ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93"

Transcript

1 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΚΕΦΑΛΑΙΟ 5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Εισαγωγή Η παρουσία εξωτερικών διεγέρσεων σε ένα σύστηµα πολλών Β.Ε. δηµιουργεί σ' αυτό εξαναγκασµένη ταλάντωση που διαρκεί όσο και η δράση αυτών των διεγέρσεων. Από την άποψη των.ε. που περιγράφουν την κίνηση, αυτές παύουν πλέον να είναι οµογενείς και η επίλυση τους µε συµβατικούς τρόπους είναι δύσκολη εργασία µε δυσκολία που αυξάνει όσο αυξάνεται ο αριθµός των Β.Ε. του συστήµατος. Οι µη οµογενείς γραµµικές διαφορικές εξισώσεις δεύτερης τάξης έχουν λύσεις που είναι αθροίσµατα των λύσεων των οµογενών.ε. 57 και των ειδικών λύσεων η µορφή των οποίων εξαρτάται από τις διεγέρσεις. 58 Ο προσδιορισµός των λύσεων αυτών σε ένα πολυβάθµιο σύστηµα παρουσιάζει διαφορετικούς βαθµούς πολυπλοκότητας που εξαρτάται από την φύση του συστήµατος. Έτσι π.χ. η µέθοδος των απροσδιορίστων συντελεστών µπορεί να χρησιµοποιηθεί για µικρό πλήθος Β.Ε. ενώ η µέθοδος των µετασχηµατισµών Laplace παρουσιάζει µικρή χρησιµότητα διότι απαιτεί την λύση ενός συστήµατος εξισώσεων στο οποίο οι συντελεστές είναι συναρτήσεις της µεταβλητής µετασχηµατισµού. Μια άλλη µέθοδος που έχει αποδειχθεί αρκετά εύχρηστη και σχετικά απλή είναι η µέθοδος της µορφικής ανάλυσης η οποία βασίζεται στην χρήση του θεωρήµατος της επέκτασης (βλ. σχετικά τις ενότητες ) και των κυρίων συντεταγµένων. Βάσει των τελευταίων οι αρχικά συζευγµένες.ε. καταλήγουν σε ένα σύστηµα αποσυζευγµένων.ε. που µπορούν εύκολα να λυθούν. Τέλος υπάρχουν πάντα αριθµητικές µέθοδοι όπως π.χ. η µέθοδος Ruge-Kutta που µπορούν να χρησιµοποιηθούν για επιλύσουν το αρχικό σύστηµα των διαφορικών εξισώσεων. 57 Οι λύσεις των οµογενών εξαρτώνται αποκλειστικά από τις ιδιότητες του συστήµατος και όχι από τα χαρακτηριστικά των διεγέρσεων. 58 Για µία µελέτη του θέµατος µέσω της ανάλυσης του συστήµατος ενός βαθµού ελευθερίας βλ. σχετικά στην ενότητα.5.

2 94 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Η µέθοδος των απροσδιόριστων συντελεστών Η µέθοδος αυτή µπορεί να χρησιµοποιηθεί για τον προσδιορισµό των ειδικών λύσεων σε περιπτώσεις συστηµάτων εξαναγκασµένες αρµονικές ταλαντώσεις 59 βαθµών ελευθερίας που εκτελούν απουσία ή παρουσία απόσβεσης. Στην πορεία της λύσης απαιτείται η λύση ενός συνόλου εξισώσεων που καθίσταται δυσκολότερη όσο αυξάνεται το πλήθος των βαθµών ελευθερίας. Έστω καταρχήν ότι δεν λαµβάνεται υπόψη η απόσβεση του συστήµατος. Τότε οι.ε. που περιγράφουν τις εξαναγκασµένες ταλαντώσεις υπό αρµονική διέγερση θα προκύψουν από την σχέση (3.6) και θα είναι: (N) (5.) [ M ]{} x + [ K]{} x = { F}() h t όπου{ F }(N) είναι ένα ( ) διάνυσµα που έχει ως στοιχεία τα εύρη των διεγέρσεων και ht () (sec) είναι µια χρονική αρµονική συνάρτηση, π.χ. s( ω t). Θέτοντας λοιπόν ht () s( ωt) =, η λύση της (5.) θα έχει την µορφή: Με αντικατάσταση της (5.) στην (5.) θα προκύψει: {} x = { X}() h t (5.) [ M ] ω + [ K] { Χ} = { F} (N) (5.3) Η παραπάνω σχέση αναπαριστά ένα µη οµογενές σύστηµα εξισώσεων ως προς { X }. Το σύστηµα αυτό έχει µία και µοναδική λύση όταν και η λύση αυτή θα είναι: det [ M] [ K] [ I] { Χ} = [ M ] ω + [ K] { F} (5.4) Εάν ληφθεί υπόψη και η απόσβεση 6 µέσω του αντίστοιχου πίνακα αποσβέσεων [ C ], τότε η σχέση (5.) γράφεται ως εξής: [ M ]{} x + [ C]{} x + [ K]{} x = { F}() h t (N) (5.5) η οποία όµως παρουσιάζει αρκετές δυσκολίες στην επίλυσή της. 59 λόγω αρµονικών διεγέρσεων 6 Εδώ λαµβάνεται υπόψη η περίπτωση της ιξώδους απόσβεσης. Η περίπτωση της αναλογικής απόσβεσης εξετάζεται σε συνδυασµό µε την µέθοδο της µορφικής ανάλυσης (βλ. παρακάτω).

3 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Η µέθοδος της µορφικής ανάλυσης Οι διαφορικές εξισώσεις (5.) εκφράζουν την ταλάντωση ενός συστήµατος Β.Ε. υπό την επίδραση εξωτερικών διεγέρσεων και απουσία οποιασδήποτε µορφής απόσβεσης. Εάν υποτεθεί ότι έχει ήδη επιλυθεί το πρόβληµα του προσδιορισµού των ιδιοτιµών και ιδιοµορφών, τότε σύµφωνα µε το θεώρηµα της επέκτασης (βλ. σχέση (4.8)) θα είναι: { } σ { } {} x xt () () t X = = (m) (5.6) όπου πλέον οι συντελεστές της παραπάνω σχέσης είναι συναρτήσεις του χρόνου επειδή η µετατόπιση του συστήµατος που εκφράζεται µε το διάνυσµα { x } είναι συνάρτηση του χρόνου. Εάν χρησιµοποιήσουµε τον µορφικό πίνακα [ X ], τότε, σύµφωνα µε την σχέση (4.39) θα είναι: = { x() t } [ X]{ () t } = σ (5.7) Με βάση την σχέση (5.6) οι διαφορικές εξισώσεις (5.) θα γίνουν: Έστω ότι { } = = { } { } σ ()[ t M] X + σ ()[ t K] X = { F} h() t (N) (5.8) X µία ιδιοµορφή. Πολλαπλασιάζοντας µε { } T προκύπτουν εσωτερικά γινόµενα στα αθροίσµατα: T T σ ( t) { X} [ M]{ X} { } [ ]{ } σ t X K X = = ({ } ) { } T { } = { } ( ) ( ) [ M] [ K] = = X τα µέλη της (5.8) σ () t X,{ X} + σ () t X,{ X} = (N) (5.9) X { F} ht X,{ F} ht + = Η ανωτέρω σχέση σε συνδυασµό µε τις σχέσεις (4.6), (4.3) και (4.33) θα δώσει: όπου { } ( ) σ t ωσ t e t (5.) + =, =,,..., e () t = X,{ F } h () t. Η παραπάνω διαφορική εξίσωση είναι αποσυζευγµένη και µπορεί πλέον να λυθεί µόνο ως προς την κύρια συντεταγµένη σ () t.

4 96 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Η παραπάνω ανάλυση βασίζεται στην παραδοχή ότι ο πίνακας µορφών [ X ] απαρτίζεται από στήλες-ιδιοµορφές και η προκύπτουσα λύση είναι ακριβής. Είναι δυνατόν να χρησιµοποιήσουµε λιγότερες από ιδιοµορφές π.χ. m, όπου m<, οπότε η σχέση (5.6) τροποποιείται ως εξής: { } σ { } {} x xt () () t X m = = (m) (5.) Στην σχέση (5.7) η διάσταση του πίνακα [ X ] είναι τώρα ( m) και του διανύσµατος { σ } είναι ( m ), ενώ το πλήθος των.ε. που εκφράζονται µε την (5.) θα είναι ίσο προς m. Είναι προφανές ότι εάν ευρεθεί η λύση χρησιµοποιώντας µόνο τις m ιδιοµορφές, τότε θα πρόκειται για προσεγγιστική και όχι ακριβή λύση του προβλήµατος. Επιστρέφοντας στις.ε. της σχέσης (5.), οι λύσεις τους προσδιορίζονται εύκολα µέσω των διαθέσιµων µεθόδων. Εάν οι αρχικές συνθήκες είναι µηδενικές 6 τότε µπορεί να χρησιµοποιηθεί το ολοκλήρωµα συνέλιξης που θα δώσει: ω = t σ ( t) = e ( τ)s ω ( t τ) dτ, =,,... (5.) Μετά τον προσδιορισµό του διανύσµατος { σ } µπορεί να χρησιµοποιηθεί η σχέση (5.7) για να προσδιορισθεί το αρχικά ζητούµενο διάνυσµα των µετατοπίσεων. Εάν οι αρχικές συνθήκες είναι µη µηδενικές τότε αυτές θα εκφράζονται µε τα διανύσµατα { x } και t= { x } t=. Μέσω των σχέσεων (4.39) µπορούν να προσδιορισθούν οι αρχικές συνθήκες σ ( t = ) και σ ( t = ) για κάθε =,,..., και εποµένως µπορεί να προκύψει η πλήρης λύση για το σ () t για κάθε =,,...,. Μετά τον προσδιορισµό του διανύσµατος { σ } µπορεί να χρησιµοποιηθεί και πάλι η σχέση (5.7) για να προσδιορισθεί το αρχικά ζητούµενο διάνυσµα των µετατοπίσεων. ΑΣΚΗΣΗ 3 Για το σύστηµα του σχήµατος ζητούνται οι αποκρίσεις των δύο δίσκων όταν επάνω τους δρουν αρµονικές στρεπτικές ροπές γνωστού µεγέθους T = T, T = T (Nm). Οι σταθερές ελατηρίου των τµηµάτων της κυλινδρικής ράβδου καθώς και οι 6 Τόσο η µετατόπιση όσο και η ταχύτητα.

5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 97 αδράνειες θεωρούνται επίσης ως δεδοµένες. Θεωρήστε την απόσβεση του συστήµατος ως µηδενική. T k T k θ J J Σχήμα Α.3.. Εξαναγκασμένη στρεπτική ταλάντωση συστήματος δυο βαθμών ελευθερίας. ΛΥΣΗ: Οι ιαφορικές Εξισώσεις που περιγράφουν την εξαναγκασµένη στρεπτική ταλάντωση του συστήµατος προκύπτουν εύκολα και είναι: όπου: [ J ]{ θ} + [ K]{ θ} = { T}() h t (Nm) (Α.3.) [ J] είναι ο πίνακας των αδρανειών J J J = = (Kgm ) (Α.3.) [ K] k + k k k k k = = (Nm/rad) (Α.3.3) ο πίνακας στιβαρότητας, { T } (Nm) το διάνυσµα των ευρών των ροπών, ht ()(sec) είναι µια αρµονική χρονική συνάρτηση (εδώ λαµβάνεται ότι ht () = s( ωt) όπου ω (rad/sec) είναι η κυκλική συχνότητα της διέγερσης), ενώ { θ } (m/sec ) και {} θ (m) είναι τα διανύσµατα των γωνιακών επιταχύνσεων και µετατοπίσεων αντίστοιχα. Σύµφωνα µε το θεώρηµα της επέκτασης (βλ. σχέση (4.8)) θα είναι: { t } t { } {} θ = θ() = σ () Θ (m) (Α.3.4) =

6 98 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ όπου οι συντελεστές σ της παραπάνω σχέσης είναι συναρτήσεις του χρόνου επειδή η µετατόπιση του συστήµατος που εκφράζεται µε το διάνυσµα { θ } είναι συνάρτηση του χρόνου. Ο µορφικός πίνακας [ Θ ] (βλ. άσκηση 3) είναι: [ Θ] Θ Θ Θ Θ J = = (Kg -.5 m - ) (Α.3.5) και εποµένως τα διανύσµατα { θ } και { σ } συνδέονται µεταξύ τους µε την σχέση: {} θ [ Θ]{},{} σ σ [ Θ] {} θ = = (Α.3.6) ενώ για τις διεγέρσεις θα είναι: ({ } ) ( ) e () t = Θ,{ T} h() t = { Θ},{ T}s( ωt), =, (Α.3.7) Εποµένως η.ε. (5.) θα γραφεί:. = ή και σ () t + ωσ() t = e () t = { Θ},{ T}s( ωt) (Α.3.8) σ () t + ωσ() t = Θ T + Θ T s( ωt) (Α.3.9) σ ( t) + ωσ( t) = Ts( ωt) = Ts( ωt) (Α.3.) Η λύση της (Α.3.) δίνεται από την σχέση (.59) ως εξής: F ωf xt = x + sφcos( ω ) t + x + cosφs( ω ) t + m( ω ω ) ω m( ω ) F s( ωt + φ) m ω ( ω ) Στην παραπάνω σχέση και για την τρέχουσα περίπτωση θα είναι: (Α.3.) σ ( t = ) =, σ ( t = ) =, φ =, xt σ ( t), F T (Α.3.) και η (Α.3.) θα γραφεί ως: ωT T σ() t = s( ω t) + s( ωt) ω ( ω ) ( ω ) (Α.3.3)

7 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 99. = ή και σ () t + ωσ () t = e () t = { Θ},{ T}s( ωt) (Α.3.4) σ () t + ωσ () t = Θ T + Θ T s( ωt) (Α.3.5) σ ( t) + ωσ ( t) = Ts( ωt) =.4889Ts( ωt) (Α.3.6) Όµοια µε προηγούµενα η λύση της (Α.3.6) και για: σ ( t = ) =, σ ( t = ) =, φ =, xt σ ( t), F.4889T (Α.3.7) η (Α.3.6) θα γραφεί ως:.4889ωt.4889t σ() t = s( ω t) + s( ωt) ω ( ω ) ( ω ) (Α.3.8) (rad) ίσκος ίσκος (sec) Σχήμα Α.3.. Οι αποκρίσεις του συστήματος των δυο δίσκων υπό εξωτερική διέγερση. Εποµένως σύµφωνα µε την (Α.3.6) θα είναι: ωT T s( ωt ) + s( ωt) θ ( ) ( ) () t ω ω ω {} θ = = θ() t J ωT.4889T s( ωt) + s( ωt) ω ( ) ( ω ω ) (Α.3.9) και αντικαθιστώντας τις φυσικές κυκλικές συχνότητες (βλ. άσκηση Α.9), θα είναι:

8 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ωT k T s( ( 5 7 ) t) + s( ωt) k k 4J k ( 5 7) ( 5 7) ( 5 7) θ() t J 4J 4J {} θ = = θ () t J ωT k.4889t s( ( ) t) + s( ωt) k k 4J ( 5 7) ( 5+ 7) k + 4J 4J ( 5+ 7) 6J (Α.3.) Στο σχήµα Α.3. φαίνονται οι αποκρίσεις των δύο δίσκων για ένα σύστηµα όπου 6 k = 4 (N/m), J =.5 (Kgm ), k T = (Nm), ω.8ω.8 ( 5 7 ) = =. 4J Εάν υποτεθεί ότι το ταλαντούµενο σύστηµα διαθέτει αναλογική απόσβεση, τότε θα είναι: [ C] = r[ k ] + µ [ M ] (Nsec/m) (5.3) όπου τα r και µ είναι σταθερές και η διαφορική εξίσωση (5.) µπορεί πλέον να γραφεί: [ M]{ x} + r[ K ] + µ [ M] { x } + [ K]{ x} = { F} h( t) (N) (5.4) Η ανωτέρω σχέση σε συνδυασµό µε την σχέση (4.8) θα δώσει: [ M ] σ (){ t X} + r[ K] σ (){ t X } + µ [ M] σ (){ t X} + [ K] σ (){ t X} = { F}() h t (N) = = = = Έστω ότι { } X µία ιδιοµορφή. Πολλαπλασιάζοντας µε { } T προκύπτουν εσωτερικά γινόµενα στα αθροίσµατα: T T T { } { } { } T { } { } ({ } ) { } (5.5) X τα µέλη της (5.5) σ () t X [ M]{ X} + rσ () t X [ K]{ X } + µσ () t X [ M]{ X} + = = = ({ } ) σ () t X [ K]{ X} = σ () t X,{ X} + rσ () t X,{ X} + [ M] [ K] = = = T { } ({ } ) µσ ( t) X,{ X} + σ ( t) X,{ X} = X { F} h( t) = X,{ F} h( t) [ M] [ K] = = (5.6) Η ανωτέρω σχέση σε συνδυασµό µε τις σχέσεις (4.6), (4.3) και (4.33) θα δώσει: σ t rω µ σ t ωσ t e t (5.7) =, =,,...,

9 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ όπου { } ( ) e () t = X,{ F } h () t. Εάν χρησιµοποιήσουµε τον λόγο της µορφικής απόσβεσης της - µορφής, τότε η (5.7) γράφεται: σ t ζωσ t ωσ t e t (5.8) () + () + () = () και αυτό θα ισχύει για κάθε =,,...,. Οι λύσεις των παραπάνω.ε. προσδιορίζονται εύκολα µέσω των διαθέσιµων µεθόδων. Εάν οι αρχικές συνθήκες είναι µηδενικές τότε µπορεί να χρησιµοποιηθεί το ολοκλήρωµα συνέλιξης που θα δώσει: σ ( t) = e ( τ) e s ω ζ ( t τ) dτ, =,,... t ζω ( t τ) ω ζ (5.9) Μετά τον προσδιορισµό του διανύσµατος { σ } µπορεί να χρησιµοποιηθεί η σχέση (5.7) για να προσδιορισθεί το αρχικά ζητούµενο διάνυσµα των µετατοπίσεων. Εάν οι αρχικές συνθήκες είναι µη µηδενικές τότε αυτές θα εκφράζονται µε τα διανύσµατα { x } και t= { x } t=. Μέσω των σχέσεων (4.39) µπορούν να προσδιορισθούν οι αρχικές συνθήκες σ ( t = ) και σ ( t = ) για κάθε =,,..., και εποµένως µπορεί να προκύψει η πλήρης λύση για το σ () t για κάθε =,,...,. Μετά τον προσδιορισµό του διανύσµατος { σ } µπορεί να χρησιµοποιηθεί και πάλι η σχέση (5.7) για να προσδιορισθεί το αρχικά ζητούµενο διάνυσµα των µετατοπίσεων. Εάν ο πίνακας της απόσβεσης δεν µπορεί να εκφρασθεί ως γραµµικός συνδυασµός των πινάκων µαζών και στιβαρότητας, τότε η σχέση (5.3) καθώς και η παραπάνω ανάλυση δεν ισχύουν. Στην περίπτωση αυτή σχηµατίζονται νέοι πίνακες διαστάσεων ( ) και ένα σύστηµα νέων διαφορικών εξισώσεων ως εξής: [] [ M ] [ M] [] {} { x } = [ M ] [ C] = [] [ K] = = { F} { x} * * * [ M],[ K],{ F},{ z} (5.) * * * [ M ]{} z + [ K]{} z = { F} (5.) Το παραπάνω σύστηµα έχει ιδιοτιµές ξ και ιδιοµορφές { Ψ } (βλ. σχετικά την ενότητα 4.9). Εάν οι ιδιοµορφές κανονικοποιηθούν ως προς τον πίνακα µαζών θα ισχύει ότι: * * { Ψ} T [ M ]{ Ψ} { Ψ},{ Ψ} [ M ] = = (5.)

10 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ενώ σύµφωνα µε την σχέση (4.39) θα είναι για την παρούσα περίπτωση: {} z [ Z]{},{} σ σ [ Z] {} z = = (5.3) όπου [ Z ] θα είναι ο µορφικός πίνακας και {} σ το διάνυσµα των κύριων συντεταγµένων. Εάν αντικαταστήσουµε το { z } στην (5.) βάσει της (5.3) θα είναι: * * * [ M] [ Z]{ σ } + [ K] [ Z]{ σ} = { F} (5.4) Πολλαπλασιάζοντας µε τον πίνακα [ Z ] T και τα δύο µέρη της (5.4) αυτή θα γίνει: * * * * [ Z] T [ M] [ Z]{ σ } + [ Z] T [ K] [ Z]{ σ} = [ Z] T { F} = { E} (5.5) Ο πρώτος όρος στο αριστερό µέρος της (5.5) θα είναι ίσος προς τον µοναδιαίο πίνακα [ I] 6. Όσο αφορά τον δεύτερο αυτός θα είναι ίσος προς ένα νέο πίνακα [ Ω ] ο οποίος είναι διαγώνιος και τα στοιχεία της διαγωνίου του είναι οι ιδιοτιµές ξ του πίνακα * * [ M ] [ K]. Άρα οι.ε. (5.5) θα γίνουν: * (5.6) {} σ + [ Ω]{} σ = { E} και η παραπάνω σχέση εκφράζει ένα σετ.ε. που όµως είναι αποσυζευγµένες και κατά συνέπεια µπορούν να λυθούν χωριστά µε τις µεθόδους που ήδη έχουν αναλυθεί σε προηγούµενες ενότητες. Η τυπική µορφή µιας τέτοιας.ε. θα είναι: σ ξσ = e * ( t), =,,..., (5.7) 6 Πρόταση για παραπέρα εργασία: Να αποδείξετε την αλήθεια αυτού του ισχυρισµού.

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

ΠΡΟΣΕΓΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΙΔΙΟΤΙΜΩΝ ΚΑΙ ΙΔΙΟΜΟΡΦΩΝ 103

ΠΡΟΣΕΓΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΙΔΙΟΤΙΜΩΝ ΚΑΙ ΙΔΙΟΜΟΡΦΩΝ 103 ΠΡΟΣΕΓΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΙΔΙΟΤΙΜΩΝ ΚΑΙ ΙΔΙΟΜΟΡΦΩΝ 03 ΚΕΦΑΛΑΙΟ 6 ΠΡΟΣΕΓΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΙΔΙΟΤΙΜΩΝ ΚΑΙ ΙΔΙΟΜΟΡΦΩΝ 6.. Εισαγωγή Στο κεφάλαιο 4, έγινε µια καταρχήν διαπραγµάτευση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Ιδιοανυσματική Ανάλυση

Δυναμική Μηχανών I. Ιδιοανυσματική Ανάλυση Δυναμική Μηχανών I 6 3 Ιδιοανυσματική Ανάλυση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Ιδιοανυσματική

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ορθογωνικότητα Ιδιομορφών Πολυβάθμια Συστήματα: Δ21-2 Μία από τις σπουδαιότερες ιδιότητες των ιδιομορφών είναι η ορθογωνικότητα τους ως προς τα μητρώα μάζας [m] και ακαμψίας

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ.. Οι βασικές έννοιες Η ταλαντωτική κίνηση είναι κίνηση που επαναλαμβάνεται στον χρόνο. Οι ταλαντώσεις ενός η περισσοτέρων μερών μιας μηχανής η ενός μηχανισμού

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 13. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 13 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Iδιότητες Ιδιοανυσμάτων Συστήματα χωρίς απόσβεση Ιδιοανυσματικός Μετασχηματισμός Συστήματα χωρίς απόσβεση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 12. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 12 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Απόκριση Συστημάτων N Β.Ε. Σε αρχικές συνθήκες Συστήματα χωρίς απόσβεση Εισαγωγή στην ιδιοανυσματική ανάλυση

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 11: ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα : ΟΡΘΟΓΩΝΙΚΟΤΗΤΑ ΤΩΝ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ Πανεπιστήμιο Πατρών Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών Κατασκευαστικός Τομέας ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ Αργύρης Δέντσορας, Καθηγητής ΔΟΜΗ ΤΗΣ ΕΝΟΤΗΤΑΣ (1/2) ΚΕΦΑΛΑΙΟ 1 Οι βασικές έννοιες

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ελεύθερη Ταλάντωση Xωρίς Απόσβεση Πολυβάθμια Συστήματα: Δ0- Για ένα πολυβάθμιο σύστημα που ταλαντώνεται ελεύθερα χωρίς απόσβεση, λόγω μόνο επιβαλλόμενων αρχικών μετατοπίσεων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών. σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών. σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών 6 1 σε Συστήματα Συνήθων Διαφορικών Εξισώσεων με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - opyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός δικαιώµατος.

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh

Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Rayleigh Η λύση του προβλήματος των ιδιοτιμών και ιδιομορφών είναι εύκολη μόνο σε περιπτώσεις συστημάτων λίγων Β.Ε. Μέθοδος Raylegh βασίζεται στο ομώνυμο πηλίκο προσεγγίζει το άνω όριο της τιμής της πρώτης ιδιοτιμής

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Πανεπιστήμιο Πατρών Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών Κατασκευαστικός Τομέας ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αργύρης Δέντσορας, Αναπληρωτής Καθηγητής ΔΟΜΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Εισαγωγή Σύστημα

Διαβάστε περισσότερα

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον.

9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9. ΕΛΕΓΧΟΣ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΜΕ ΤΟ ΠΕΡΙΒΑΛΛΟΝ 9.0 Εισαγωγικά Εξετάζουµε διάφορα µοντέλα ελέγχου αλληλεπίδρασης του βραχίονα µε το περιβάλλον. 9.1 Έλεγχος «Συµµόρφωσης» ή «Υποχωρητικότητας» (Comliance Control)

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ έκδοση

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 7 έκδοση DΥΝI-EXC07-06b Copyright Ε.Μ.Π. - 06 Σχολή

Διαβάστε περισσότερα

Φυσική Ο.Π. Γ Λυκείου

Φυσική Ο.Π. Γ Λυκείου Φυσική Ο.Π. Γ Λυκείου ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις (Α-Α) και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α) Δύο σώματα συγκρούονται κεντρικά

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 8. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 8 έκδοση DΥΝI-EXC08-016b Copyright Ε.Μ.Π. - 016 Σχολή

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 8. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Copyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ. Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ. Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 3&4: ΤΑΛΑΝΤΩΣΗ ΑΡΜΟΝΙΚΗΣ ΔΙΕΓΕΡΣΗΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 19 έκδοση DΥΝI-EXC19-2017a Copyright Ε.Μ.Π. - 2017 Σχολή

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 17 Μαρτίου 2017 1 Βασικά μεγέθη Μηχανικών

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 21.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 21. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Copyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 7.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 7. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 7. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 opyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

0,4 2 t (όλα τα μεγέθη στο S.I.). Η σύνθετη ταλάντωση περιγράφεται (στο

0,4 2 t (όλα τα μεγέθη στο S.I.). Η σύνθετη ταλάντωση περιγράφεται (στο ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 5: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β Ερώτηση. Ένα σώμα εκτελεί κίνηση που προέρχεται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων, ίδιας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 2.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 2. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel)

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση: Τυχαία Φόρτιση: Απόκριση σε Τυχαία Φόρτιση: Βασική Ιδέα Δ10-2 Το πρόβλημα της κίνησης μονοβάθμιου συστήματος σε τυχαία

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα ( ) Εξαναγκασμένη Ταλάντωση

Πολυβάθμια Συστήματα ( ) Εξαναγκασμένη Ταλάντωση Πολυβάθμια Συστήματα ( ) Εξαναγκασμένη Ταλάντωση Πολυβάθμια Συστήματα: Απόκριση σε Εξαναγκασμένη Ταλάντωση Δ23-2 Η εξίσωση κίνησης ενός πολυβάθμιου συστήματος υπό τη δράση εξωτερικού φορτίου {p(t)} είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Γωνιακή Μετατόπιση & Ταχύτητα Περιστροφική Κινητική Ενέργεια & Ροπή Αδράνειας Υπολογισμός Ροπής Αδράνειας Στερεών Σωμάτων Θεώρημα Παραλλήλων Αξόνων (Steine) ΚΥΛΙΣΗ, ΡΟΠΗ και

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 9 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Η διάλεξη σε MATLAB/simulink για όσους δήλωσαν συμμετοχή θα γίνει στις 16/1/2014 στο PC LAB Δεν θα γίνει διάλεξη

Διαβάστε περισσότερα

Σύνθεση ή σύζευξη ταλαντώσεων;

Σύνθεση ή σύζευξη ταλαντώσεων; Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΑΛΑΝΤΩΣΕΩΝ 145

ΕΛΕΓΧΟΣ ΤΑΛΑΝΤΩΣΕΩΝ 145 ΕΛΕΓΧΟΣ ΤΑΛΑΝΤΩΣΕΩΝ 145 ΚΕΦΑΛΑΙΟ 8 ΕΛΕΓΧΟΣ ΤΑΛΑΝΤΩΣΕΩΝ 8.1. Εισαγωγή Οι ταλαντώσεις στα µηχανολογικά συστήµατα µπορεί να έχουν καταστροφικά αποτελέσµατα. Τα αίτια εµφάνισής τους είναι ποικίλα και περιλαµβάνουν,

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Επίλυση Δυναμικών Εξισώσεων

Επίλυση Δυναμικών Εξισώσεων Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ

ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 11 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ.1. Ελεύθερη ταλάντση συστήματος ενός βαθμού ελευθερίας Φυσική συχνότητα και απόκριση Ο αρμονικός ταλανττής (βλ. σχήμα.1.α) είναι

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Γραμμικό και Χρονικά Αμετάβλητο Σύστημα σε καθοριστική και τυχαία πρόκληση (8.1.3)

Γραμμικό και Χρονικά Αμετάβλητο Σύστημα σε καθοριστική και τυχαία πρόκληση (8.1.3) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4) ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ ρ. Α. Μαγουλάς Οκτώβριος 4 Η συνάρτηση δ ( και η παράγωγός της Ορίζεται ως εξής: δ ( ανωµαλο

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6)

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΘΕΜΑ Α. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F! Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 33

ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 33 x(t) x(t) ΣΥΣΤΗΜΑ ΕΝΟΣ ΒΑΘΜΟΥ ΕΛΕΥΘΕΡΙΑΣ 33 π/ t Σχήμα.. Απόκριση συστήματος ενός βαθμού ελευθερίας σε εξαναγκασμένη ταλάντση χρίς απόσβεση σε συνθήκες συντονισμού. π t 4π Σχήμα.. Απόκριση συστήματος ενός

Διαβάστε περισσότερα

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα