ΟΙ ΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙ ΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ"

Transcript

1 ΟΙ ΙΑΤΑΚΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑ ΤΗΣ ΛΟΓΙΚΗΣ ιδάσκουσα : Αλλα Σιροκόφσκιχ Γιώργος Τζανάκης

2 1 Εισαγωγή Από τη σκοπιά των µαθηµατικών, ο 20ος αιώνας ήταν ιδιάιτερα σηµαντικός καθώς για πρώτη ϕορά έγινε µία έντονη και οργανωµένη προσπάθεια να α- ξιωµατικοποιηθούν και να τεθούν αυστηρά τα ϑεµελιά τους. Η ουσιαστική απαρχή αυτής της προσπάθειας έγινε το 1900 στο δεύτερο ιεθνές Συνέδριο Μαθηµατικών στο Παρίσι. Εκει, στις 8 αυγούστου, ο David Hilbert έθεσε τα περίφηµα 23 ερωτήµατα του, για τα οποία ισχυρίστηκε -και δεν έπεσε και πολύ έξω- πως ϑα απασχολούσαν τους µαθηµατικούς τον 20ο αιώνα. Μια- µια, έννοιες τις οποίες οι µαθηµατικοί χρησιµοποιούσαν για αιώνες χωρίς κανέναν σοβαρό προβληµατισµό για την πραγµατική τους υπόσταση, ορίστηκαν αυστηρά και αδιαµφισβήτητα. Φυσικά, απο τις έννοιες αυτές δεν ϑα µπορούσε να λείπει και µια από τις πιό εύθραυστες, η έννοια του απείρου. Αν και απο αρχαιοτάτων χρόνων οι εκάστοτε ϕιλόσοφοι δεν σταµάτησαν να διανοούνται πάνω στο αντικείµενο, οι µαθηµατικοί απο κάποιο σηµείο και µετά το χρησιµοποιούσαν χωρίς τον δέοντα σεβασµό. Θα τολµούσαµε να πούµε οτι το άπειρο -έννοια που ακόµη και οι ϑεολόγοι δεν άγγιζαν εύκολα- έγινε ένα απλό εργαλείο του µαθηµατικού λογισµού, ένα σύµβολο πάνω σε σειρές και ολοκληρώµατα. Με το κύµα αυτό της ϑεµελίωσης των Μαθηµατικών που αναφέραµε παραπάνω, το άπειρο έφτασε να αποτελεί το αντικείµενο ενος ολόκληρου κλάδου της Θεωρίας Συνόλων. Στην εργασία αυτή, ϑα προσπαθήσουµε να σκιαγραφήσουµε κάποια ϑεµελιώδη στοιχεία του κλάδου αυτού και να δώσουµε µια ιδέα για το πώς διαχειριζόµαστε αυστηρά την έννοια του απείρου. 2 ιατάξεις 2.1 Αρχικές έννοιες Στην ϱίζα της έννοιας του απέιρου, ϐρίσκεται η έννοια της διάταξης, πράγµα που ίσως δεν είναι τόσο ϕανερό σε όποιον δεν έχει µελετήσει Θεωρία Συνόλων. Η διάταξη στην Θεωρία Συνόλων είναι µία σχέση και κάθε σχέση είναι ενα υποσύνολο ενός καρτεσιανού γινοµένου µε συγκεκριµένες ιδιότητες. Ορισµός Σε ενα σύνολο A, ορίζουµε ως µερική διάταξη (ή απλώς διάταξη) των στοιχείων του, ένα υποσύνολο R του A A µε τις ιδιότητες 1. x(xrx) (Ανακλαστική) 2. ( x A)( y A)(xRy yrx x = y) (Ασθενώς αντισυµµετρική) 3. ( x A)( y A)( z A)(xRy yrz xrz) (Μεταβατική) 1

