; i++) id[i] = i; for( In.init();!In.empty(); ) { int i, j, p = In.getInt(), q = In.getInt(); for (i = p; i!= id[i]; i = id[i]); for (j = q; j!= id[j]; j = id[j]); if (i == j) continue; id[i] = j; Out.println(" " + p + " " + q); } } } Δοµές Δεδοµένων 02-17

18 Γρήγορη ένωση Πρόβληµα: µπορεί να διατρέξουµε πολλούς συνδέσµους Δοµές Δεδοµένων 02-18

19 Γρήγορη Ένωση Το πόσο ρηχά θα είναι τα δέντρα εξαρτάται από την είσοδο Είσοδος Έξοδος Εδώ σε κάθε βήµα πρέπει να διατρέξουµε όλο το δέντρο για να βρούµε τη ρίζα (Ο(Ν) βήµατα για τις τελευταίες συνδέσεις) Δοµές Δεδοµένων 02-19

20 Γρήγορη ένωση Πόσο γρήγορη είναι η γρήγορη ένωση; Δεν είναι πολύ πιο γρήγορη από τη γρήγορη εύρεση Παρόµοια τάξη µεγέθους (εξαρτάται και από τη φύση της είσοδου) Μειονέκτηµα γρήγορης εύρεσης Η ένωση είναι αργή (διατρέχουµε όλο τον πίνακα) Τα δέντρα είναι ρηχά αλλά το κόστος της ένωσης είναι µεγάλο Μειονέκτηµα γρήγορης ένωσης Τα δέντρα µπορεί να έχουν βάθος. Χειρότερη περίπτωση: όταν το δέντρο που σχηµατίζεται είναι µία ευθεία γραµµή µε βάθος Ν-1 Η εύρεση είναι αργή (µπορεί να διατρέξουµε τον πίνακα) Για να γίνει η ένωση πρέπει πρώτα να κάνουµε την εύρεση Στόχος: ρηχά δέντρα αλλά µε µικρό κόστος! Δοµές Δεδοµένων 02-20

21 Σταθµισµένη γρήγορη ένωση Παραλλαγή της γρήγορης ένωσης Τροποποιούµε την ένωση για να κρατάµε τα δέντρα ρηχά Παρακολουθούµε το µέγεθος κάθε δέντρου Χρήση ενός πρόσθετου πίνακα για να κρατάµε το µέγεθος Το µικρότερο δέντρο τοποθετείται κάτω από το µεγαλύτερο Το µέγεθος αναφέρεται στο σύνολο των κόµβων Παράδειγµα: αν διαβάσουµε το ζεύγος (3, 5) Η σταθµισµένη ένωση τοποθετεί το 6 κάτω από το Δοµές Δεδοµένων 02-21

22 Σταθµισµένη γρήγορη ένωση Τα δέντρα παραµένουν ρηχά Δοµές Δεδοµένων 02-22

23 Σταθµισµένη γρήγορη ένωση Υλοποίηση σε Java Σχεδόν ίδια µε τη γρήγορη ένωση Χρήση πρόσθετου πίνακα sz[] για το πλήθος κόµβων κάθε δέντρου Έχει νόηµα µόνο για τις ρίζες των δένδρων Εύρεση: ίδια µε αυτή στη γρήγορη ένωση Ένωση: παραλλαγή της γρήγορης ένωσης Συγχώνευση του µικρότερου δέντρου κάτω από το µεγαλύτερο Αρχικοποίηση όλων των δένδρων σε µέγεθος 1 Ενηµέρωση του πίνακα sz[] if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } else { } id[j] = i; sz[i] += sz[j]; Δοµές Δεδοµένων 02-23

24 Σταθµισµένη γρήγορη ένωση Απόδοση της σταθµισµένης γρήγορης ένωσης Εύρεση: χρόνος ανάλογος µε το βάθος των p και q Ένωση: σταθερός χρόνος αφού βρεθούν οι ρίζες Αποδεικνύεται ότι το βάθος είναι µέχρι logn (=log 2 N) Άρα εύρεση-ένωση είναι ανάλογες του logn Πολύ καλύτερη από τις προηγούµενες µεθόδους! Σταµατάµε εδώ ή µπορούµε να κάνουµε κάτι ακόµα καλύτερο; Μπορούµε: συµπίεση µονοπατιών! Για να βρούµε τη ρίζα διατρέχουµε ένα δέντρο Από τον κόµβο εκκίνησης ως τη ρίζα Σε κάθε βήµα συµπιέζουµε το δέντρο Τοποθετούµε τον τρέχοντα κόµβο κάτω από τη ρίζα Το δέντρο συµπιέζεται σε κάθε εύρεση Δοµές Δεδοµένων 02-24

25 Ένωση µε συµπίεση µονοπατιών Βασική υλοποίηση συµπίεσης µονοπατιών Προσθήκη δεύτερου βρόχου Κάνει τον πατέρα κάθε κόµβου ίσο µε τη ρίζα Απαιτεί δεύτερο πέρασµα της διαδροµής Απλούστερη υλοποίηση συµπίεσης µονοπατιών Κάθε δεύτερος κόµβος δείχνει στον πατέρα του πατέρα του Το δέντρο συµπιέζεται κατά το ήµισυ Στην πράξη η διαφορά είναι µικρή for (i = p; i!= id[i]; i = id[i]) id[i] = id[id[i]]; for (j = q; j!= id[j]; j = id[j]) id[j] = id[id[j]]; Δοµές Δεδοµένων 02-25

26 Ένωση µε συµπίεση µονοπατιών Παραδείγµατα Παράδειγµα 1: σχετικά ρηχά δέντρα, προσθήκη του 1-6 Παράδειγµα 2: λίγο βαθιά δέντρα, προσθήκη του 6-8 Παράδειγµα 3: πολύ βαθιά δέντρα, µειώνεται το βάθος στο µισό περίπου Δοµές Δεδοµένων 02-26

27 Ένωση µε συµπίεση µονοπατιών Σύγκριση των αλγορίθµων F: γρήγορη εύρεση, U: γρήγορη ένωση W: σταθµισµένη γρήγορη ένωση P: µε πλήρη συµπίεση, H: µε ηµιδιπλασιασµό N M F U W P H Δοµές Δεδοµένων 02-27

28 Άλλες Εφαρµογές των µεθόδων Ένωσης- Εύρεσης Το παιχνίδι Hex [Piet Hein 1942, John Nash 1948, Parker Brothers 1962] Επεξεργασία Εικόνων Δοµές Δεδοµένων 02-28

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Κεφάλαιο 1. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Κεφάλαιο 1. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Κεφάλαιο 1 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις (abstractions) Αφηρηµένη ένωση-εύρεση 1. Γρήγορη εύρεση 2. Γρήγορη

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Στοιχειώδεις Δοµές Δεδοµένων Λίστες Κεφάλαιο 3 (3.3, 3.4, 3.7) Ε. Μαρκάκης Επικ. Καθηγητής Ενηµέρωση 5ο τµήµα Εργαστηρίων Τετάρτη 11-1 Δοµές Δεδοµένων 04-2 Περίληψη Συνδεδεµένες λίστες

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 4η Διάλεξη Στοιχειώδεις Δοµές Δεδοµένων: Πίνακες και Λίστες. Ε. Μαρκάκης

Δοµές Δεδοµένων. 4η Διάλεξη Στοιχειώδεις Δοµές Δεδοµένων: Πίνακες και Λίστες. Ε. Μαρκάκης Δοµές Δεδοµένων 4η Διάλεξη Στοιχειώδεις Δοµές Δεδοµένων: Πίνακες και Λίστες Ε. Μαρκάκης Εργαστήρια Ώρες εργαστηρίων Τέσσερα τµήµατα εργαστηρίων XXXX001-XXXX060, Δευτέρα 09:00-11:00 (CSLAB II) XXXX061-XXXX120,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 8η Διάλεξη: Ταξινόµηση. Ε. Μαρκάκης

Δοµές Δεδοµένων. 8η Διάλεξη: Ταξινόµηση. Ε. Μαρκάκης Δοµές Δεδοµένων 8η Διάλεξη: Ταξινόµηση Ε. Μαρκάκης Υπενθύµιση Εργαστήρια την επόµενη εβδοµάδα Πρόγραµµα εργαστηρίων αναρτηµένο στο eclass Εργασία 1 θα αναρτηθεί την Τρίτη, παράδοση 20/11 Δοµές Δεδοµένων

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Πίνακες Συµβόλων Κεφάλαιο 12 ( ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Πίνακες Συµβόλων Κεφάλαιο 12 (12.1-12.4) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Πίνακες συµβόλων Διεπαφή πίνακα συµβόλων Αναζήτηση µε αριθµοδείκτη Ακολουθιακή αναζήτηση Δυαδική αναζήτηση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Εξωτερική Αναζήτηση και Β-δέντρα Κεφάλαιο 16 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ακολουθιακή πρόσβαση Β-δέντρα Υλοποίηση πίνακα συµβόλων µε Β-δέντρα Αναζήτηση Εισαγωγή Δοµές Δεδοµένων

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης

Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Δοµές Δεδοµένων. 17η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης Δοµές Δεδοµένων 17η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Εισαγωγή Τυχαιοποιηµένα ΔΔΑ (Randomized Binary Search trees) Στρεβλά ΔΔΑ (Splay trees) Καθοδικά δέντρα 2-3-4 (Top-Down 2-3-4 trees)

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)

Διαβάστε περισσότερα

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55

Ν!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55 ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης

Δοµές Δεδοµένων. 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων. Ε. Μαρκάκης Δοµές Δεδοµένων 6η Διάλεξη Αναδροµικές Εξισώσεις και Αφηρηµένοι Τύποι Δεδοµένων Ε. Μαρκάκης Περίληψη Χρήση αναδροµικών εξισώσεων στην ανάλυση αλγορίθµων Αφηρηµένοι τύποι δεδοµένων Συλλογές στοιχείων Στοίβα

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις

Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις Επαναληπτικό ιαγώνισµα Πληροφορικής Γ Γυµνασίου (νέο βιβλίο Πληροφορικής Γυµνασίου Αράπογλου, Μαβόγλου, Οικονοµάκου, Φύτρου) Γιώργος Λιακέας Σχολικός Σύµβουλος Πληροφορικής Ερωτήσεις 1. Τι είναι ο Αλγόριθµος;

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης

Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015 Δοµές Δεδοµένων - Εργασία 2 Διδάσκων: E. Μαρκάκης Ταξινόµηση και Ουρές Προτεραιότητας Σκοπός της 2 ης εργασίας είναι η εξοικείωση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Κλάσεις και Αντικείµενα

Κλάσεις και Αντικείµενα Κλάσεις και Αντικείµενα Γρηγόρης Τσουµάκας Τµήµα Πληροφορικής, Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Κλάσεις και Αντικείµενα 2 Τα αντικείµενα σε µια αντικειµενοστρεφή γλώσσα προγραµµατισµού, µοντελοποιούν

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

Στοιχειώδεις Δομές Δεδομένων

Στοιχειώδεις Δομές Δεδομένων Στοιχειώδεις Δομές Δεδομένων Τύποι δεδομένων στη Java Ακέραιοι (int, long) Αριθμοί κινητής υποδιαστολής (float, double) Χαρακτήρες (char) Δυαδικοί (boolean) Από τους παραπάνω μπορούμε να φτιάξουμε σύνθετους

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 8/4/2008. Πίνακες (Arrays)

ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 8/4/2008. Πίνακες (Arrays) ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 8/4/2008 Πίνακες (Arrays) 1-D 0 1 2 2-D 3-D 0 0 1 1 2 2 3 3 array[3][2] array[0][1] Γενική δήλωση πίνακα: τύπος_στοιχείων [ ] όνομα = new τύπος_στοιχείων [μήκος]; // 1-D και φυσικά

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. Κλάσεις.

Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. Κλάσεις. 1 Η Γλώσσα Προγραµµατισµού C++ (The C++ Programming Language) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2005 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/cpp_fall05.htm Θα

Διαβάστε περισσότερα

Μελέτη Περίπτωσης: Random Surfer

Μελέτη Περίπτωσης: Random Surfer Μελέτη Περίπτωσης: Random Surfer Introduction to Programming in Java: An Interdisciplinary Approach Robert Sedgewick and Kevin Wayne Copyright 2008 March 1, 2016 11:10 tt Memex Memex. [Vannevar Bush, 1936]

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 10/1/08

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 10/1/08 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 10/1/08 Συνέχεια Αναδρομής (recursion): Ο αλγόριθμος του Ευκλείδη για τον Μέγιστο Κοινό Διαιρέτη (ΜΚΔ) με αναδρομή: p, αν q=0 (βασική περίπτωση)

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει

Διαβάστε περισσότερα

Ισοζυγισµένο έντρο (AVL Tree)

Ισοζυγισµένο έντρο (AVL Tree) Εργαστήριο 7 Ισοζυγισµένο έντρο (AVL Tree) Εισαγωγή Εκτός από τα δυαδικά δέντρα αναζήτησης (inry serh trees) που εξετάσαµε σε προηγούµενο εργαστήριο, υπάρχουν αρκετά είδη δέντρων αναζήτησης µε ξεχωριστό

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010 Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Βασικάχαρακτηριστικάτηςγλώσσας. Πίνακες, Έλεγχος Ροής και Βρόχοι

Βασικάχαρακτηριστικάτηςγλώσσας. Πίνακες, Έλεγχος Ροής και Βρόχοι Βασικάχαρακτηριστικάτηςγλώσσας Πίνακες, Έλεγχος Ροής και Βρόχοι Πίνακες Τρόπος αποθήκευσης πολλών στοιχείων που έχουν τον ίδιο πρωταρχικό τύπο δεδοµένων ή κλάση. Τα στοιχεία µπορεί να έχουν οποιοδήποτε

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 7: Πίνακες (Arrays)

ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 7: Πίνακες (Arrays) ΠΛΗΡΟΦΟΡΙΚΗ ΙI Ενότητα 7: Πίνακες (Arrays) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (Java) Ενότητα 7 Πίνακες (Arrays) 1-D 0 1 2 2-D 3-D 0 0 1 1 2 2 3 3 array[3][2]

Διαβάστε περισσότερα

Δομές δεδομένων (2) Αλγόριθμοι

Δομές δεδομένων (2) Αλγόριθμοι Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student

Διαβάστε περισσότερα

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η μέθοδος main(), εμφάνιση μηνυμάτων, Java προγράμματα που εκτελούν αριθμητικές πράξεις Γαβαλάς Δαμιανός

Διαβάστε περισσότερα

Διάλεξη 08: ΛίστεςΙΙ Κυκλικές Λίστες. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 08: ΛίστεςΙΙ Κυκλικές Λίστες. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 0: ΛίστεςΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες Λίστες - Τεχνικές Μείωσης Χώρου Διδάσκων:

Διαβάστε περισσότερα

υαδικά δέντρα αναζήτησης

υαδικά δέντρα αναζήτησης υαδικά δέντρα αναζήτησης οµές εδοµένων 3 ο εξάµηνο Ορισµός δυαδικού δέντρου αναζήτησης Σ ένα δυαδικό δέντρο αναζήτησης, για κάθε κόµβο Χ, Όλα τα κλειδιά(αντικείµενα) στο αριστερό υποδέντρο του Χ έχουν

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πίνακες Κλάσεις και Αντικείμενα Μαθήματα από το πρώτο εργαστήριο Δημιουργία αντικειμένου Scanner Scanner input = new Scanner(System.in); Το αντικείμενο input

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

Αντικειμενοστραφής Προγραμματισμός I(5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η

Αντικειμενοστραφής Προγραμματισμός I(5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η Αντικειμενοστραφής Προγραμματισμός I(5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η μέθοδος main(), εμφάνιση μηνυμάτων, Java προγράμματα που εκτελούν αριθμητικές πράξεις 2 Ανατομία ενός προγράμματος

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πίνακες Κλάσεις και Αντικείμενα Μαθήματα από το πρώτο εργαστήριο Έλεγχος ισότητας για Strings: Διαβάζουμε το String option και θέλουμε ένα loop να συνεχίσει

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Αντικειμενοστρεφής Προγραμματισμός

Αντικειμενοστρεφής Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αντικειμενοστρεφής Προγραμματισμός Ενότητα 3: Αλληλεπίδραση Αντικειμένων Γρηγόρης Τσουμάκας, Επικ. Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Γραμμικές Λίστες Βασικές Έννοιες Βασικές Έννοιες. Αναπαράσταση με τύπο και με δείκτη. Γραμμικές Λίστες. Βασικές Λειτουργίες. Δομές Δεδομένων: Βασικές Έννοιες Αντικείμενο

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Πρόβληµα : Πώς θα λύναµε αυτό το πρόβληµα αν είχαµε µόνο χαρτί και µολύβι, και κάποιος µας έλεγε τους αριθµούς προφορικά?

Πρόβληµα : Πώς θα λύναµε αυτό το πρόβληµα αν είχαµε µόνο χαρτί και µολύβι, και κάποιος µας έλεγε τους αριθµούς προφορικά? Πρόβληµα : Γράψτε ένα πρόγραµµα το οποίο - διαβάζει από το πληκτρολόγιο µια σειρά από ακεραίους έως ο χρήστης να δηλώσει ότι δεν υπάρχουν άλλοι - υπολογίζει τη µεγαλύτερη τιµή - εκτυπώνει αυτή την τιµή

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του

Διαβάστε περισσότερα