Πτυχιακή Εργασία: "Εκπαιδευτική εφαρμογή μαθηματικών για παιδιά σε Android"

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πτυχιακή Εργασία: "Εκπαιδευτική εφαρμογή μαθηματικών για παιδιά σε Android""

Transcript

1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Τμήμα Βιομηχανικής Πληροφορικής Πτυχιακή Εργασία: "Εκπαιδευτική εφαρμογή μαθηματικών για παιδιά σε Android" Αθήνα 2012

2 Περίληψη Τα μαθηματικά είναι μια από τις βασικότερες επιστήμες που χρησιμοποιεί ο άνθρωπος στην καθημερινότητα του. Από την προσχολική ακόμα ηλικία τα παιδιά έρχονται, έμμεσα, σε επαφή με τους αριθμούς και τις πράξεις τους μέσα από το παιχνίδι. Ο κύριος στόχος της πτυχιακής αυτής ήταν η ανάπτυξη μιας εκπαιδευτικής εφαρμογής σε smartphone όπου με διασκεδαστικό τρόπο τα παιδιά θα μάθουν να προφέρουν και να γράφουν σωστά τους αριθμούς, να τους συγκρίνουν μεταξύ τους καθώς και να επιλύουν αριθμητικές πράξεις πρόσθεσης και αφαίρεσης. Η υλοποίηση αυτού του project έγινε με την χρήση της πλατφόρμας Google Android που τα τελευταία χρόνια έχει ραγδαία εξέλιξη. Για την επίτευξη του στόχου αυτού χρησιμοποιήθηκε το λογισμικό Εclipse το οποίο είναι ένα πρόγραμμα ανοιχτού κώδικα που σε συνεργασία με τα δωρεάν εργαλεία ανάπτυξης Android λογισμικού, που προσφέρει η Google (Android Development Tools), αποτελεί ένα πολύ ισχυρό εργαλείο ανάπτυξης εφαρμογών σε περιβάλλον Android. 2

3 Ευχαριστίες Θα ήθελα να ευχαριστήσω τον εισηγητή της πτυχιακής μου εργασίας κ. Λευτέρη Μωυσιάδη όπου με εμπιστεύτηκε και ανέλαβε την επίβλεψη της εργασίας μου. Ένα μεγάλο ευχαριστώ στους γονείς μου οι οποίοι με στήριξαν όλα αυτά τα χρόνια, ηθικά και οικονομικά, για να φέρω εις πέρας τις σπουδές μου αλλά και στην Χρυσάνθη Τσιτιλάκου όπου μου δάνεισε την φωνή της για να εμπλουτίσω την εφαρμογή κάνοντας την ακόμα πιο ευχάριστη. 3

4 Περιεχόμενα Περίληψη... 2 Ευχαριστίες... 3 Περιεχόμενα... 4 Κεφάλαιο 1: Παρουσίαση εκπαιδευτικής εφαρμογής 1.1 Εισαγωγή Υφιστάμενα προγράμματα Περιγραφή εφαρμογής Συμπεράσματα και βελτιώσεις Κεφάλαιο 2: Τα μαθηματικά στην προσχολική ηλικία 2.1 Τι είναι τα μαθηματικά Η σκέψη του παιδιού προσχολικής ηλικίας στα μαθηματικά H έννοια του αριθμού Τι σημαίνει πρώτη αρίθμηση Ποιο είναι το νόημα του αριθμού Έρευνες για την ανάπτυξη των πρώτων αριθμητικών εννοιών Κατασκευή της προφορικής ακολουθίας των αριθμολέξεων Άμεση εκτίμηση ποσοτήτων Απαρίθμηση και κατασκευή συλλογών ορατών αντικειμένων Πρόσθεση και αφαίρεση μονοψήφιων αριθμών Ανάλυση και σύνθεση αριθμών Κεφάλαιο 3: Η παιδαγωγική των μαθηματικών στην προσχολική ηλικία 3.1 Εισαγωγή Μαθηματική εκπαίδευση Μαθηματική δράση Αναστοχαστική δράση Συμπέρασμα Κεφάλαιο 4: Παρουσίαση λογισμικού Android 4.1 Εισαγωγή Τι είναι το Android Ιστορικά Εκδόσεις και χαρακτηριστικά Android Αρχιτεκτονική του Android Πυρήνας Linux (Linux kernel) Βιβλιοθήκες Libraries Χρόνος Εκτέλεσης Android Runtime Πλαίσιο Εφαρμογής Application Framework Εφαρμογές και Widgets Γιατί Android Κινητά τηλέφωνα Android Ταμπλέτες Android (Android Tablets) Συμπέρασμα Κεφάλαιο 5: Εγκατάσταση λογισμικού 5.1 Εισαγωγή Εγκατάσταση Java SE Development Kit (Java SDK) Εγκατάσταση Eclipse IDE & Android SDK Δημιουργία εικονικής συσκευής Android Βιβλιογραφία

5 Κεφάλαιο 1 : Παρουσίαση εκπαιδευτικής εφαρμογής 1.1 Εισαγωγή Με την ανάληψη της εργασίας αυτής κύριος στόχος ήταν η δημιουργία μιας εκπαιδευτικής εφαρμογής που θα έφερνε σε επαφή τα παιδιά, κυρίως της προσχολικής ηλικίας, με τους αριθμούς. Επιτακτική, κατά τη γνώμη μου, ήταν η δημιουργία ενός εντυπωσιακού και διασκεδαστικού user interface γεμάτο χρώματα και cartoons ώστε να τραβάει την προσοχή των μικρών παιδιών και να κάνει την ενασχόληση τους με τα μαθηματικά μια ευχάριστη εμπειρία. Όπως θα δούμε παρακάτω, μέσα από την εφαρμογή, το Android είναι μια πλατφόρμα που προσφέρει πολλά εργαλεία με αρκετές δυνατότητες. 1.2 Υφιστάμενα προγράμματα Κατά την διάρκεια της μελέτης μου για την υλοποίηση της εφαρμογής βρήκα ορισμένα υφιστάμενα προγράμματα μέσο του Android Market. Με τα λύπης μου όμως διαπίστωσα πως δεν υπήρχε εφαρμογή στα ελληνικά, οπότε αυτό έπαιξε καθοριστικό παράγοντα για την δική μου εργασία. Βλέποντας τα προγράμματα αυτά πήρα κάποιες ιδέες για το πως θα οργανώσω το δικό μου αλλά και πως θα το εξελίξω με νέα χαρακτηριστικά, παρακάτω θα αναλύσω μερικά από αυτά. Ένα από τα πιο ολοκληρωμένα προγράμματα είναι το Kids Numbers And Math της Intellijoy, εταιρία που ειδικεύεται στις εφαρμογές Android εκπαιδευτικού χαρακτήρα για παιδιά. Το περιεχόμενο της εφαρμογής περιλαμβάνει πλήθος ασκήσεων από τις οποίες άντλησα ιδέες και για την δική μου. Έχει όμορφα γραφικά και εύκολη χρηστικότητα αλλά δυστυχώς δεν υποστηρίζει την ελληνική γλώσσα. Σε γενικές γραμμές είναι ένα από τα πληρέστερα προγράμματα που κυκλοφορούν στο Market το οποίο με ενέπνευσε ώστε να δημιουργήσω την δική μου εφαρμογή. Εικόνα 1.1: Kids Numbers And Math 5

6 Ένα ακόμη πρόγραμμα που δούλεψα ήταν το Talking Kids Math And Numbers της εταιρίας Kaufcom Games And Apps όπου και αυτή έχει δημιουργήσει ένα μεγάλο πλήθος παιχνιδιών Android για παιδιά. Η εφαρμογή αυτή έχει την μορφή κουίζ όπου μέσω ενός 3D χαρακτήρα εμφανίζονται ερωτήσεις στο κάτω μέρος της οθόνης με δύο επιλογές σωστού - λάθους. Ολόκληρη η εφαρμογή βασίζεται σε αυτό το μοτίβο κάτι που κουράζει τον χρήστη, πόσο μάλλον ένα παιδί. Εντύπωση ακόμα μου έκανε το σχόλιο ενός Έλληνα χρήστη όπου παρόλο την υψηλή βαθμολογία που έδωσε ανέφερε συγκεκριμένα την φράση "μακάρι να υπήρχε και στα ελληνικά". Εικόνα 1.2: Talking Kids Math And Numbers Τρίτη και τελευταία εφαρμογή που δούλεψα ήταν το Kids Math της Mobiloids. Σε αυτήν εμφανίζονται διάφορες πράξεις σε έναν πίνακα και το παιδί πρέπει να επιλέξει την σωστή απάντηση ανάμεσα σε τέσσερεις επιλογές. Όπως και το προηγούμενο πρόγραμμα έτσι και αυτό βασίζεται σε ένα συγκεκριμένο μοτίβο κάτι που απέφυγα να κάνω στην δική μου εργασία. Ερχόμενος σε επαφή με αυτά τα προγράμματα, προσπάθησα να συλλέξω τα θετικά τους χαρακτηριστικά έτσι ώστε να τα χρησιμοποιήσω με όσο το δυνατόν καλύτερο τρόπο στην εφαρμογή μου δίνοντας τους νέο στιλ. Εικόνα 1.3: Kids Math 6

7 1.3 Περιγραφή εφαρμογής Μάντζαρης Αλέξανδρος Εγκαθιστώντας την εφαρμογή στο Android Smartphone μας εμφανίζεται στο μενού το εικονίδιο Math For Kids όπως φαίνεται στην παρακάτω εικόνα (Εικόνα 1.4). Εικόνα 1.4: Κεντρικό μενού Android Πατώντας πάνω στο εικονίδιο ξεκινάει να τρέχει η εφαρμογή εμφανίζοντας μας στην οθόνη του κινητού το λογότυπο της Βιομηχανικής Πληροφορικής και την ένδειξη ότι φορτώνει το πρόγραμμα. Εικόνα 1.5: Φόρτωση προγράμματος 7

8 Αμέσως μετά εμφανίζεται το κεντρικό μενού της εφαρμογής. Εκεί υπάρχουν οκτώ επιλογές όπου η κάθε μία αντιστοιχεί σε διαφορετική άσκηση, επιλέγοντας τις ο χρήστης ακούει ένα επεξηγηματικό ηχητικό μήνυμα. Εικόνα 1.6: Κεντρικό μενού εφαρμογής Στην πρώτη επιλογή "Μαθαίνω τους αριθμούς" εμφανίζονται οι αριθμοί από το 1 έως το 10. Πατώντας τον κάθε αριθμό ακούγεται το αντίστοιχο όνομα. Με το βελάκι επιστρέφουμε στο αρχικό μενού. Εικόνα 1.7: Πρώτη επιλογή "Μαθαίνω τους αριθμούς" 8

9 Στην δεύτερη επιλογή "Βρες το όνομα" το παιδί πρέπει να αντιστοιχίσει τον αριθμό που εμφανίζεται στο πάνω μέρος της οθόνης με έναν από τους τρείς αριθμούς που φαίνονται από κάτω ολογράφως. Στις πέντε σωστές απαντήσεις το παιδί επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.8: Δεύτερη επιλογή "Βρες το όνομα" Στην τρίτη επιλογή "Μαθαίνω να μετράω" εμφανίζονται στην οθόνη ζωάκια cartoon όπου τα παιδιά πρέπει να μετρήσουν και να βρουν το πλήθος τους επιλέγοντας τον σωστό αριθμό που βρίσκεται στο πάνω μέρος της οθόνης. Ομοίως στις πέντε σωστές απαντήσεις το παιδί επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.9: Τρίτη επιλογή "Μαθαίνω να μετράω" 9

10 Στην τέταρτη επιλογή "Βρες τον μεγαλύτερο" το παιδί θα πρέπει να συγκρίνει ένα πλήθος αριθμών μεταξύ τους και να επιλέξει τον μεγαλύτερο αριθμό. Αφού το παιδί δώσει πέντε σωστές απαντήσεις επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.10: Τέταρτη επιλογή "Βρες τον μεγαλύτερο" Στην πέμπτη επιλογή "Βρες τον μικρότερο" όπως και στην προηγούμενη το παιδί καλείται να συγκρίνει ένα πλήθος αριθμών και να βρει τον μικρότερο αυτή τη φορά. Στις πέντε σωστές απαντήσεις το παιδί επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.11: Πέμπτη επιλογή "Βρες τον μικρότερο" 10

11 Στην έκτη επιλογή "Μαθαίνω πρόσθεση" εμφανίζεται στο κάτω μέρος της οθόνης μία αριθμητική πράξη όπου το παιδί πρέπει να επιλέξει το σωστό αποτέλεσμα ανάμεσα σε τρείς επιλογές. Ομοίως στις πέντε σωστές απαντήσεις το παιδί επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.12: Έκτη επιλογή "Μαθαίνω πρόσθεση" Στην έβδομη επιλογή "Μαθαίνω αφαίρεση" το παιδί καλείται να διαλέξει ανάμεσα σε τέσσερεις επιλογές το σωστό αποτέλεσμα της αφαίρεσης. Δίνοντας πέντε σωστές απαντήσεις το παιδί επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.13: Έβδομη επιλογή "Μαθαίνω αφαίρεση" 11

12 Στην όγδοη και τελευταία επιλογή "Δυσκολότερες ασκήσεις" υπάρχουν πιο σύνθετες πράξεις που συνδυάζουν την πρόσθεση και την αφαίρεση. Το παιδί καλείτε να βρει το σωστό αποτέλεσμα επιλέγοντας έναν από τους τέσσερεις αριθμούς στο κάτω μέρος της οθόνης. Αφού το παιδί δώσει πέντε σωστές απαντήσεις επιβραβεύεται με ένα εικονικό δώρο. Εικόνα 1.14: Όγδοη επιλογή "Δυσκολότερες ασκήσεις" Τέλος πατώντας το hard menu button (που διαθέτουν οι περισσότερες συσκευές Android) εμφανίζεται στο κάτω μέρος της οθόνης ένα μενού με δύο επιλογές "About GR" και "About EN" όπου επιλέγοντας τις εμφανίζονται στην οθόνη πληροφορίες σχετικά με την εφαρμογή στα ελληνικά και στα αγγλικά αντίστοιχα. Εικόνα 1.15: Hard menu button 12

13 Εικόνα 1.16: Πληροφορίες εφαρμογής 1.4 Συμπεράσματα και βελτιώσεις Η φιλοσοφία αυτής της πτυχιακής στηρίζεται στην ιδέα του λογισμικού ανοιχτού κώδικα, το οποίο βρίσκει όλο και πιο πολλούς φανατικούς θαυμαστές τελευταία. Το λογισμικό ανοιχτού κώδικα είναι ένα λογισμικό του οποίου ο πηγαίος κώδικας διατίθεται ελεύθερα σε αυτούς που θέλουν να τον εξετάσουν, τροποποιήσουν ή χρησιμοποιήσουν σε άλλες εφαρμογές. Αυτό σημαίνει ότι για προγράμματα ανοιχτού λογισμικού όπως είναι οι Android εφαρμογές υπάρχουν άπειρα παραδείγματα στο διαδίκτυο. Όπως είδαμε ο σχεδιασμός μιας εφαρμογής σε περιβάλλον Android είναι μια σχετικά εύκολη και ευχάριστη διαδικασία. Σ αυτό έχουν συνεισφέρει πολύ τα έτοιμα εργαλεία ανάπτυξης Android λογισμικού που προσφέρει η Google και μπορεί να τα βρει κανείς εντελώς δωρεάν στο διαδίκτυο. Σε συνεργασία με το προγραμματιστικό περιβάλλον Eclipse, το οποίο είναι ένα εύχρηστο πρόγραμμα ανοιχτού κώδικα, αποτελούν ένα πολύ ισχυρό εργαλείο για όλους τους προγραμματιστές. Δείχνοντας την εφαρμογή που υλοποίησα σε φίλους και γνωστούς εισέπραξα ενθαρρυντικά σχόλια κυρίως για το design αλλά και για τις ιδέες που χρησιμοποίησα. Τα χρώματα και τα σχέδια εντυπωσίασαν τα παιδιά τα οποία το βρήκαν πολύ διασκεδαστικό αλλά συνάμα και επιμορφωτικό κάνοντάς τα να "σκέπτονται" πριν απαντήσουν. Το πρόγραμμα με τον κατάλληλο χρόνο μπορεί να εξελιχθεί σε πολυπλοκότερη εφαρμογή με περισσότερες ασκήσεις, εντυπωσιακότερα εφέ αλλά και υποστήριξη online παιχνιδιού με άλλους χρήστες. 13

14 Κεφάλαιο 2: Τα μαθηματικά στην προσχολική ηλικία 2.1 Τι είναι τα μαθηματικά Η ανάγνωση εγκυκλοπαιδικών βιβλίων, γενικής μόρφωσης, αλλά και οι βάσεις των μαθηματικών και της φυσικής αποτελούν τα θεμέλια για την μορφωτική εκπαίδευση του παιδιού. Τα μαθηματικά δεν είναι κάποιοι δύσκολοι τύποι τους οποίους το παιδί πρέπει να θυμάται απέξω αλλά ένας απλός τρόπος σκέψης ο οποίος εκφράζεται με κάποια ειδικά σύμβολα, βάση των οποίων δίνονται λύσεις σε ασκήσεις που οξύνουν την σκέψη. Αυτό πρέπει να κατανοήσουν τα παιδιά ούτως ώστε να μην τους δημιουργηθούν αρνητικά συναισθήματα πάνω στις μαθηματικές έννοιες. 2.2 Η σκέψη του παιδιού προσχολικής ηλικίας στα μαθηματικά Μετά από έρευνες που πραγματοποιήθηκαν, σε παιδιά προσχολικής ηλικίας για την διδασκαλία των μαθηματικών, τα αποτελέσματα έδειξαν ότι αυτή πρέπει να ξεκινήσει με δραστηριότητες από την προσχολική αγωγή. Η πρώτη τους επαφή θα πρέπει να γίνει με τους φυσικούς αριθμούς και τις πράξεις τους, προκειμένου να έρθουν σε επαφή με την μέτρηση, αλλά και με την γεωμετρία των σχημάτων, που ως τώρα είχαν τα διάφορα παιχνίδια που οι γονείς τους αγόραζαν (κύβοι, τρίγωνα, κλπ.). Ο γεωμετρικός αυτός και χωρικός συλλογισμός πιστεύω ότι είναι πολύ σημαντικός για τα παιδιά, διότι κατανοώντας το περιβάλλον μέσα στο οποίο ζουν και κινούνται θα καταλάβουν τα αντικείμενα, με τα οποία ως τώρα έπαιζαν, τι σκοπό έχουν. Επίσης πιστεύω ότι τα μαθηματικά είναι η βάση μάθησης πολλών εννοιών καθώς και γνωστικών αντικειμένων. 2.3 H έννοια του αριθμού Στην ικανότητα του παιδιού για αρίθμηση στηρίζεται η ανάπτυξη των πρώτων αριθμητικών εννοιών, υποστηρίζουν σύγχρονοι ερευνητές. Μέσα από τη δημιουργία ενός μοντέλου περιγράφεται εξελικτικά η κατασκευή του αριθμού από το παιδί. Η αρίθμηση ορίζεται ως η απαγγελία μιας σειράς αριθμολέξεων, έτσι ώστε κάθε αριθμολέξη να συνδέεται με μια αριθμήσιμη μονάδα. Σύμφωνα με τη διάκριση αυτή, αρχικά, τα παιδιά έχουν την ικανότητα να αριθμούν μόνο αντικείμενα που γίνονται ορατά από τις αισθήσεις τους. Αργότερα, τα παιδιά μπορούν να θεωρούν ως αριθμήσιμες μονάδες και αντικείμενα 14

15 που δεν είναι διαθέσιμα στο αντιληπτικό τους πεδίο. Η ικανότητά τους αυτή τους επιτρέπει, να βρουν με τη βοήθεια της αρίθμησης πόσα είναι όλα τα αντικείμενα μιας συλλογής που ένα μέρος της δεν είναι ορατό. Συνήθως, στην περίπτωση αυτή τα παιδιά σχηματίζουν στο μυαλό τους εικόνες των συλλογών των αντικειμένων που αριθμούν. Οι φυσικές κινήσεις που χρησιμοποιούνται αυθόρμητα από τα παιδιά όταν αριθμούν (π.χ κινήσεις δακτύλων) αποτελούν ένα πιο εξελιγμένο είδος μονάδων αρίθμησης. Η έννοια του αριθμού είναι η κατάληξη μιας σειράς δραστηριοτήτων οι οποίες συνδυάζουν τις διαφορετικές λειτουργίες που σχετίζονται με τους προφορικούς αριθμούς, όπως είναι η προφορική αρίθμηση, η καταμέτρηση, η μέτρηση, η αναγνώριση συμβόλων, η αναγνώριση ποσοτήτων κλπ. Το πέρασμα της δράσης από τα πραγματικά αντικείμενα στους αριθμούς απαιτεί μια νοητική εξέλιξη που χωρίς αυτή το αριθμητικό σύμβολο μένει κενό περιεχομένου. [2] 2.4 Τι σημαίνει πρώτη αρίθμηση "The numeracy" δηλαδή "ο αριθμητισμός", όπως θα μπορούσε να αποδοθεί στα ελληνικά ο αγγλικός αυτός όρος, ερμηνεύεται ως η ανάπτυξη αριθμητικών εννοιών και αριθμητικών σχέσεων με τη χρήση συμβάσεων (αριθμητικά συστήματα, αριθμητικά σύμβολα, μαθηματική ορολογία). Η πρώτη αρίθμηση, ως αρχικό στάδιο του αριθμητισμού, συνδέεται με την ανάπτυξη των πρώτων αριθμητικών εννοιών (ψηφία, φυσικοί αριθμοί, δεκαδικό σύστημα αρίθμηση, αριθμητικές πράξεις) και αποτελεί ένα μέρος των πρώτων συστηματικών εννοιών με τις οποίες έρχεται σε επαφή και αναπτύσσει το παιδί, κυρίως γιατί οι αριθμοί και οι πράξεις είναι οικεία και άμεσα στοιχεία της καθημερινής χρήσης. Η αρίθμηση ή καταμέτρηση (counting) ορίζεται ως μια δραστηριότητα η οποία περιλαμβάνει την απαγγελία μιας σειρά αριθμολέξεων, έτσι ώστε κάθε αριθμολέξη να συνδέεται με μια αριθμήσιμη μονάδα. Η αρίθμηση περιλαμβάνει τρία συστατικά στοιχεία: 1. την ικανότητα απαγγελίας της ακολουθίας των αριθμολέξεων στη σωστή, συμβατική τους σειρά, 2. την ικανότητα κατασκευής ενός πλήθους μονάδων που θεωρούνται αριθμήσιμες, 3. την ικανότητα συντονισμού των δυο παραπάνω δραστηριοτήτων, έτσι ώστε κάθε αριθμολέξη να αντιστοιχεί σε μια αριθμήσιμη μονάδα. Τα παιδιά όταν αρχίζουν να μαθαίνουν να μετρούν δηλαδή να αντιστοιχούν αριθμούς με αντικείμενα θα πρέπει να κατανοήσουν ότι ο τελευταίος αριθμός είναι το σύνολο των αριθμών και των αντικειμένων. Τα παιδιά που κάνουν αυτή την σύνδεση έχουν κατανοήσει την αρχή της βάσης της αριθμητικής σε ότι αφορά την ποσότητα. Από έρευνες αποδείχθηκε ότι τα περισσότερα παιδιά έχουν κάνει αυτή τη σύνδεση μέχρι την ηλικία των 4,5 χρόνων. Το περιεχόμενο της πρώτης αρίθμησης προσανατολίζεται σε αυτό που αποκαλείται "νόημα του αριθμού" και δεν παραμένει απλά στη στείρα μάθηση αριθμών και πράξεων αλλά περιλαμβάνει διαφορετικές μορφές γνώσεων, ικανοτήτων και τρόπων σκέψης (κατανόηση αριθμών και τρόποι παράστασής τους, αντίληψη μαθηματικών σχέσεων, επίλυση προβλημάτων, νοερούς υπολογισμούς, εκτιμήσεις). Επιπλέον, η σταδιακή ανάπτυξη της ικανότητας των παιδιών αυτής της ηλικίας για άμεση εκτίμηση ποσοτήτων θεωρείται συμπληρωματική της ικανότητας τους για αρίθμηση και σημαντική για το χτίσιμο της γνώσης των πρώτων αριθμητικών εννοιών. [3] 15

16 2.5 Ποιο είναι το νόημα του αριθμού Οι φυσικοί αριθμοί (0, 1, 2, 3, 4, ) αποτελούν το πρώτο ιεραρχικά αριθμητικό σύνολο, για να συμπληρωθούν στη συνέχεια από τα επόμενα αριθμητικά συστήματα όπως τους ακεραίους, τους ρητούς και τους πραγματικούς αριθμούς. Το σύνολο των αριθμών δομεί ένα σύστημα αρίθμησης που στηρίζεται στη δεκάδα, το δεκαδικό σύστημα αρίθμησης, όπου η μονάδα κάθε επόμενης τάξης είναι δεκαπλάσια της προηγούμενης μονάδας: 1, 10, 100, 1000, Η χρήση του ινδοαραβικού συστήματος συμβολισμού με τα 10 ψηφία (0 ως 9) και η θεσιακή αξία των ψηφίων, επιτρέπει τη γραφή μιας απειρίας αριθμών, που ο καθένας έχει μια διαφορετική κεντρική απόδοση. Με τον όρο "αριθμός" εννοούμε μια μαθηματική κατασκευή που έχει νόημα μέσα σ ένα αριθμητικό σύνολο, έχει χαρακτηριστικά και ένα δίκτυο σχέσεων με τους άλλους αριθμούς. Για παράδειγμα το 6, είναι το 4 και 2, είναι ζυγός αριθμός, το διπλάσιο του είναι το 12, είναι ένα τρίτο του 18 κοκ. Προκειμένου να κατανοηθεί η πρώτη αριθμητική μάθηση απαιτείται η αναγνώριση των αριθμών (συμβόλων και ψηφίων) η προφορική αρίθμηση, η μέτρηση κλπ. Τα παιδιά μετά από εκπαίδευση και καθοδήγηση πάνω στα πραγματικά αντικείμενα θα πρέπει να οδηγηθούν στον συνδυασμό όλων των παραπάνω στοιχείων. Για να επιτευχθεί η πρώτη αριθμητική μάθηση απαιτείται ποικιλία δραστηριοτήτων που θα αφορά: αναγνώριση αριθμητικών συμβόλων των ψηφίων, προφορική αρίθμηση, αναγνώριση ποσοτήτων με μια ματιά, μέτρηση κλπ. Σταδιακά δρώντας τα παιδιά πάνω στα πραγματικά αντικείμενα και στον πραγματικό κόσμο υπό την κατάλληλη καθοδήγηση θα πρέπει να οδηγηθούν να συνδυάζουν όλα τα παραπάνω στοιχεία για να συγκροτήσουν μια ολοκληρωμένη αλλά και αφηρημένη έννοια. Έτσι και εγώ μέσα στο πρόγραμμα προσπαθώ να χρησιμοποιήσω όλα τα παραπάνω εφαρμόζοντας τα όσο το δυνατόν απλούστερα και κατανοητά για τα παιδιά. 2.6 Έρευνες για την ανάπτυξη των πρώτων αριθμητικών εννοιών Κατασκευή της προφορικής ακολουθίας των αριθμολέξεων Με την παρότρυνση των γονέων τα παιδιά ηλικίας 2 ετών έχουν μάθει τις πρώτες αριθμολέξεις (το "1" και το "2"), οι δε υπόλοιπες κατανοούνται όταν τα παιδιά αρχίζουν να αριθμούν αντικείμενα σε ηλικία 2 έως 4 ετών. Σύμφωνα με το μοντέλο που έχει αναπτύξει ο Wright [3] για τη μάθηση των αριθμολέξεων από το 1 έως το 100 σε ευθεία ή σε αντίστροφη σειρά, υπάρχουν πέντε επίπεδα ανάπτυξης της συγκεκριμένης γνώσης: Στο πρώτο επίπεδο, τα παιδιά μπορούν να απαγγέλλουν τα ονόματα των αριθμών από το 1 έως το 20, ξεκινώντας πάντα την απαγγελία τους από το 1. Στην ερώτηση ποιος αριθμός είναι μετά από κάποιο δοσμένο δεν μπορούν να απαντήσουν. Για αυτό το λόγο η ακολουθία των αριθμών μπορεί να ειπωθεί ως μια χορδή η οποία δεν μπορεί να σπάσει. Στο δεύτερο επίπεδο, τα παιδιά μπορούν να βρουν την επόμενη μια αριθμολέξης στην ακολουθία των αριθμών από το 1 ως το 10, ξεκινώντας πάντα την απαγγελία τους από το 1. Για παράδειγμα, στην ερώτηση "ποιος αριθμός είναι μετά το 6;" τα παιδιά απαντούν "1, 2, 3, 4, 5, 6, 7". Στο τρίτο επίπεδο, βρίσκουν αμέσως την επόμενη μιας αριθμολέξης στην ακολουθία των αριθμών από το 1 έως το 10, χωρίς να ξεκινούν απαγγελία από το 1, αλλά έχουν δυσκολίες μετά το 10. Σε αυτό το επίπεδο μπορεί να θεωρηθεί ότι έχουν μια εικόνα στο μυαλό τους αυτού του τμήματος της ακολουθίας των αριθμολέξεων. Στο τέταρτο επίπεδο, η προηγούμενη ικανότητα των παιδιών εξελίσσεται γα να συμπεριλάβει όλο το διάστημα των αριθμών από το 1 έως το

17 Στο πέμπτο επίπεδο, η ικανότητα των παιδιών να βρίσκουν την επόμενη μιας αριθμολέξης εξελίσσεται για να συμπεριλάβει όλο το διάστημα των αριθμών από το 1 έως το Άμεση εκτίμηση ποσοτήτων Ο όρος "άμεση εκτίμηση ποσοτήτων" (subitizing) έχει εισαχθεί για να περιγράψει την ικανότητα των παιδιών να αντιλαμβάνονται και να δηλώνουν άμεσα το πλήθος μικρών συλλογών αντικειμένων χωρίς αρίθμηση, ιδιαίτερα δε αυτήν η οποία αφορά την άμεση απόδοση αριθμολέξεων από τα παιδιά (verbal subitizing). Τα παιδιά αρχίζουν να αναγνωρίζουν μικρές συλλογές αντικειμένων, με 1 έως 4 αντικείμενα, και τις συνδέουν άμεσα με τα ονόματα των αριθμών στις ηλικίες από 2 έως 4 ετών. Για παράδειγμα, παιδιά ηλικίας 2 ετών μπορούν να απαντήσουν άμεσα, ότι κρατούν 2 πορτοκάλια, ένα στο ένα χέρι και ένα στο άλλο, χωρίς να τα μετρήσουν ή παιδιά πέντε ετών μπορούν να υπολογίσουν ότι έχουν μπροστά τους 5 μολύβια με άμεση εκτίμηση. Υπάρχουν έρευνες που υποστηρίζουν ότι η άμεση εκτίμηση ποσοτήτων σχετίζεται με την κατανόηση της έννοιας του αριθμού και είναι απαραίτητη για την αρίθμηση και άλλες υποστηρίζουν το ακριβώς αντίθετο, δηλαδή ότι η άμεση εκτίμηση είναι μια γρήγορη μορφή αρίθμησης. Με βάση την πρώτη οι αριθμολέξεις μαθαίνονται μέσω της αρίθμησης και το νόημα τους αποκτιέται από την αντιστοίχιση τους με τα μη λεκτικά μεγέθη. Με βάση τη δεύτερη η ικανότητα των βρεφών να διακρίνουν μικρές συλλογές αντικείμενων μάλλον στηρίζεται σε αντιληπτικά ή χωροχρονικά δεδομένα και δε συνδέονται με μια συνειδητή γνώση της πληθικότητας. Πρόσφατες έρευνες [3] δείχνουν ότι η δεύτερη υπόθεση είναι πιο ισχυρή. Βασικά συμπεράσματα που προκύπτουν από τις έρευνες, σε σχέση με την "άμεση εκτίμηση ποσοτήτων" είναι: Παιδιά ηλικίας 3 ετών διαθέτουν την ικανότητα αυτή (για τους αριθμούς 1-6), ιδιαίτερα όταν τα αντικείμενα της συλλογής (συνήθως κουκίδες) παρουσιάζονται μαζί, ως όλο. Παιδιά ηλικίας 5 ετών διαθέτουν την ικανότητα αυτή (για τους αριθμούς 1-6), ακόμα και όταν τα αντικείμενα της συλλογής (συνήθως κουκίδες) παρουσιάζονται σταδιακά (π.χ. ανά ένα). Όσον αφορά το μέγεθος των αριθμών, οι αριθμοί 1-3 είναι πιο εύκολοι για τα παιδιά από τους αριθμούς 4-6 (ασυνέχεια μετά το 3). Η διάταξη των αντικειμένων σε γνωστούς σχηματισμούς διευκολύνει τα παιδιά στην άμεση εκτίμηση για τους αριθμούς 4-6. Η τοποθέτηση των αντικειμένων σε ορθογώνιους σχηματισμούς ή γνωστούς γεωμετρικούς σχηματισμούς ή σχηματισμούς ζαριού είναι πιο εύκολη για να αναπτύξουν την ικανότητά τους για άμεση εκτίμηση ποσοτήτων σε σχέση με την τοποθέτησή τους σε γραμμικές, κυκλικές ή τυχαίες διατάξεις. Ο Clemnets διακρίνει δυο τύπους άμεσης εκτίμησης ποσοτήτων: τον αντιληπτικό (perceptual) και τον εννοιολογικό (conceptual). Στην πρώτη περίπτωση έχουμε την ικανότητα αναγνώρισης του πλήθους μιας συλλογής αντικειμένων χωρίς τη χρήση άλλων μαθηματικών διαδικασιών (π.χ. ικανότητα που έχουν τα βρέφη), ενώ στη δεύτερη την ικανότητα αναγνώρισης, για παράδειγμα του 5, ως συνόλου και ταυτόχρονα ως σύνθεσης μονάδων. Οι δραστηριότητες για την ανάπτυξη άμεσης εκτίμησης ποσοτήτων, αρχικά μπορεί να αφορούν την αναγνώριση αντιληπτικών συλλογών δεδομένων (π.χ. εκτίμηση ήχων, σχηματισμοί δαχτύλων, γνωστοί χωρικοί σχηματισμοί όπως ο παραπάνω) και στη συνέχεια επίλυση μαθηματικών προβλημάτων. 17

18 2.6.3 Απαρίθμηση και κατασκευή συλλογών ορατών αντικειμένων Η βασική ιδέα που πρέπει να κατανοήσουν τα παιδιά της προσχολικής ηλικίας είναι ότι η αρίθμηση χρησιμοποιείται για να βρουν ποια είναι τα αντικείμενα που τους έχουν δοθεί ή να κατασκευάσουν όσα αντικείμενα τους ζητηθούν. Ο όρος "απαρίθμηση" (enumeration) χρησιμοποιείται συνήθως για να περιγράψει το συντονισμό της ακολουθίας των αριθμολέξεων με μια συλλογή ορατών αντικειμένων. Κατά τη διαδικασία αυτή, τα παιδιά συνήθως μετακινούν τα αντικείμενα (όταν αυτά είναι πραγματικά) ή τα δείχνουν (όταν αυτά είναι πραγματικά ή σε εικόνες). Γενικά η ικανότητα για απαρίθμηση ορατών αντικειμένων αρχίζει να αναπτύσσεται στα παιδιά από την ηλικία 3 ½ έως 4 ετών. [3] Η απαρίθμηση μιας συλλογής αντικειμένων απαιτεί το συντονισμό τριών στοιχείων: 1. τη γνώση της ακολουθίας των ονομάτων των αριθμών στη σωστή σειρά, 2. την αντιστοίχιση κάθε αντικειμένου της συλλογής με μια μόνο αριθμολέξη και 3. τη διατήρηση των αντικειμένων που έχουν απαριθμηθεί και αυτών που δεν έχουν. Συμπεράσματα που προκύπτουν από τις έρευνες, σε σχέση με την απαρίθμηση είναι: Παιδιά ηλικίας 3 ½ έως 4 ½ ετών μπορούν να απαριθμούν χωρίς καμία δυσκολία μέχρι και 14 αντικείμενα τα οποία βρίσκονται σε γραμμική διάταξη. Παιδιά 3 και 3 ½ ετών δυσκολεύονται ακόμη και στο συντονισμό των δυο πρώτων προϋποθέσεων ενώ τα μεγαλύτερα των 4 ετών παρουσιάζουν δυσκολίες στην τρίτη. Συχνά παιδία ηλικίας 3-5 ετών αντιστοιχίζουν περισσότερες από μια αριθμολέξεις στο ίδιο αντικείμενο ή την ίδια αριθμολέξη σε δυο αντικείμενα. Επίσης πολλές φορές συνεχίζουν να αριθμούν ενώ έχουν αντιστοιχίσει αριθμολέξεις σε όλα τα αντικείμενα ή σταματούν την αρίθμηση πρόωρα. Ιδιαίτερη δυσκολία συναντούν τα παιδιά όταν το πλήθος της συλλογής των ορατών αντικείμενων είναι μεγάλο. Τα μεγάλα παιδιά 5 ½ και 6 ετών μετακινούν τα αντικείμενα ή αν πρόκειται για σχέδιο τα σημαίνουν ή τα διαγράφουν. Πρώτα οι μαθητές κατακτούν τον "κανόνα της τελευταίας λέξης" και στη συνέχεια σταδιακά οικειοποιούνται την πληθική σημασία του αριθμού. Έτσι, αν για παράδειγμα παιδί απαριθμήσει 4 αντικείμενα και του ζητηθεί να δείξει τα 4 αντικείμενα μπορεί να δείξει μόνο το τελευταίο. Ερευνητές έχουν αναπτύξει ένα μοντέλο έξι επιπέδων για την κατανόηση της πληθικότητας από τα παιδιά όταν αυτά ασχολούνται με συλλογές ορατών αντικειμένων: Στο πρώτο επίπεδο, το παιδί δεν κατανοεί το ερώτημα "πόσα είναι" και απάντα τυχαία. Στο δεύτερο επίπεδο, υπάρχει μερική αναφορά στην αρίθμηση. Τα παιδιά απαντούν με μια σειρά αριθμολέξεων, χωρίς ωστόσο να υπάρχει αναφορά σε όλα τα αντικείμενα της συλλογής. Στο τρίτο επίπεδο, τα παιδιά απαντούν χρησιμοποιώντας όλη τη σειρά των αριθμολέξεων, όπου η κάθε αριθμολέξη αντιστοιχίζεται με ένα αντικείμενο. Στο τέταρτο επίπεδο, χρησιμοποιούν τον κανόνα της τελευταίας αριθμολέξης. Στο πέμπτο επίπεδο, απαντούν με τη μεγαλύτερη αριθμολέξη της αρίθμησής τους, ακόμα και αν αυτή δεν είναι η τελευταία. Στο έκτο επίπεδο, απαντούν με επάρκεια σε σχέση με την πληθικότητα. 18

19 2.6.4 Πρόσθεση και αφαίρεση μονοψήφιων αριθμών Μάντζαρης Αλέξανδρος Η εξοικείωση με τους αριθμούς και τις σχέσεις τους συνδέονται απόλυτα με τις πράξεις. Πράξεις εμφανίζονται συχνά στις καθημερινές δραστηριότητες των παιδιών όταν βάζουν μαζί ποσότητες, όταν αναρωτιούνται πόσα χρειάζονται, όταν μοιράζονται πράγματα. Οι αριθμοί τις πρώτης δεκάδας και ο χειρισμός των σχέσεων αυτών είναι αδιαμφισβήτητα ο όρος της αριθμητικής μάθησης προκειμένου να γίνουν μεγαλύτεροι υπολογισμοί ή εκτιμήσεις. Στις μέρες μας γίνεται αποδεκτό ότι η προοδευτική κατάκτηση της ικανότητας της αρίθμησης, οδηγεί στην εύρεση πιο αποτελεσματικών τρόπων πρόσθεσης και αφαίρεσης. Τα παιδιά από πολύ μικρή ηλικία αντιλαμβάνονται διαισθητικά ότι όταν προσθέτουμε σε μια συλλογή αντικείμενα γίνεται μεγαλύτερη σε πλήθος και αντίστοιχα όταν αφαιρούμε γίνεται μικρότερη. Παιδιά ηλικία 3 έως 4 ετών απαντούν με επιτυχία σε προβλήματα με μικρούς αριθμούς, όπως "1+1", "2-1" ενώ λίγο μεγαλύτερα απαντούν με ευκολία για τα "1+2", "3-1" κλπ. Οι πράξεις της πρόσθεσης και της αφαίρεσης μπορεί να δηλώνονται με λεκτικές διατυπώσεις όπως, για παράδειγμα, βάζω μαζί, ενώνω, βάζω κι άλλα, μεγαλώνω, προσθέτω και βγάζω, λιγοστεύω, μικραίνω, αφαιρώ. Στα πρώτα τους βήματα, στο ερώτημα "πόσα είναι όλα μαζί τα αντικείμενα;" τα παιδιά μετρούν τα αντικείμενα της πρώτης συλλογής, μετρούν τα αντικείμενα της δεύτερης συλλογής και στη συνέχεια τα μετρούν από την αρχή όλα μαζί. Η σημαντική αλλαγή στη σκέψη των παιδιών ηλικίας 5-6 ετών είναι ότι μαθαίνουν να κάνουν προσθέσεις και αφαιρέσεις χωρίς να έχουν μπροστά τους τα αντικείμενα. Τα παιδιά συνήθως αντιμετωπίζουν ένα πρόβλημα πρόσθεσης με βάση τον τύπο αριθμήσιμων μονάδων που έχουν οικοδομήσει. Έτσι αρχικά χρειάζονται μπροστά τους τα αντικείμενα και βέβαια χρειάζονται μια κατάλληλη ερώτηση, όπως "πόσα είναι όλα μαζί;" (αντιληπτικό στάδιο). Σε επόμενα στάδια μπορούν να αριθμούν ή και να χρησιμοποιούν τα δάχτυλά τους. Οι Greno et al. [3] ταξινόμησαν τα προβλήματα σε τρεις βασικές κατηγορίες: 1. Προβλήματα αλλαγής (change), όπου ένα γεγονός αλλάζει την ποσότητα της αρχικής κατάστασης. Για παράδειγμα: «Η Μαρία έχει 2 σοκολατάκια. Ο Νίκος της έδωσε 1 ακόμα. Πόσα σοκολατάκια έχει η Μαρία;». 2. Προβλήματα συνδυασμού (combine), όπου οι σχέσεις των δυο ποσοτήτων είναι στατικές. Για παράδειγμα: «Η Μαρία έχει 2 σοκολατάκια. Ο Νίκος έχει 1 σοκολατάκι. Πόσα σοκολατάκια έχουν και οι δύο μαζί;». 3. Προβλήματα σύγκρισης (compare), όπου έχουμε σύγκριση ποσοτήτων. Για παράδειγμα: «Η Μαρία έχει 2 σοκολατάκια. Ο Νίκος έχει 1 σοκολατάκι περισσότερο από τη Μαρία. Πόσα σοκολατάκια έχει ο Νίκος;» Ανάλυση και σύνθεση αριθμών Η ανάλυση και η σύνθεση αριθμών θεωρείται μια πολύ σημαντική πράξη για τα νήπια. Η κατανόηση από τα παιδιά ότι ένας αριθμός μπορεί να αναλυθεί σε μικρότερα μέρη τα οποία όταν επανενωθούν κάνουν τον ίδιο αριθμό είναι πολύ σημαντική για την κατανόηση επίλυσης προβλημάτων πρόσθεσης και αφαίρεσης με άγνωστο προσθετέο ή μειωτέο (π.χ. ;+2=3 ή ;-2=1). Οι πράξεις της ανάλυσης και της σύνθεσης αριθμών προϋποθέτει τα παιδιά να μπορούν να αριθμούν και ταυτόχρονα να κατανοούν ότι μικρότεροι αριθμοί εμπεριέχονται μέσα σε μεγαλύτερους. Έτσι, παιδιά ηλικίας 3-4 ετών μπορούν να δουν ότι 2 αντικείμενα και 1 αντικείμενο μας κάνουν 3 αντικείμενα, δηλαδή ότι οι αριθμοί 2 και 1 είναι "κρυμμένοι" μέσα στο 3, ενώ σε μεγαλύτερες ηλικία, τα παιδιά μπορούν χωρίσουν μια ομάδα αντικειμένων σε υποομάδες. Η ανάλυση και η σύνθεση μικρών αριθμών με τη χρήση γνώριμων αντικειμένων για τα παιδιά στην προσχολική εκπαίδευση είναι απαραίτητη για την κατανόηση σε μεγαλύτερες ηλικίες του δεκαδικού συστήματος, ιδιοτήτων των πράξεων όπως η αντιμεταθετική ιδιότητα της πρόσθεσης, των κλασμάτων κλπ. 19

20 Κεφάλαιο 3: Η παιδαγωγική των μαθηματικών στην προσχολική ηλικία 3.1 Εισαγωγή Στη σημερινή εποχή δεν αμφισβητείται η μαθηματική εκπαίδευση διότι εξοπλίζει τον άνθρωπο με ιδιαίτερη συλλογική ικανότητα, λόγω της πολλαπλότητας των εφαρμογών της στη λύση πολλών καθημερινών προβλημάτων αλλά και στην έρευνα για την ανάπτυξη της τεχνολογίας καθώς και στην γνωριμία του σύμπαντος προς όφελος της ανθρωπότητας. Επίσης κανείς δεν προβληματίζεται για το αν η μάθηση των μαθηματικών ξεκινάει από τις μικρότερες ηλικίες και κατά συνέπεια αν είναι στοιχείο και της προσχολικής εκπαίδευσης. Σήμερα όλοι γνωρίζουμε ότι η ανάπτυξη μαθηματικών ιδεών στοχεύει να εξασκήσει τα μικρά παιδιά σε σημαντικές μαθηματικές διαδικασίες κι έννοιες που ανταποκρίνονται στο παρόν αλλά επενδύουν και στο μέλλον τους. 3.2 Μαθηματική εκπαίδευση Μετά από πολλές και σημαντικές έρευνες η διδασκαλία των μαθηματικών σε παιδιά προσχολικής ηλικίας έκανε σημαντικά βήματα, τα τελευταία χρόνια, διότι μελετήθηκαν οι ικανότητες των παιδιών και δοκιμάστηκαν νέες μορφές διδασκαλίας. Ωστόσο η ανάπτυξη μιας αποτελεσματικής μαθηματικής εκπαίδευσης και πολύ περισσότερο η ανάπτυξη της μαθηματικής τάσης που αναφέραμε, είναι πιο περίπλοκη από όσο αρχικά είχε γίνει αντιληπτό. Για πολλούς εκπαιδευτικούς το "μαθαίνω μαθηματικά" συνδέεται ακόμα με την ενασχόληση των παιδιών με καταστάσεις που χρησιμοποιούν μαθηματικές έννοιες ή διαδικασίες. Πολύ συχνά οι καταστάσεις αυτές είναι οι ίδιες με εκείνες που χρησιμοποιούσαμε τα προηγούμενα χρόνια, απλά σήμερα τις ονομάζουμε μαθηματικές. Έτσι τελικά μοιάζει σαν να δεχόμαστε ότι τα παιδιά μαθαίνουν μαθηματικά γιατί εμπλέκονται σε άτυπες μαθηματικές διαδικασίες ή ασχολούνται με μαθηματικά αντικείμενα, σχήματα και αριθμούς. Για παράδειγμα η συμμετοχή των παιδιών στη μαγειρική μπορεί να αποτελέσει χρήσιμη μαθηματική δραστηριότητα, καθώς εμπεριέχει 20

21 δυνατότητα αρίθμησης, εκτίμησης ποσοτήτων, βάρους, χωρητικότητας και όγκου. Προφανώς μια δραστηριότητα μαγειρικής υποστηρίζει τη μαθηματική σκέψη στο βαθμό που οι ενήλικοι αναδεικνύουν και αξιοποιούν τα μαθηματικά στοιχεία, δίνοντας στα παιδιά ερεθίσματα. Με το παράδειγμα αυτό η ονομαζόμενη "μαθηματική δραστηριότητα" ολισθαίνει σε παλιές μορφές που δεν είναι ούτε δραστηριότητες αλλά ούτε μαθηματικές. Τα παιδιά αντιμετωπίζουν τις καταστάσεις που τους προτείνονται με "καθημερινές" έννοιες στις οποίες δεν δίνουν ιδιαίτερο νόημα, ούτε γενικεύουν, αν δεν έχουν για αυτό κάποιο κίνητρο και κατά συνέπεια, δεν αναπτύσσουν νέες μαθηματικές ιδέες. Οι εκπαιδευτικοί θα χρειαστεί να αναδείξουν τα απαραίτητα στοιχεία για την προσέγγισή τους και με τον τρόπο αυτό να υποδείξουν τις ιδέες που ενδιαφέρονται να αναπτύξουν. [4] 3.3 Μαθηματική δράση Η γνώση δεν μεταδίδεται με την παρουσίαση της αλλά κατακτιέται με την δραστηριοποίηση των μαθητών και την ενθάρρυνση αυτών από τους εκπαιδευτικούς με δημιουργική αναζήτηση, ανταλλαγή στοιχείων-γνώσεων και διάλογο. Στο χώρο της μαθηματικής εκπαίδευσης ο σχεδιασμός κατάλληλων δραστηριοτήτων αναδεικνύεται πιο περίπλοκο εγχείρημα από ότι αρχικά είχε φανεί. Από πολύ νωρίς οι επιστήμονες είχαν επισημάνει ότι, για να αναπτύξουν μαθηματικές ιδέες, τα παιδιά χρειάζονται να διαχειριστούν και να μελετήσουν καταστάσεις με περιεχόμενο και νόημα για αυτούς. Ωστόσο η μελέτη αυτή, αν και ξεκινά από πρακτικούς χειρισμούς, χρειάζεται να τα οδηγεί να μετασχηματίσουν τα πραγματικά αντικείμενα που χειρίζονται σε νοερά και έτσι να τα αντιληφθούν σε ένα ανώτερο επίπεδο. Αυτό το πέρασμα από τις καθημερινές δραστηριότητες και τις οικείες καταστάσεις στις γενικεύσεις και αφαιρέσεις που απαιτεί η μαθηματική ανάπτυξη αποτελεί ένα ιδιαίτερο στοιχείο που πολλές προσεγγίσεις το αγνοούν. Αναφέραμε ήδη ότι η εμπλοκή μαθηματικών αντικειμένων δεν είναι αρκετή για να κάνει μια δραστηριότητα μαθηματική και πολύ περισσότερο να οδηγήσει στην ανάπτυξη μαθηματικών ιδεών. Tο σημαντικό στοιχείο μιας δραστηριότητας με μαθηματικό περιεχόμενο δεν είναι η ανάπτυξη μιας οποιασδήποτε δράσης αλλά η ανάπτυξη μαθηματικής δράσης του παιδιού. Έτσι το ερώτημα που μοιάζει κρίσιμο να απαντηθεί, με βάση τον προβληματισμό για την ανάπτυξη μαθηματικών νοημάτων, αλλά και το ενδιαφέρον να ενθαρρύνουμε τα παιδιά να σκεφτούν με μαθηματικό τρόπο είναι "πότε μία δράση του παιδιού μπορεί να χαρακτηριστεί ως μαθηματική;". Η αντιμετώπιση μιας άγνωστης κατάστασης, η λύση ενός προβλήματος, μια κατασκευή ή ένα παιχνίδι που απαιτεί στρατηγικές για να κερδηθεί περιλαμβάνει οπωσδήποτε δράση αλλά αυτή η δράση είναι μαθηματική όταν καταλήγει σε αναγνώριση ομοιοτήτων και διαφορών, σε εντοπισμό ιδιοτήτων και σχέσεων, γενικά όταν κατευθύνονται προς μια μαθηματική ιδέα. Ας θεωρήσουμε δράσεις που ζητούν από τα παιδιά να αναγνωρίσουν σχήματα, τρίγωνα, τετράγωνα, κλπ, στα αντικείμενα του περιβάλλοντος. Οι έρευνες καταδεικνύουν ότι σημαντικός αριθμός παιδιών αναγνωρίζουν τα συνήθη σχήματα από την καθημερινή αναφορά σε αυτά ή τη χρήση αντικειμένων με αυτές τις μορφές. Η αναγνώριση αν και εμπλέκει σχήματα δεν περιέχει μαθηματική δράση, δηλαδή δεν περιλαμβάνει συγκρίσεις, εντοπισμό ιδιοτήτων ή άλλων χαρακτηριστικών των σχημάτων. Είναι σαφές ότι θα χρειαστεί τα παιδιά να διακρίνουν τις μορφές σε πραγματικές καταστάσεις με περιεχόμενο και νόημα για αυτούς, αλλά για να τις γενικεύσουν και να τις αντιληφθούν σε ένα ανώτερο επίπεδο είναι απαραίτητο να κάνουν συγκρίσεις, να αναζητήσουν ομοιότητες και διαφορές, να αντιληφθούν κάποιες ιδιότητες που η ολιστική αναγνώριση δεν ενθαρρύνει. Ας θεωρήσουμε, αντίθετα, μια δράση-παιχνίδι όπου δίνεται στα παιδιά ένα σχήμα που πρέπει να το αναζητήσουν ανάμεσα σε άλλα μέσα σε μία εικόνα (Εικόνα 3.1). Η κατάσταση αυτή, στο βαθμό που ενδιαφέρονται να "νικήσουν", τους οδηγεί στην ανάπτυξη μιας 21

22 μαθηματικής δράσης πάνω στα σχήματα που είναι το κλειδί για την εύρεση της σωστής απάντησης. Εικόνα 3.1 : Δράση-παιχνίδι Τι διαφορετικό δηλαδή κάνει το παιδί σε αυτή την περίπτωση; Κρατάει στο μυαλό του την εικόνα του τριγώνου που ψάχνει, το συγκρίνει με τα σχήματα που δεν είναι τρίγωνα και τα αποκλείει, στη συνέχεια το συγκρίνει με τα τρίγωνα και παρατηρεί κι άλλες ομοιότητες ή διαφορές (πιο μεγάλο, πιο μικρό, μεγαλύτερες, μικρότερες πλευρές, άλλη μορφή κ.ά.), το περιστρέφει και τέλος μπορεί να επιβεβαιώσει ή σε περίπτωση λάθους να αναζητήσει τους λόγους που τον οδήγησαν στο λάθος, με δύο λόγια να ξεπεράσει την ολιστική και να αναπτύξει μια πιο λεπτομερή αντίληψη για τα σχήματα. Το παράδειγμα αυτό μας δίνει και την ιδέα ότι οι μαθηματικές δραστηριότητες δεν είναι ποτέ μεμονωμένες, γιατί οι μαθηματικές έννοιες δεν μπορούν να δημιουργηθούν από μία ή δύο δραστηριότητες. 3.4 Αναστοχαστική δράση Το παράδειγμα που χρησιμοποιήσαμε μας επιτρέπει να αναφερθούμε στο επόμενο στοιχείο που περιλαμβάνει ο σχηματισμός μαθηματικών εννοιών, που είναι ο αναστοχασμός πάνω στη δράση. Πιστεύεται ότι η δράση των μαθητών σε μια δραστηριότητα που σχετίζεται με μαθηματικές έννοιες οδηγεί σε μαθηματική μάθηση, ενώ ο μαθητής ακολουθεί διαδικασίες που μοιάζουν αποτελεσματικές χωρίς να αναζητά παραπάνω εξηγήσεις ή ερμηνείες. Έχει καταδειχθεί ότι η εμπλοκή των μαθητών σε μία δραστηριότητα δε σημαίνει απαραίτητα τη δημιουργία μιας ιδέας, καθώς δεν είναι η ίδια η δράση που δημιουργεί μια ιδέα, αλλά η σκέψη πάνω στη δράση. Μια εικόνα για το τι σημαίνει κατάσταση που οδηγεί σε σκέψη μπορεί να μας δώσει το παράδειγμα της αριθμητικής δραστηριότητας όπου ο εκπαιδευτικός ζητάει από τα παιδιά να κόψουν αριθμούς από εφημερίδες και περιοδικά και στη συνέχεια να τους βάλουν στη σειρά. Για την αντιμετώπιση της τα παιδιά οδηγούνται σε μια συστηματική διερεύνηση των αριθμών, αναζήτηση μιας μεθόδου διάταξης, ερμηνεία για την ορθότητα της μεθόδου που χρησιμοποιείται κλπ. Είναι φανερό ότι κανείς και ιδιαίτερα ένα παιδί της προσχολικής ηλικίας δεν θα μπει σε διαδικασία αναστοχασμού, εκτός κι αν έχει για αυτό ένα κίνητρο. Συνοψίζοντας μπορούμε να πούμε ότι για την ανάπτυξη κάθε στοιχείου μαθηματικής γνώσης στο επίπεδο που το προσεγγίζουμε είναι απαραίτητη η δημιουργία ενός ολοκληρωμένου σχεδίου που περιλαμβάνει μαθηματική δράση αλλά και συστηματική σκέψη των παιδιών πάνω στη δράση αυτή. [4] 22

23 3.5 Συμπέρασμα Μάντζαρης Αλέξανδρος Η επίτευξη της διδακτικής μαθηματικής σκέψης, η σύγκλιση της προσωπικής και επιστημονικής γνώσης των μαθητών αποδεικνύεται ιδιαίτερα πολύπλοκη για τα μαθηματικά, λόγω της ιδιαιτερότητας της φύσης τους. Τα ερευνητικά αποτελέσματα δείχνουν ότι οι μικροί μαθητές αναπτύσσουν άτυπες γνώσεις για πολλές και σύνθετες μαθηματικές ιδέες και με την κατάλληλη διδακτική υποστήριξη μπορούν να τις κατανοήσουν ουσιαστικότερα και να προσεγγίσουν περισσότερα στοιχεία από ότι μέχρι πρόσφατα πιστεύαμε. Αντί να τους περιορίζουμε χρειάζεται να τους δίνουμε τα κατάλληλα ερεθίσματα και να τους ενθαρρύνουμε να εξερευνούν, να αναζητούν, να συζητούν και να οδηγούν τη σκέψη τους σε ένα ανώτερο επίπεδο. 23

24 Κεφάλαιο 4: Παρουσίαση λογισμικού Android 4.1 Εισαγωγή Ένας από τους πρωταρχικούς σκοπούς της εργασίας αυτής, ήταν η επιλογή μιας πλατφόρμας η οποία θα μπορούσε να υποστηρίξει τον σχεδιασμό και την υλοποίηση μιας εκπαιδευτικής εφαρμογής. Ταυτόχρονα αναζητούσα κάτι το καινούργιο στον χώρο που θα άξιζε την μελέτη του και παράλληλα θα ήταν πολλά υποσχόμενο. Οι δύο κύριες πλατφόρμες οι οποίες ήταν υποψήφιες ήταν το iphone OS και το Android OS. Οι δύο αυτές πλατφόρμες πρωταγωνιστούν στον χώρο των έξυπνων τηλεφώνων (smartphones), αφού διαθέτουν εξαιρετικά χαρακτηριστικά και απίστευτες δυνατότητες. Εικόνα 4.1: Η μάχη μεταξύ iphone OS και Android OS Στις αρχές Οκτωβρίου 2009, το iphone κατείχε τα σκήπτρα στις πωλήσεις. Παρόλα αυτά με την ραγδαία ανάπτυξη που είχε το Android, οι ερευνητές μιλούσαν ότι τα δεδομένα θα έχουν ανατραπεί μέχρι το 2012 το γρηγορότερο. Προς έκπληξη αρκετών, το Android έχει ήδη ξεπεράσει προ πολλού σε πωλήσεις το iphone και συνεχίζει να επεκτείνεται. Ωστόσο είναι μια μάχη η οποία αναμένετε να συνεχιστεί, με τις δύο πλατφόρμες να εκσυγχρονίζουν ανά τακτά χρονικά διαστήματα τα χαρακτηριστικά τους. Χαρακτηριστική η έρευνα που ανακοίνωσε η Millennial Media [5] τα αποτελέσματα της οποίας είναι λίγο πολύ αναμενόμενα, δηλαδή το Android OS κυριαρχεί με παρουσία στο 54% των smartphones παγκοσμίως, με το ios να ακολουθεί με 28% και το BlackBerry OS με 13% (Σχήμα 4.2). 24

25 Σχήμα 4.2: Πωλήσεις Λειτουργικών Συστημάτων για τα Smartphone Επίσης ο Hugo Barra, Product Management Director του Android ανακοίνωσε στο Google I/O που έγινε, 10 Μαΐου 2011, στο San Francisco ορισμένα εντυπωσιακά στατιστικά για την πλατφόρμα. Η Google δεν έχασε την ευκαιρία να αντεπιτεθεί σε οποιοδήποτε αμφισβητεί την κυριαρχία του Android OS και ανακοίνωσε τα ιλιγγιώδη στατιστικά στοιχεία που συνοδεύουν το υπέρ-επιτυχημένο λειτουργικό σύστημα. 100 εκατομμύρια ενεργοποιήσεις από την πρώτη ημέρα κυκλοφορίας του Android OS νέες ενεργοποιήσεις κάθε ημέρα. 4.5 δισεκατομμύρια downloads εφαρμογών εφαρμογές στο Android Market (Play Store). 36 κατασκευαστές συσκευών. 215 πάροχοι σε 112 χώρες. Από την πρώτη στιγμή εμπιστεύτηκα τις δυνατότητες και τις προοπτικές του Android και το προτίμησα ως την πλατφόρμα ανάπτυξης της εφαρμογής, έναντι του ios. Μεγάλο ρόλο στην απόφαση αυτή, έπαιξε το γεγονός ότι το Android είναι ένα πρόγραμμα ανοικτού κώδικα, κάτι το οποίο θα πρόσφερε την δυνατότητα εύκολης πρόσβασης σε πηγαίο κώδικα και εφαρμογές αυτής της πλατφόρμας. 25

26 4.2 Τι είναι το Android Το Android είναι μια στοίβα λογισμικού για κινητές συσκευές η οποία περιλαμβάνει λειτουργικό σύστημα, ενδιάμεσο λογισμικό (middleware) και βασικές εφαρμογές. Το Android τρέχει τον πυρήνα του λειτουργικού Linux και μέσω της δικής του εργαλειοθήκης ανάπτυξης συστήματος λογισμικού (Software Development Kit), επιτρέπει στους κατασκευαστές να δημιουργούν πρωτοποριακές εφαρμογές. Αρχικά αναπτύχθηκε από την Google και αργότερα συνεχίστηκε σε συνεργασία με την Open Handset Alliance (OHA). Η πρώτη παρουσίαση της πλατφόρμας Android έγινε στις 5 Νοεμβρίου 2007, παράλληλα με την ανακοίνωση της ίδρυσης του οργανισμού OHA, μιας κοινοπραξίας 48 τηλεπικοινωνιακών εταιριών, εταιριών λογισμικού καθώς και κατασκευής υλικού, οι οποίες είναι αφιερωμένες στην ανάπτυξη και εξέλιξη ανοιχτών προτύπων στις συσκευές ανοιχτής τηλεφωνίας. Ενδεικτικά αναφέρουμε μερικά μέλη του οργανισμού αυτού (Εικόνα 4.3) για να δείξουμε την τεράστια προοπτική που δημιουργείται: Google, Samsung, HTC, Sony Ericsson, Motorola, T-Mobile, AT&T, Vodafone, Sprint Nextel, Verizon, Texas Instruments κ.α. Εικόνα 4.3: Εταιρίες λογισμικού και κατασκευής υλικού παγκόσμιας εμβέλειας 26

27 4.3 Ιστορικά Εικόνα 4.4: Λογότυπο πλατφόρμας Android Η πρώτη έκδοση του Android SDK τον Νοέμβριο του 2007, χαρακτηρίστηκε από τους κατασκευαστές του σαν μια πρώτη ματιά στο SDK του Android, κάτι το οποίο πολλοί παράβλεψαν και βιάστηκαν να κατακρίνουν το Android σαν ένα προβληματικό σύστημα. Στην ουσία όμως το Android δεν παρουσίαζε προβλήματα τα οποία παρουσιάζει οποιοδήποτε σύστημα σε τέτοια πρώιμη φάση. Έτσι το Σεπτέμβριο του 2008, η T-Mobile ανακοινώνει την διαθεσιμότητα του T-Mobile G1, του πρώτου έξυπνου τηλεφώνου (smartphone), βασισμένο στην πλατφόρμα του Android. Λίγες μέρες αργότερα (Οκτώβριο 2008), η Google ανακοινώνει την απελευθέρωση του SDK Release Candidate 1.0. Ακολούθησε τον Φεβρουάριο του 2009 η έκδοση 1.1 σαν μια ανανεωμένη έκδοση του 1.0. Μέχρι τότε το Android δεν υποστήριζε ακόμη την χρήση κουμπιών αφής, παρά μόνο την χρήση των κλασσικών "σκληρών" κουμπιών της συσκευής. [6] 4.4 Εκδόσεις και χαρακτηριστικά Android Τον Μάιο του 2009 είχαμε την έκδοση Android 1.5, εν ονόματι "Cupcake". Εικόνα 4.5: Λογότυπο Android 1.5 CUPCAKE Το "Cupcake" εισάγει κάποια καινούργια χαρακτηριστικά και ανανεώσεις στην διεπαφή χρήστη (User Interface): Ικανότητα για καταγραφή και παρακολούθηση βίντεο μέσα από την λειτουργία της βιντεοκάμερας, μεταφόρτωση βίντεο στο YouTube και φωτογραφιών στο Picasa 27

28 απευθείας από το τηλέφωνο, καινούργιο μαλακό πληκτρολόγιο (αφής) με πρόβλεψη κειμένου. Υποστήριξη προτύπου Bluetooth A2DP και AVRCP. Ικανότητα αυτόματης σύνδεσης σε μικροσυσκευή Bluetooth από μια συγκεκριμένη απόσταση. Καινούργια widgets και φάκελοι που μπορούν να δημοσιευτούν στην αρχική οθόνη. Κινούμενες μεταβάσεις οθόνης. To "Donut", Android 1.6, ήρθε τον Σεπτέμβριο του Εικόνα 4.6: Λογότυπο Android 1.6 DONUT Η έκδοση αυτή εισάγει κάποια καινούργια χαρακτηριστικά όπως: Βελτιωμένο Android Market. Ενσωματωμένη φωτογραφική μηχανή, βιντεοκάμερα και διεπαφή (interface) γκαλερί. Η γκαλερί επιτρέπει πλέον στους χρήστες την επιλογή πολλαπλών φωτογραφιών για διαγραφή. Ανανεωμένη αναζήτηση με φωνή, με ταχύτερη απόκριση και βαθύτερη ολοκλήρωση με εγγενής (native) εφαρμογές, συμπεριλαμβανομένης της δυνατότητας να καλούμε επαφές. Ανανεωμένη αναζήτηση με την δυνατότητα αναζήτησης σελιδοδεικτών, ιστορικού, επαφών και στο διαδίκτυο από την αρχική οθόνη. Ανανεωμένη υποστήριξη τεχνολογιών για CDMA/EVDO, 802.1x, VPNs και με μηχανή μετατροπής κειμένου σε ομιλία (text-to-speech). Υποστήριξη για ανάλυση οθονών WVGA. Βελτιώσεις στην ταχύτητα για αναζήτηση και για εφαρμογές φωτογραφικής μηχανής. 28

29 Ακολουθεί το "Eclair", Android 2.0 τον Νοέμβριο 2009, με τις επανεκδόσεις του σε Android τον Δεκέμβριο 2009 (Eclair 0.1) και τον Ιανουάριο 2010 με το Android 2.1 (Eclair MR1). Ανάμεσα στις άλλες αλλαγές είναι και: Βέλτιστη ταχύτητα υλικού. Εικόνα 4.7: Λογότυπο Android 2.0 ECLAIR Υποστήριξη για περισσότερες οθόνες και αναλύσεις. Βελτιωμένη διεπιφάνεια χρήστη. Καινούργια διεπιφάνεια χρήσης για την μηχανή αναζήτησης και υποστήριξη του προτύπου HTML5. Καινούργιες λίστες επαφών. Καλύτερος λόγος άσπρου μαύρου για φόντα. Βελτιωμένοι χάρτες Google (google maps) Υποστήριξη Microsoft Exchange. Ενσωματωμένη υποστήριξη flash για την Camera. Ψηφιακή μεγέθυνση (zoom). Κλάση MotionEvent βελτιωμένη ώστε οι κατασκευαστές να μπορούν να παρακολουθούν αποτελεσματικότερα τα γεγονότα πολλαπλής αφής. Ανανεωμένο εικονικό πληκτρολόγιο. Bluetooth

30 Ακολουθεί το Android 2.2 με το όνομα "Froyo" τον Μάιο του Εικόνα 4.8: Λογότυπο Android 2.2 FROYO Η έκδοση "Froyo" ανάμεσα σε άλλες αλλαγές περιλαμβάνει: Βελτιστοποιήσεις στην ταχύτητα γενικά του λειτουργικού συστήματος, στην μνήμη και στην απόδοση. Ενσωμάτωση στην μηχανή αναζήτησης, της μηχανής Javascript του Chrome V8. Αυξημένη υποστήριξη Microsoft Exchange (σε πολιτικές ασφαλείας, συγχρονισμού ημερολογίου, auto discovery, GAL look-up, remote wipe). Βελτιωμένος προωθητής εφαρμογής (application launcher), με συντομεύσεις προς τις εφαρμογές τηλεφώνου και εφαρμογές της Μηχανής Αναζήτησης. Πρόσδεση USB και λειτουργία δυναμικής ζώνης (hotspot) WiFi. Ανανεωμένη εφαρμογή Αγοράς (Market) με αυτόματη ανανέωση. Επιλογή για απαγόρευση πρόσβασης δεδομένων πάνω από ένα δίκτυο κινητής τηλεφωνίας. Γρήγορη εναλλαγή ανάμεσα σε πολλαπλές γλώσσες του πληκτρολογίου και των λεξικών τους. Φωνητική κλήση και διαμοιρασμός επαφών με Bluetooth. Υποστήριξη για αριθμητικούς και αλφαριθμητικούς κωδικούς. Η μηχανή αναζήτησης μπορεί να αποτυπώσει κινούμενα GIFs. Υποστήριξη για πεδία μεταφόρτωσης αρχείων στην μηχανή αναζήτησης. Υποστήριξη για εγκατάσταση εφαρμογών στην επεκτάσιμη μνήμη. Υποστήριξη Adobe Flash

31 Ακολουθεί το "Gingerbread", Android 2.3 τον Δεκέμβριο 2010, με τις επανεκδόσεις του σε Android τον Φεβρουάριο 2011, Android τον Μάιο 2011, Android τον Ιούλιο του 2011 και Android τον Σεπτέμβριο Εικόνα 4.9: Λογότυπο Android 2.3 GINGERBREAD Οι αλλαγές που έχουν γίνει είναι οι ακόλουθες: Βελτιωμένο UI για απλότητα και ταχύτητα. Πιο γρήγορη, πιο διαισθητική εισαγωγή κειμένου. Επιλογή λέξεων και αντιγραφή/επικόλληση με ένα άγγιγμα. Βελτιωμένη ενεργειακή διαχείριση. Υποστήριξη NFC (Near Field Communication). Υποστήριξη video κλήσης. Yποστήριξη του πρωτόκολλου WebM για αναπαραγωγή video. Ακολουθεί το "Honeycomb", Android 3.0 τον Φεβρουάριο του 2011, λίγες μέρες μετά την επανέκδοση του Android "Gingerbread", και προορίζεται αποκλειστικά για ταμπλέτες (tablets), για τις οποίες να αναφερθούμε αναλυτικότερα στην συνέχεια. Aκολουθούν οι επανεκδόσεις Android 3.1 τον Μάιο του 2011, Android 3.2 τον Ιούλιο του 2011, Android στις 20 Σεπτεμβρίου του 2011 και το Android μέρες αργότερα. Εικόνα 4.10: Λογότυπο Android 3.0 HONEYCOMB Μερικά από τα χαρακτηριστικά του είναι: Υποστηρίζει διπύρηνους και τετραπύρηνους επεξεργαστές. Βελτιωμένη υποστήριξη των ταμπλετών. ανάπτυξη λογισμικού (scripting) για 3D, σε γλώσσα η οποία καλείται "Renderscript". 31

32 Video chat μέσω Google Talk. Google ebooks. "Ιδιωτική περιήγηση". Μάντζαρης Αλέξανδρος Η τρέχουσα έκδοση για κινητά smartphones, από τις 19 Οκτωβρίου του 2011 μέχρι και την στιγμή που γράφεται αυτή η εργασία, είναι το "Ice Cream Sandwich", Android με τις επανεκδόσεις Android τον Νοέμβριο του 2011, Android τον Δεκέμβριο του 2011 και Android τον Μάρτιο του Ορισμένα από τα χαρακτηριστικά του είναι: Εικόνα 4.11: Λογότυπο Android Ice Cream Sandwich Βελτιωμένο UI με ενισχυμένη ταχύτητα και απόδοση. Πλουσιότερα widgets. Ενισχυμένο multitasking. Δημιουργία φακέλων, με ένα στυλ drag-and-drop, για τις εφαρμογές. Λήψη screenshot (επιτυγχάνετε κρατώντας πατημένα τα Power και Volume-Down buttons). Βελτιωμένη αντιγραφή και επικόλληση. Βελτιωμένη εφαρμογή της κάμερας. Ενσωματωμένος επεξεργαστής φωτογραφίας. Υψηλή ποιότητα καταγραφής βίντεο (1080p ή 720p ανάλογα το hardware). Αναγνώριση προσώπου (Face Unlock). Καλύτερη αναγνώριση φωνής (υπαγόρευσης/πληκτρολόγηση φωνής). Ομαλότερη περιστροφή οθόνης. Το Android έχει καταπληκτικά χαρακτηριστικά και πολλαπλές δυνατότητες, ενώ συνεχίζει να εκσυγχρονίζεται. Επιπρόσθετα παρέχει καταπληκτικά εργαλεία για την ανάπτυξη εφαρμογών που κάνουν την ζωή του προγραμματιστή πολύ πιο εύκολη. Για να κατανοήσουμε την πρωτοτυπία αυτής της πλατφόρμας, θα δούμε παρακάτω την βασική της αρχιτεκτονική και θα συζητήσουμε γιατί το Android διευκολύνει την ζωή του προγραμματιστή ενώ ταυτόχρονα του παρέχει πάμπολλες επιλογές και δυνατότητες για την δημιουργία πρωτοποριακών εφαρμογών. 32

33 4.5 Αρχιτεκτονική του Android Όπως προαναφέρθηκε, το Android είναι μια στοίβα λογισμικού. Η λογική πίσω από αυτήν την έκφραση και σε όλη την φιλοσοφία του Android, κρύβεται στο ακόλουθο διάγραμμα με τα βασικά συστατικά του (Σχήμα 4.12). Σχήμα 4.12: Τα βασικά περιεχόμενα του λειτουργικού συστήματος Android Στην στοίβα του Android (Σχήμα 4.12), παρατηρούμε 4 επίπεδα. Ακολούθως θα περιγράψουμε συνοπτικά τα βασικά αυτά επίπεδα χωρίς να μπούμε σε λεπτομέρειες για όλα τα περιεχόμενα του κάθε επιπέδου. Αν ο αναγνώστης επιθυμεί να μάθει περισσότερα, μπορεί να επισκεφθεί την επίσημη ιστοσελίδα του Android για κατασκευαστές (http://developer.android.com). Κάθε επίπεδο στην αρχιτεκτονική αυτή, χρησιμοποιεί τις υπηρεσίες που του προσφέρονται από τα πιο κάτω επίπεδα. Ας δούμε τώρα αυτά τα επίπεδα ξεκινώντας από το πιο χαμηλό. [7] Πυρήνας Linux (Linux kernel) Το Android είναι βασισμένο στα γερά θεμέλια του Linux. Ο πυρήνας Linux είναι δοκιμασμένος, σταθερός και πετυχημένος και μπορεί να βρεθεί παντού, από ρολόγια χειρός μέχρι υπέρ-υπολογιστές. Το Linux παρέχει στο Android το αφαιρετικό επίπεδο υλικού, επιτρέποντάς του να μπορεί να χρησιμοποιηθεί σε μεγάλη ποικιλία συσκευών στο μέλλον. Ειδικότερα, το Android χρησιμοποιεί τον πυρήνα Linux για την διαχείριση μνήμης, την διαχείριση διεργασιών, την δικτύωση και άλλες υπηρεσίες του λειτουργικού συστήματος. 33

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου

Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου Κασιμάτη Αικατερίνη Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου H έννοια του αριθμού Θεωρητικό Πλαίσιο Στην ικανότητα του παιδιού για αρίθμηση στηρίζεται η ανάπτυξη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με

Διαβάστε περισσότερα

Ανάπτυξη Διεπαφών Χρήστη σε Λειτουργικά Συστήματα Κινητών Συσκευών

Ανάπτυξη Διεπαφών Χρήστη σε Λειτουργικά Συστήματα Κινητών Συσκευών Βιβλιογραφία: Ανάπτυξη Διεπαφών Χρήστη σε Λειτουργικά Συστήματα Κινητών Συσκευών Προγραμματισμός Android Ian Clifton. AndroidTM User Interface Design, Addison-Wesley, 2013 P. Deitel. H. Deitel, A. Deitel.

Διαβάστε περισσότερα

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή

Διαβάστε περισσότερα

Ανάπτυξη εφαρμογής ηλεκτρονικού πίνακα ανακοινώσεων για φορητή συσκευή

Ανάπτυξη εφαρμογής ηλεκτρονικού πίνακα ανακοινώσεων για φορητή συσκευή Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στα Πληροφοριακά Συστήματα (Master in Information Systems MIS) Διπλωματική εργασία με θέμα: Ανάπτυξη εφαρμογής ηλεκτρονικού πίνακα ανακοινώσεων για φορητή συσκευή

Διαβάστε περισσότερα

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Παιδαγωγικό Τµήµα Νηπιαγωγών Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Ενότητα 1: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών ένα απλό πρόβλημα Η οικογένεια

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΥΛΟΠΟΙΗΣΗ ΑNDROID ΕΦΑΡΜΟΓΗΣ ΑΠΟΣΤΟΛΗΣ ΣΥΝΤΟΜΩΝ ΜΗΝΥΜΑΤΩΝ ΜΕΣΩ ΤΗΣ OMNIVOICE ΤΣΙΑΛΟΣ ΔΗΜΗΤΡΙΟΣ Α.Μ.: 9883 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ράπτης Βασίλειος 2 ΕΥΧΑΡΙΣΤΙΕΣ

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή.

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή. Λίστες Τι είναι οι λίστες; Πολλές φορές στην καθημερινή μας ζωή, χωρίς να το συνειδητοποιούμε, χρησιμοποιούμε λίστες. Τέτοια παραδείγματα είναι η λίστα του super market η οποία είναι ένας κατάλογος αντικειμένων

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

Ανάπτυξη διαδικτυακής εφαρμογής σε περιβάλλον κινητών συσκευών με λειτουργικό σύστημα Android

Ανάπτυξη διαδικτυακής εφαρμογής σε περιβάλλον κινητών συσκευών με λειτουργικό σύστημα Android Ανάπτυξη διαδικτυακής εφαρμογής σε περιβάλλον κινητών συσκευών με λειτουργικό σύστημα Android Ιωάννης Γιαννόπουλος, ΑΜ: 0430 Γεώργιος Δούρος, ΑΜ: 0686 Επιβλέπων: Γεώργιος Ασημακόπουλος Σεπτέμβριος 2014

Διαβάστε περισσότερα

ANDROID Προγραμματισμός Εφαρμογών

ANDROID Προγραμματισμός Εφαρμογών ANDROID Προγραμματισμός Εφαρμογών Παναγιώτης Κρητιώτης ΑΜ 1607 Περιεχόμενα Εισαγωγή Βασικά Στοιχεία Χαρακτηριστικά Αρχιτεκτονική Εργαλεία Προγραμματισμού Eclipse IDE Android SDK - ADT Plugin Προσομοιωτής

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π. Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά

Διαβάστε περισσότερα

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Η δραστηριότητα που θα περιγραφεί παρακάτω, σχετίζεται με την απαρίθμηση μιας συλλογής αντικειμένων καθώς και την πράξη της πρόσθεσης. Ο όρος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ

ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΕΧΝΟΛΟΓΙΕΣ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Κιουτσιούκη Δήμητρα, 485 Τελική δραστηριότητα Φάση 1 :Ατομική μελέτη 1. Πώς θα περιγράφατε το ρόλο της τεχνολογίας στην εκπαιδευτική καινοτομία; Οι Web

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

Εισαγωγή 6. Δημιουργία λογαριασμού 13. Εγκατάσταση και λειτουργία του Skype 28. Βασικές λειτουργίες 32. Επιλογές συνομιλίας 48

Εισαγωγή 6. Δημιουργία λογαριασμού 13. Εγκατάσταση και λειτουργία του Skype 28. Βασικές λειτουργίες 32. Επιλογές συνομιλίας 48 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 6 Δημιουργία λογαριασμού 13 Εγκατάσταση και λειτουργία του Skype 28 Βασικές λειτουργίες 32 Επιλογές συνομιλίας 48 Γενικές ρυθμίσεις Skype 64 Το Skype σε φορητές συσκευές 78 Εγγραφή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 13: (Μέρος Β ) Λειτουργικό Σύστημα Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Διεθνής έρευνα για την εξάπλωση των Smartphones και Tablets

Διεθνής έρευνα για την εξάπλωση των Smartphones και Tablets Διαγραφή από τη λίστα Σε αυτό το τεύχος: Φεβρουάριος 2014 Mobile e-commerce από την Altec Software Mobile e-commerce από την Altec Software Διεθνής έρευνα για την εξάπλωση των Smartphones και Tablets Ετήσια

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 13: (Μέρος Β ) Λειτουργικό Σύστημα Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία

1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία 1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία Ο διδακτικός σχεδιασμός (instructional design) εμφανίσθηκε στην εκπαιδευτική διαδικασία και στην κατάρτιση την περίοδο

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη

H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη Κοτίνη Ι., Τζελέπη Σ. Σχ. Σύμβουλοι Κ. Μακεδονίας στην οικονομία, στη τέχνη, στην επιστήμη, στις ανθρωπιστικές και κοινωνικές επιστήμες.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική

Διαβάστε περισσότερα

EDUP-332 Διδασκαλία των Μαθηματικών στο Νηπιαγωγείο

EDUP-332 Διδασκαλία των Μαθηματικών στο Νηπιαγωγείο EDUP-332 Διδασκαλία των Μαθηματικών στο Νηπιαγωγείο Συνάντηση 2 Βασικές πρωτομαθηματικές δεξιότητες: σύγκριση, σειροθέτηση, εκτίμηση Ο Τζέρεμι και η Τζάκι Ο Τζέρεμι και η αδερφή του η Τζάκι συζητούσαν

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία;

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία; Αναστοχασμός Αναφορά (report) υλοποίησης 1 ης δραστηριότητας: ΑΝΑΔΑΣΜΟΣ Συγγραφέας: Λύρη Αναστασία Μαθηματικός, ΠΕ03 Πως δούλεψαν οι μαθητές (ομαδικά/ατομικά); Οι μαθητές δούλεψαν σε ομάδες των 4 ατόμων.

Διαβάστε περισσότερα

TABLETS. *Αφορά πωλήσεις σε τεμάχια το πρώτο εξάμηνο του 2014

TABLETS. *Αφορά πωλήσεις σε τεμάχια το πρώτο εξάμηνο του 2014 TABLETS * *Αφορά πωλήσεις σε τεμάχια το πρώτο εξάμηνο του 2014 Για 1η φορά στον κλάδο της τεχνολογίας, ένα ελληνικό brand, ξεπέρασε σε πωλήσεις διεθνείς κολοσσούς No1 BRAND ΣΤΑ TABLETS Δες τι κρύβεται

Διαβάστε περισσότερα

7.Α.1 Παρουσιάσεις. 7.Α.2 Περιγραφή περιεχομένων της εφαρμογής

7.Α.1 Παρουσιάσεις. 7.Α.2 Περιγραφή περιεχομένων της εφαρμογής Μάθημα 7ο Πολυμέσα 7.Α.1 Παρουσιάσεις Οι παρουσιάσεις είναι μια εφαρμογή που χρησιμεύει στην παρουσίαση των εργασιών μας. Αποτελούν μια συνοπτική μορφή των εργασιών μας. Μέσω δημιουργίας διαφανειών, μορφοποιήσεων

Διαβάστε περισσότερα

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Tο φαινόμενο της ανάγνωσης προσεγγίζεται ως ολική διαδικασία, δηλαδή ως λεξιλόγιο, ως προφορική έκφραση και ως κατανόηση. ημήτρης Γουλής Πρώτη Πρόταση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

Ένα διαδικτυακό εργαλείο δημιουργίας παρουσιάσεων

Ένα διαδικτυακό εργαλείο δημιουργίας παρουσιάσεων Ένα διαδικτυακό εργαλείο δημιουργίας παρουσιάσεων Περιεχόμενα 1. Περιγραφή 2. Οδηγίες χρήσης 2.1 Δημιουργία λογαριασμού 2.2 Περιβάλλον εργασίας 2.3 Βασικές λειτουργίες 2.3.1 Εισαγωγή (Insert) 2.3.2 Πλαίσιο

Διαβάστε περισσότερα

Μάθημα 4ο. Προγράμματα

Μάθημα 4ο. Προγράμματα Μάθημα 4ο Προγράμματα Σελίδα 47 από 106 4.1 Εγκατάσταση προγραμμάτων Όπως έχουμε πει στο πρώτο μάθημα (Σημειώσεις 1ου Μαθήματος 1.3.3.Β σελ. 12) τα προγράμματα ή αλλιώς εφαρμογές αποτελούν μέρος του λογισμικού

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

Διπλωματική Εργασία. Μουσικές Εφαρμογές σε Περιβάλλον Κινητών Συσκευών Android με Χαρακτηριστικά Εξατομίκευσης

Διπλωματική Εργασία. Μουσικές Εφαρμογές σε Περιβάλλον Κινητών Συσκευών Android με Χαρακτηριστικά Εξατομίκευσης ΠΜΣ Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας Διπλωματική Εργασία Μουσικές Εφαρμογές σε Περιβάλλον Κινητών Συσκευών Android με Χαρακτηριστικά Εξατομίκευσης Ονοματεπώνυμο: Βλάχος Αθανάσιος Επιβλέπων

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Όλγα Κασσώτη Εργασία που κατατίθεται ως παραδοτέο της παρακολούθησης εκπαιδευτικού προγράμματος στο πλαίσιο υλοποίησης της Πράξης με τίτλο: «Επιμόρφωση των Εκπαιδευτικών

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Εισαγωγή στην εφαρμογή Βασική Σελίδα (Activity) Αναζήτηση Πελάτη... 6 Προβολή Πελάτη... 7 Επεξεργασία Πελάτη... 10

Εισαγωγή στην εφαρμογή Βασική Σελίδα (Activity) Αναζήτηση Πελάτη... 6 Προβολή Πελάτη... 7 Επεξεργασία Πελάτη... 10 Περιεχόμενα Εισαγωγή στην εφαρμογή... 2 Βασική Σελίδα (Activity)... 3 Ρυθμίσεις... 3 Πελάτες... 6 Αναζήτηση Πελάτη... 6 Προβολή Πελάτη... 7 Επεξεργασία Πελάτη... 10 Αποθήκη... 11 Αναζήτηση προϊόντος...

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση

Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση Εφαρμογές Εκπαιδευτικού Λογισμικού για τη Δευτεροβάθμια Εκπαίδευση Μαρία Καραβελάκη-Καπλάνη, M.Sc. INTE*LEARN Αγν.Στρατιώτη 46 176 73 Καλλιθέα τηλ. 95 91 853, fax. 95 72 098 E-mail: intelrn@prometheus.hol.gr

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Digital Academy. Εισαγωγή στην ανάπτυξη Android Εφαρμογών

Digital Academy. Εισαγωγή στην ανάπτυξη Android Εφαρμογών Digital Academy Εισαγωγή στην ανάπτυξη Android Εφαρμογών Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ... 2 ΕΝΟΤΗΤΑ 1 ΠΡΩΤΗ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ANDROID... 4 1.1 ΕΙΣΑΓΩΓΗ... 4 1.2 ΠΗΓΕΣ ΓΝΩΣΗΣ... 4 1.3 ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ... 5 1.4

Διαβάστε περισσότερα

Δραστηριότητες γραμματισμού: Σχεδιασμός

Δραστηριότητες γραμματισμού: Σχεδιασμός Δραστηριότητες γραμματισμού: Σχεδιασμός Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Μαρία Παπαδοπούλου Αν. Καθηγήτρια, Π.Τ.Π.Ε., Π.Θ. mariapap@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι

Διαβάστε περισσότερα

5 ο ΚΕΦΑΛΑΙΟ: ΠΡΑΚΤΙΚΟ ΚΟΜΜΑΤΙ

5 ο ΚΕΦΑΛΑΙΟ: ΠΡΑΚΤΙΚΟ ΚΟΜΜΑΤΙ 5 ο ΚΕΦΑΛΑΙΟ: ΠΡΑΚΤΙΚΟ ΚΟΜΜΑΤΙ 5.1 Εισαγωγή Το πρακτικό κομμάτι της πτυχιακής μας εργασίας αφορά την δημιουργία μιας λειτουργικής ιστοσελίδας με την χρήση της πλατφόρμας του Weebly, που αποτελεί μια σύγχρονη

Διαβάστε περισσότερα

Μελέτη περίπτωσης εργαλεία κοινωνικής δικτύωσης - MultiBlog. Ισπανική γλώσσα. 33 φοιτητές (ενήλικες > 25 ετών) και 2 εκπαιδευτικοί

Μελέτη περίπτωσης εργαλεία κοινωνικής δικτύωσης - MultiBlog. Ισπανική γλώσσα. 33 φοιτητές (ενήλικες > 25 ετών) και 2 εκπαιδευτικοί Μελέτη περίπτωσης εργαλεία κοινωνικής δικτύωσης - MultiBlog Σελίδα 1 μελέτη περίπτωσης πληροφορίες 1. Γενικές Πληροφορίες Πρόσβαση στο Πανεπιστήμιο για ενήλικες (ηλικία άνω 25 Επίπεδο (ηλικία των μαθητών)

Διαβάστε περισσότερα

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού 4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης του «Μαθη.Συ.»

Εγχειρίδιο Χρήσης του «Μαθη.Συ.» Εργαστήριο Εκπαιδευτικής Τεχνολογίας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Φιλοσοφική Σχολή Τμήμα Φ.Π.Ψ., Τομέας Παιδαγωγικής Διευθυντής: Καθ. Χ. Κυνηγός Εγχειρίδιο Χρήσης του «Μαθη.Συ.» Πίνακας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 10 000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η

εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η μετακίνηση, περιστροφή, αυξομείωση, ανάκλαση και απόκρυψη του

Διαβάστε περισσότερα

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu Τι έχουμε μάθει για την προώθηση της Δημιουργικότητας μέσα από τις Φυσικές Επιστήμες και τα Μαθηματικά στην Ελληνική Προσχολική και Πρώτη Σχολική Ηλικία; Ευρήματα για την εκπαίδευση στην Ελλάδα από το

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ

ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΣΧΥΕΙ ΚΑΤΑ ΤΟ ΜΕΡΟΣ ΠΟΥ ΑΦΟΡΑ ΤΟ ΛΥΚΕΙΟ ΓΙΑ ΤΗΝ ΥΠΟΧΡΕΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΙΣΧΥΟΥΝ ΤΟ ΔΕΠΠΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Ανάπτυξη εφαρμογής Android και IOS σε περιβάλλον Flash. ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΣΠΟΥΔΑΣΤΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Ανάπτυξη εφαρμογής Android και IOS σε περιβάλλον Flash. ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΣΠΟΥΔΑΣΤΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη εφαρμογής Android και IOS σε περιβάλλον Flash. ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΣΠΟΥΔΑΣΤΩΝ Μπουρσινός Ιωάννης A.M.:

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Οδηγίες Εγκατάστασης & Εγχειρίδιο Χρήσης Πίνακας περιεχομένων 1. Εισαγωγή... 3 2. Οδηγίες εγκατάστασης...

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Δημητρίου Σωτήρης 6417

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Δημητρίου Σωτήρης 6417 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Δημητρίου Σωτήρης 6417 Παιχνίδια διάχυτου υπολογισμού Τεχνολογίες Σχεδιασμός Υλοποίηση Αξιολόγηση Προοπτικές Ένα παιχνίδι διάχυτου υπολογισμού είναι ένα παιχνίδι που έχει ένα ή περισσότερα

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Οδηγίες Χρήσης Εφαρμογής

Οδηγίες Χρήσης Εφαρμογής Οδηγίες Χρήσης Εφαρμογής SciFY - Οκτώβριος 2016 Περιεχόμενα Εισαγωγή 3 Οδηγίες για τον εργοθεραπευτή / φροντιστή 4 Αρχική Οθόνη 4 Δημιουργία προφίλ 5 Ρυθμίσεις Επικοινωνίας 6 Ρυθμίσεις Ψυχαγωγίας 9 Ρυθμίσεις

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 2: Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 2: Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 2: Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην

Διαβάστε περισσότερα

Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης Ενότητα: 8 η

Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης Ενότητα: 8 η ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης Ενότητα: 8 η Δ.Πολίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

Ας μετονομάσουμε τη γάτα που εμφανίζεται μόλις ανοίγουμε το Scratch. Επιλέγουμε το εικονίδιο Μορφή1 που βρίσκεται στη λίστα αντικειμένων.

Ας μετονομάσουμε τη γάτα που εμφανίζεται μόλις ανοίγουμε το Scratch. Επιλέγουμε το εικονίδιο Μορφή1 που βρίσκεται στη λίστα αντικειμένων. Σχεδιάζοντας αντικείμενα Εισαγωγή στο περιβάλλον των αντικειμένων Όπως συζητήσαμε και στο προηγούμενο κεφάλαιο, τα αντικείμενα στο Scratch αποτελούν τους πρωταγωνιστές των έργων μας. Το πρώτο βήμα κατά

Διαβάστε περισσότερα

Γνωριμία με το Διαδίκτυο και τις υπηρεσίες του

Γνωριμία με το Διαδίκτυο και τις υπηρεσίες του Γνωριμία με το Διαδίκτυο και τις υπηρεσίες του ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Παπαντώνη Μαρία, ΠΕ19 ΣΧΟΛΕΙΟ 9 ο Γυμνάσιο Καλλιθέας «Μάνος Χατζιδάκις» Αθήνα, Μάιος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ & ΔΙΚΤΥΑΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΑ ΤΕΕ ΤΟ ΠΛΑΙΣΙΟ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ & ΔΙΚΤΥΑΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΑ ΤΕΕ ΤΟ ΠΛΑΙΣΙΟ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 543 ΥΠΟΛΟΓΙΣΤΙΚΕΣ & ΔΙΚΤΥΑΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΑ ΤΕΕ ΤΟ ΠΛΑΙΣΙΟ Καρτσιώτης Θόδωρος Συντονιστής Επιμόρφωσης έργου Λαέρτη kartsiot@auth.gr Ρενιέρη Νικολίνα Μηχανικός

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Ταυτότητα Σεναρίου Τίτλος: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΑΚΤΙΝΕΣ v6.0 Εκπαιδευτικό λογισμικό για παιδιά με ειδικές ικανότητες και κινητικές δυσκολίες

ΑΚΤΙΝΕΣ v6.0 Εκπαιδευτικό λογισμικό για παιδιά με ειδικές ικανότητες και κινητικές δυσκολίες ΑΚΤΙΝΕΣ v6.0 Εκπαιδευτικό λογισμικό για παιδιά με ειδικές ικανότητες και κινητικές δυσκολίες Μαρία Καραβελάκη Αναλύτρια Εκπαιδευτικών Συστημάτων ΙΝΤΕ*LEARN Τεχνολογίες Αιχμής στην Εκπαιδευτική Πράξη, 4

Διαβάστε περισσότερα