3 Με τον ορισµό αυτό, παρατηρούµε οτι κάθε δυο στοιχεία δεν είναι απα- ϱαιτήτως συγκρίσιµα ως προς την διάταξη. Οταν ισχύει επιπλέον η συνθήκη ( x A)( y A)(xRy yrx) η µερική διάταξή λέγεται ολική. Μια ολική διάταξη µας ϑυµίζει την διάταξη των ϕυσικων αριθµών. Πράγµατι, η τελευταία είναι µια µερική ολική διάταξη. Ορισµός Σε ενα σύνολο A, ορίζουµε ως γνήσια µερική διάταξη των στοιχείων του, ένα υποσύνολο R του A A µε τις ιδιότητες 1. ( x A)( xrx) (Αντιανακλαστική) 2. ( x A)( y A)(xRy yrx) (Αντισυµµετρική) 3. ( x A)( y A)( z A)(xRy yrz xrz) (Μεταβατική) Οταν ισχύει επιπλέον η συνθήκη 4 ( x A)( y A)(xRy yrx x = y) (Τριχοτοµική ιδιότητα) η διάταξή λέγεται γνησίως γραµµική διάταξη. Μια γνησίως γραµµική διάταξη µας ϑυµίζει την διάταξη < των ϕυσικων αριθµών. Πράγµατι, η τελευταία είναι µια τέτοια διάταξη. Οπως αναφέραµε προηγουµένως, µια διάταξη είναι υποσύνολο ενός καρτεσιανού γινοµένου. Για να γίνει αυτό πιο σαφές, ακολουθεί ένα παράδειγµα. Παράδειγµα Ορίζουµε R N N, R = {(n, n + k), n N, k N}. Το σύνολο αυτό είναι η σχέση των ϕυσικών. Εχοντας ορίσει την έννοια της διάταξης, µπορούµε να αρχίσουµε να µιλάµε για πράγµατα που µας ϕέρνουν πιο κοντά στην έννοια του απέιρου. Συγκεκριµένα, ϑα ορίσουµε την έννοια του ελάχιστου και µέγιστου στοιχείου και του άνω και κάτω ϕράγµατος ενός συνόλου. Ορισµός Εστω A, < γνησίως διατεταγµένο σύνολο. Ενα a A ϑα λέγεται 1. ελλάσον (minimal), όταν δεν υπάρχει στο A στοιχείο προηγούµενο του a, δηλαδή όταν ( x A) (x < a). 2. µείζον (maximal), όταν δεν υπάρχει στο A στοιχείο επόµενο του a, δηλαδή όταν ( x A) (a < x). 2

4 3. ελάχιστο, όταν το a προηγείται όλων των άλλων στοιχείων του A, δηλαδή όταν ( x A)(a < x a = x). 4. µέγιστο, όταν το a έπεται όλων των άλλων στοιχείων του A, δηλαδή όταν ( x A)(x < a a = x). Ορισµός Εστω A, < µερικώς διατεταγµένο σύνολο. Εστω X A και b A. Λέµε ότι το b είναι 1. άνω ϕράγµα του X αν ( x X)x b. 2. κάτω ϕράγµα του X αν ( x X)b x. 3. supremum του X αν είναι το ελάχιστο των άνω ϕραγµάτων. 4. infimum του X αν είναι το µέγιστο των κάτω ϕραγµάτων. 2.2 Καλές διατάξεις Σε αυτήν την υποενότητα ϑα παρουσιάσουµε πολύ συνοπτικά τις καλές διατάξεις, έννοια απαραίτητη στον ορισµό των διατακτικών αριθµών. Ορισµός Εστω X, ρ, Y, σ µερικώς διατεταγµένα σύνολα. Λέµε οτι τα X, ρ, Y, σ είναι όµοια και γράφουµε X Y, όταν υπάρχει µια 1 1 και επί συνάρτηση f : X Y που να διατηρεί τις διατάξεις ρ, σ, δηλαδή ( a X)( b X)(aρb f(a)σf(b). Μια τέτοια συνάρτηση f λέγεται ισοµορφισµός των διατάξεων ρ και σ. διατάξεις ρ και σ λέγονται όµοιες. Οι Ο παραπάνω ορισµός χρησιµοποιείται επίσης και για τις γνήσιες διατάξεις. Ωστόσο, παρατηρούµε οτι απο τον τρόπο που ορίσαµε την γνήσια διάταξη, ένα διατεταγµένο σύνολο A, δεν µπορεί να είναι όµοιο µε κανένα γνησίως διατεταγµένο σύνολο B, <, διότι για κάθε a A έχουµε a a και (f(a) < f(a)). Ορισµός Μια (γνήσια) γραµµική διάταξη R ενός συνολου A λέγεται καλή διάταξη του, όταν σε κάθε µη κενό υποσύνολο του B υπάρχει ελάχιστο (ως προς την διάταξη R ) στοιχείο, δηλαδή B A B ( x B)( y B)(y x xry). Το ελάχιστο στοιχείο στοιχείο ενός B A, B (που είναι µοναδικό) συµβολίζεται min R B. Το A, R λέγεται καλώς διατεταγµένο σύνολο αν η σχέση R είναι καλή διάταξη του A. 3

5 Παράδειγµα Αντίθετα απ οτι ϑα περίµενε κανείς, δεν είναι όλες οι γνωστές διατάξεις καλές. Οι R,, Z,, Q, δεν είναι καλές διατάξεις. Η N, είναι καλή διάταξη. Ορισµός Εστω A, R καλά διατεταγµένο σύνολο. Ενα υποσύνολο B του A λέγεται αρχικό τµήµα του A ως προς την διάταξη R αν για οποιαδήποτε x, y ισχύει x B y < x y B δηλαδή, µαζί µε κάθε στοιχείο του B ανήκουν και όλα τα προηγούµενά του. Ενα αρχικό τµήµα λέγεται γνήσιο εαν B A. Για κάθε a A, ορίζουµε ως αρχικό τµήµα που ορίζεται από το a το σύνολο O < (a) = {x A, x < a}. Ο ορισµός του αρχικού τµήµατος ϕαίνεται τετριµµένος, ωστόσο, µαζί µε τις καλές διατάξεις, είναι ο ϑεµέλιος λίθος της ϑεωρίας των διατακτικών αριθ- µών διότι, λαµβάνοντας υπ όψιν και τον ορισµό (2.2.1) των όµοιων διατάξεων, έχουµε έναν πολύ ωραίο τρόπο να συγκρίνουµε δυο καλές διατάξεις. Ορισµός Εστω A, R, B, S καλώς διατεταγµένα σύνολα. Θα λέµε οτι η διάταξη R είναι µικρότερη από την S όταν το A, R είναι όµοιο µε κάποιο γνήσιο αρχικό τµήµα του B, S. Εδώ ϑα παρατηρήσουµε οτι δεν πρόκειται για µια σύγκριση των στοιχείων των συνόλων αλλά των ίδιων των διατάξεων. Φαίνεται περίεργο το να συγκρίνουµε διατάξεις αυτες καθ αυτές, όµως στην πραγµατικότητα αυτό δεν είναι κάτι που πρέπει να µας κάνει εντύπωση. Στην Θεωρία Συνόλων κάθε οντότητα (άρα και µια διάταξη) είναι ένα σύνολο, ανεξάρτητα µε τί το έχουµε συνδέσει στην καθηµερινή µαθηµατική µας Ϲωή. Ετσι και οι καλές διατάξεις είναι σύνολα και τίποτα παραπάνω και ϐρήκαµε έναν έξυπνο τρόπο να τα συγκρίνουµε. Το επόµενο ϑεώρηµα του οποίου η απόδειξη είναι αρκετά δύσκολη, είναι επίσης ϑεµελιώδους σηµασίας. Θεώρηµα (Νόµος τριχοτοµίας του Cantor για τις καλές διατάξεις) Εστω A, R, B, S καλώς διατεταγµένα σύνολα. Τότε είτε A, R B, S, είτε A, R < B, S, είτε A, R > B, S. Εχοντας αναφέρει και τον νόµο της τριχοτοµίας, µπορούµε να προχωρήσουµε στην επόµενη ενότητα που είναι και η πιο σηµαντική. 4

6 3 Οι διατακτικοί αριθµοί 3.1 Εισαγωγικά σχόλια Πρώτος ο Cantor επιχείρησε να ορίσει την έννοια του διατακτικού αριθµού ως αυτό που διαισθητικά περιµένει κανείς µετά τις προηγούµενες ενότητες. Ορισε τους διατακτικούς ως διατακτικούς τύπους των καλώς διατεταγµένων συνόλων, δηλαδή ως αφηρηµένους αντιπροσώπους για τις κλάσεις όµοιων καλών διατάξεων. Ανέπτυξε µια πλούσια ϑεωρία των διατακτικών αριθµών η οποία χρησιµοποιείται ακόµη και σήµερα σε µαθηµατικές αποδείξεις και κατασκευές συνόλων. Υπήρχε ωστόσο ένα σοβαρό πρόβληµα µε τον ορισµό του Cantor για τους διατακτικούς αριθµούς, διότι δεν αποτελούσαν σύνολο. Οι κλάσεις, που αναφέραµε πρωτύτερα, είναι µια καθαρά διαισθητική έννοια που -αν και αρκετά σαφής- δεν µπορεί να οριστεί αυστηρά για έναν ϑεµελιωδώς ουσιαστικό λόγο : δεν µπορεί να οριστεί το σύνολο µιάς συλλογής στοιχείων µε µια συγκεκριµένη ιδιότητα, εαν αυτά δεν ανήκουν όλα σε ένα κοινό σύνολο. Για τους διατακτικούς αριθµούς δεν υπάρχει κανένα σύνολο που να τους περιέχει όλους. Το σύνολο των διατακτκών αριθµών απλώς δεν υπάρχει! Οπως ήταν ϕυσικό για µια ϑεωρία που, παρ ότι µεγαλοφυής, είχε ένα τόσο µεγάλο κενό, υπήρξαν αντιδράσεις από τους µαθηµατικούς της εποχής. εν ήταν λίγοι αυτοί που ϑεωρούσαν τον Cantor και τους ϑιασώτες της ϑεωρίας του τσαρλατάνους και παραεπιστήµονες. Μάλιστα ο Kronecker, σηµαντικός µαθηµατικός της εποχής, δεν σταµάτησε ποτέ να πολεµάει τον Cantor σε επίπεδο σχεδόν προσωπικό. Αυτές οι διαµάχες στοίχισαν πολλά στον Cantor που, όντας χαµηλών τόνων άνθρωπος, δεν µπορούσε να αντισταθεί µε το σθένος που απαιτούσαν οι επιθέσεις του Kronecker και των οµοιδεατών του. Αξίζει να σηµειωθεί ότι ο Hilbert υπήρξε σταθερός υποστηρικτής της Θεωρίας των Συνόλων. Σε µιά εκδήλωση που έγινε το πρώτο τέταρτο του 20ου αιώνα προς τιµήν του Weierstrass στο Munster, ο Hilbert έκανε µιά οµιλία για το άπειρο, από την οποία έιναι πολύ γνωστή η ϱήση Κανένας δεν ϑα µας οδηγήσει έξω από τον παράδεισο, που ο Cantor δηµιούργησε για µας. Οι επιφυλάξεις σταµάτησαν όταν ο J. Von Neumann έδωσε το 1929 έναν κοµψό πλην αυστηρό και έγκυρο ορισµό των διατακτικών αριθµών. Εδειξε ότι για κάθε καλώς διατεταγµένο σύνολο A, R υπάρχει µοναδικό µεταβατικό σύνολο σύνολο T (δηλαδή καλώς διατεταγµένο µε τη σχέση T του ανήκειν) ώστε A, R T, T. Ετσι, όρισε ως διατακτικό τύπο A, R του A, R το (µοναδικό αυτό) σύνολο T. Με το νέο αυτό ορισµό δεν προέκυπτε κάποιο πρόβληµα όπως αυτό που είχε ο Cantor, ενώ συνέπιπτε µε την ιδέα που είχε ο τελευταίος για τους διατακτικούς αριθµούς του. Συγκεκριµένα ικανοπούνταν 5

7 το αίτηµά του να ισχύει A, R = B, S A, R B, S. 3.2 Θεµελιώδη στοιχεία των διατακτικών αριθµών Παραθέτουµε τον ορισµό του J. Von Neumann για τους διατακτικούς αριθ- µούς. Ορισµός Κάθε µεταβατικό σύνολο T, που είναι καλώς διατεταγµένο από την σχέση T = { x, y T T τ.ω. x y} λέγεται διατακτικός αριθµός. Παράδειγµα Στη ϑεωρία των συνόλων, οι ϕυσικοί αριθµοί ορίζονται να είναι τα σύνολα των προηγουµένων τους. Συγκεκριµένα 0 =, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, 4 = {0, 1, 2, 3} κ.ο.κ. Σύµφωνα µε τον ορισµό (3.2.1), κάθε ϕυσικός είναι ένας διατακτικός αριθµός. Παράδειγµα Στη ϑεωρία των συνόλων, συνήθως συµβολίζουµε µε ω το σύνολο N των ϕυσικών αριθµών. Το ω είναι ένας διατακτικός αριθµός. Αποδεικνύεται ότι αν α, β διατακτικοί αριθµοί, τότε το a, a είναι όµοιο µε γνήσιο αρχικό τµήµα του b, b αν και µόνον αν a b. Από τα παραπάνω, µπορούµε να ορίσουµε σύγκριση των διατακτικών α- ϱιθµών. Ορισµός (Σύγκριση διατακτικών αριθµών) Λέµε οτι a < b αν a b και a b αν a b είτε a = b. Οπως και µε την περίπτωση των διατάξεων, αυτό είναι κάτι που δεν ξε- ϕεύγει από τα πλαίσια της λογικής της Θεωρίας των Συνόλων. Το πιο κοντινό µας παράδειγµα σύγκρισης διατακτικών αριθµών είναι και πάλι οι ϕυσικοί. Πριν κλείσουµε αυτήν την ενότητα ϑα πρέπει να αναφέρουµε οτι εαν δεχτούµε το αξίωµα της επιλογής, προκύπτει το επόµενο πολύ σηµαντικό ϑεώ- ϱηµα. Θεώρηµα (Αρχή Καλής ιάταξης του Zermelo) Κάθε σύνολο δέχεται καλή διάταξη. 6

8 Στην πραγµατικότητα, η Αρχή της Καλής ιάταξης δεν είναι ενα απλό πόρισµα του Αξιώµατος της Επιλογής. Για κάθε σύνολο που δέχεται µια καλή διάταξη, µπορούµε να ορίσουµε µια συνάρτηση επιλογής για τα υποσύνολά του. Από την Αρχή Καλής ιάταξης έπεται ότι για κάθε σύνολο υπάρχει µια συνάρτηση επιλογής γιά τα υποσύνολά του. Το γεγονός αυτό είναι ισοδύναµο µε το Αξίωµα της Επιλογής, δηλαδή η Αρχή Καλής ιάταξης του Zermelo και το αξίωµα της επιλογής είναι ισοδύναµα. Οταν λοιπόν δεχτούµε το αξίωµα της επιλογής (συνεπώς και την Αρχή της Καλής ιάταξης), η ϑεωρία των διατακτικών αριθµών µας δίνει τα εφόδια για τον χειρισµό λεπτών εννοιών όπως αυτής της σύγκρισης συνόλων µε άπειρα στοιχεία. Στη Συνολοθεωρία χρησιµοποιούµε 1 1 και επί συναρτήσεις για να συγκρίνουµε τον πληθάριθµο τυχαίων συνόλων, όµως όταν αυτά είναι άπειρα, σκοντάφτουµε σε Ϲητήµατα που έχουν να κάνουν µε το είδος του απείρου. Με χρήση διατακτικών αριθµών µπορούµε αρχικά να κατηγοριοποιήσουµε το είδος του απείρου που προαναφέραµε και ακολούθως να συγκρίνουµε δυο σύνολα όχι µόνο ως προς το πλήθος τους αλλά και ως προς το είδος της διάταξής τους. 4 Επίλογος Στις µαθηµατικές κοινότητες υπάρχει η έννοια του crank. Αναφέρεται κυ- ϱίως σε ψευδοµαθηµατικούς που ισχυρίζονται πως έχουν καταφέρει κάποιο σηµαντικό επίτευγµα (π.χ. έχουν τετραγωνίσει τον κύκλο, έχουν αποδείξει την εικασία του Riemann κλπ) και δεν παραδέχονται κάποια προφανή λογικά σφάλµατα στα οποία έχουν υποπέσει. Πρόσφατα έπεσε στα χέρια µου το ϐιβλίο ενος crank ο οποίος ισχυριζόταν πως είχε αποδείξει το ανυπόστατο του απέιρου. Παρά το αστείο της υπόθεσης, είναι σηµαντικό να δούµε πώς αποκρούεται µια οποιαδήποτε άποψη που αντιτίθεται στο άπειρο ως µαθηµατική έννοια. Το άπειρο δεν είναι παρα µια έννοια που ϐασίζεται σε αξιώµατα, τα ο- ποία δεχόµαστε a priori, ως κανόνες του παιχνιδιού που λέγεται Μαθηµατικά. Εάν κάποιος δεν µπορεί να δεχτεί το άπειρο λόγω ϕιλοσοφικών πεποιθήσεων δεν έχει παρά να αφαιρέσει µερικούς κανόνες από το παιχνίδι. Στην καλύτερη περίπτωση το παιχνίδι δεν ϑα έχει ενδιαφέρον, στην χειρότερη µπορεί και να µην παίζεται. Ωστόσο δεν µπορεί να αρνηθεί το άπειρο όπως αυτό χρησιµοποιήται στα Μαθηµατικά, τουλάχιστον ως σύµβαση για να κάνουµε καλά (και όµορφα) την δουλειά µας. Στην εργασία αυτή που έγινε στα πλαίσια του µαθήµατος Ιστορία της Λογικής, ϑέλησα να δώσω µια ιδέα για τον τρόπο που χειρίζεται κανείς τα άπειρα σύνολα µε αµιγώς µαθηµατικό -οπότε και αδιαµφισβήτητο- τρόπο παρουσιά- Ϲοντας επιγραµµατικά κάποια στοιχεία της ϑεωρίας των διατακτικών αριθµών, 7

9 του κλάδου της Συνολοθεωρίας που ϐρίσκεται ίσως πιό κοντά από κάθε άλλον στην έννοια του απείρου. Για µια πιό λεπτοµερή µελέτη της ϑεωρίας αυτής, µπορεί κανείς να ανατρέξει σε οποιοδήποτε εισαγωγικό ϐιβλίο της Συνολοθεωρίας, όπως το κλασικό Naive Set Theory του Paul Halmos (The University series in Undergraduate Mathematics, Van Nostrand Reinhold, New York 1960). 8

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.» 1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Η εργασία αυτή γράφτηκε µε αφορµή την κυκλικότητα που παρατηρείται στο σχολικό

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.»

«Έννοια της διάταξης ΟΡΙΣΜΟΣ α > β α β > 0.» 1 Η σχέση της διάταξης στο IR ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Η εργασία αυτή αποτελείται από δύο µέρη. Στο πρώτο µέρος ορίζεται η έννοια των θετικών

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε

Διαβάστε περισσότερα

Ισοδυναµίες, Μερικές ιατάξεις

Ισοδυναµίες, Μερικές ιατάξεις Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 18 Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Η ασάφεια και τα Ασαφή Σύνολα ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Η έννοια του ασαφούς συνόλου εισήχθη από τον Zadeh το 1965 και δηµιούργησε πραγµατική

Διαβάστε περισσότερα

invariante Eigenschaften spezieller binärer Formen, insbesondere der

invariante Eigenschaften spezieller binärer Formen, insbesondere der Κουλακίδου Π. Ιστορία των Μαθηματικών Υπεύθυνη Καθηγήτρια: Χ. Χαραλάμπους Εισαγωγή David Hilbert (1862 Königsberg - 1943 Göttingen). Διδακτορικό το 1885 υπό την επίβλεψη του Ferdinand von Lindemann με

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ανακλαστικές (, ) R Συµµετρικές (, ) R

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι

Διαβάστε περισσότερα

Infinite Combinatorics

Infinite Combinatorics Infinite Combinatorics Παναγιώτης Πατσιλινάκος ΕΜΕ 20 Ιουνίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Infinite Combinatorics 20 Ιουνίου 2017 1 / 42 1 Προαπαιτούμενα Διατακτικοί αριθμοί Πληθάριθμοι 2 Εισαγωγή

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί. Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {,, 3,...} Το σύνολο των ακεραίων Z = {... 3,,, 0,,, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων ιακριτά Μαθηματικά Ι https://www.icsd.aegean.gr/t.tzouramanis/courses/dm1 ttzouram@aegean.gr Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Κεφάλαιο 0 Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Στο παρόν εισαγωγικό Κεφάλαιο, υπενθυµίζουµε, κατά κύριο λόγο χωρίς αποδείξεις, ϐασικές γνώσεις από : τη στοιχειώδη ϑεωρία συνόλων και απεικονίσεων,

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius

ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenius ΚΕΦΑΛΑΙΟ 9: Επαγόµενοι Χαρακτήρες και το Θεώρηµα του Frobenus Στο κεφάλαιο αυτό εισάγουµε τους επαγόµενους αρακτήρες µε τη βοήθεια των οποίων αποδεικνύουµε το θεώρηµα των συµπληρωµάτων του Frobenus Οι

Διαβάστε περισσότερα

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a. 1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές

Διαβάστε περισσότερα

Κεφάλαιο 1. Θεωρία Ζήτησης

Κεφάλαιο 1. Θεωρία Ζήτησης Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.

Διαβάστε περισσότερα

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Θέµατα στα Σύνολα και Αριθµοί 11/02/2011 Απαντήσεις µε σχολιασµό. n4 + 4n 2. (iii)

Θέµατα στα Σύνολα και Αριθµοί 11/02/2011 Απαντήσεις µε σχολιασµό. n4 + 4n 2. (iii) Καρλόβασι 17/02/2011 Θέµατα στα Σύνολα και Αριθµοί 11/02/2011 Απαντήσεις µε σχολιασµό. 1. Να υπολογίσετε κάθε ένα από τα παρακάτω όρια (για ). (i)! (ii) 4 + 4 2 (iii) 1 1+ 2 2+ 3 3+ + (i) Χρη- οπότε a+1

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ανάλυση Ι και Εφαρµογές

Ανάλυση Ι και Εφαρµογές Ανάλυση Ι και Εφαρµογές Σηµειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τµήµα Φυσικής Πανεπιστήµιο Αθηνών Αθήνα 206 Περιεχόµενα Το σύνολο των πραγµατικών αριθµών. Φυσικοί, ακέραιοι και ϱητοί αριθµοί.......................

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας και Πράξεις

Σχέσεις Ισοδυναµίας και Πράξεις Κεφάλαιο 1 Σχέσεις Ισοδυναµίας και Πράξεις Στο παρόν Κεφάλαιο ϑα αναπτύξουµε τα ϐασικά στοιχεία από τη ϑεωρία σχέσεων µερικής διάταξης, σχέσεων ισοδυναµίας και διαµερίσεων οι οποίες ορίζονται επί ενός

Διαβάστε περισσότερα

Ορια Συναρτησεων - Ορισµοι

Ορια Συναρτησεων - Ορισµοι Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την

Διαβάστε περισσότερα

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ;

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ; 1 Ισοδύναµες εξισώσεις και η έννοια του «κοντά» ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-thedrpuls.gr Εισαγωγή Στην εργασία αυτή αναλύονται και αναπτύσσονται οι έννοιες που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα