ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ"

Transcript

1 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ (σελ. 96 / ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) Η μελέτη σχεδίαση του πηδαλίου εκπονείται με βάση την παρακάτω διαδικασία : 1. Σχεδιάζεται η περιοχή της πρύμνης του πλοίου ώστε να καθοριστεί (από σχέδιο των ναυπηγικών γραμμών ) ο διαθέσιμος χώρος. Σημειώνεται ότι, εάν το πλοίο έχει ένα πηδάλιο αυτό θα τοποθετηθεί στο διάμηκες επίπεδο συμμετρίας, ενώ εάν έχει δύο πηδάλια το καθένα θα τοποθετηθεί πίσω από την αντίστοιχη έλικα (εκτός εάν το πλοίο έχει δύο έλικες και ένα πηδάλιο, οπότε αυτό θα είναι στο μέσον).. υπολογίζεται η απαιτούμενη επιφάνεια του πηδαλίου χρησιμοποιώντας τον πίνακα ή τις σχέσεις των Νηογνωμόνων και καθορίζεται η πραγματική επιφάνεια στη συγκεκριμένη περιοχή της πρύμνης ελέγχοντας τις ελευθερίες μεταξύ γάστρας, έλικας. 3. καθορίζονται οι διαστάσεις του πτερυγίου του πηδαλίου και σχεδιάζεται η επιφάνειά του. 4. με δεδομένα την πραγματική επιφάνεια και την ταχύτητα του πλοίου, υπολογίζεται η διάμετρος του άξονα του μηχανισμού πηδαλίου. 5. υπολογίζεται το πάχος των περιαυχενίων και ελέγχεται το ύψος μεταξύ της άνω χορδής του πηδαλίου και της γάστρας στο σημείο τοποθέτησης. 6. καθορισμός των τελικών διαστάσεων του πηδαλίου,επιλογή προφίλ NAA και σχεδίαση των γραμμών των οριζόντιων τομών : εάν το πηδάλιο είναι ορθογωνικής μορφής, η οριζόντια τομή είναι μια, ενώ εάν είναι τραπεζοειδούς μορφής σχεδιάζεται η άνω χορδή, η κάτω χορδή και η μέση χορδή (στο μέσον του ύψους του πηδαλίου). 7. υπολογισμός των υδροδυναμικών συντελεστών, καθορισμός της απόστασης του κέντρου πίεσης από τον άξονα περιστροφής, καθορισμός της μέγιστης ροπής στρέψεως. 8. υπολογισμός κατασκευαστικών στοιχείων του πηδαλίου με εφαρμογή κανονισμών Νηογνώμονα : ισαποστάσεις οριζόντιων και κάθετων διαφραγμάτων, πάχη ελασμάτων, υπολογισμός διαστάσεων εγκοπών συγκόλλησης, υπολογισμός ροπής στρέψεως, σχεδίαση περιαυχενίου. 9. εκπόνηση κατασκευαστικού σχεδίου του πηδαλίου. 1

2 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΚΥΡΙΕΣ ΙΑΣΤΑΣΕΙΣ Ολικό μήκος.. = 4,4 ( m ) Μήκος μεταξύ καθέτων =,3 ( m ) Μήκος ισάλου.. = 1,6 ( m ) Μήκος υπολογισμού.. =,736 ( m ) Πλάτος.. = 6,6 ( m ) Κοίλο (ύψος κατασκευής).. = 3,3 ( m ) Βύθισμα.. =,15 ( m ) Είδος πλοίου = αλιευτικό BHMA 1 : Σχεδίαση πρύµνης

3 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια BHMA : ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΑΙΤΟΥΜΕΝΗΣ ΕΠΙΦΑΝΕΙΑΣ ΠΗ ΑΛΙΟΥ Η απαιτούμενη επιφάνεια του πηδαλίου μπορεί να υπολογιστεί : Α. Από τη σχέση : A k W d ( m ) = (σελίδα 49, παρ. 1, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) Από τον πίνακα της σελίδας 5, για αλιευτικά πλοία είναι : ) B. Από τη σχέση του Νορβηγικού Νηογνώμονα (σελίδα 5, παρ., ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) : d ύ B υπολογισµο A = υπολογισµού υπολογισµο ύ ( m) ( m ) =,736, Β = 6,6 μ., Βύθισμα =,15 μ. Προκύπτει : Α = 1,575 ( m ) Γ. Από τη σχέση του Γερμανικού Νηογνώμονα (σελίδα 51, παρ. 3, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) : A 1,75 d υπολογισµού = c c c c ( m ) Όπου : υπολογισµο ύ ( m) =,736, Β = 6,6 μ., Βύθισμα =,15 μ. Προκύπτει : Α = 1,36 ( m ) 3

4 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια BHMA 3 : Καθορισµός διαστάσεων πηδαλίου Οι διαστάσεις και η μορφή του πτερυγίου του πηδαλίου καθορίζονται από το διαθέσιμο χώρο της πρύμνης του πλοίου. Το πτερύγιο του πηδαλίου δεν πρέπει να εκτείνεται πρύμνηθεν της νοητής γραμμής του καθρέπτη, και θα απέχει μια ελάχιστη απόσταση από το άνω μέρος της γάστρας και από το άνω μέρος του πέδιλου, ως φαίνεται στο παρακάτω σχήμα 1. ΣΗΜ. : όταν η άνω επιφάνεια του πηδαλίου είναι πολύ κοντά στη γάστρα, τότε το πηδάλιο για σκοπούς υδροδυναμικών μελετών (εξ αιτίας του κατοπτρισμού της ροής) ενεργεί ως ο λόγος επιμήκους να είναι διπλάσιος του γεωμετρικού (που είναι και η πραγματική απεικόνιση της μορφής του πτερυγίου του πηδαλίου). Βέβαια αυτό συμβαίνει όταν το πηδάλιο είναι στη μέση (γωνία εκτροπής πηδαλίου ), ενώ όταν το πηδάλιο απομακρύνεται από τη μέση θέση και η απόσταση της άνω χορδής από τη γάστρα μεγαλώνει, λαμβάνεται γραμμική μεταβολή του λόγου διαμήκους από AR με πηδάλιο στη μέση έως 1 AR με πηδάλιο στη μέγιστη γωνία που λαμβάνεται στις 35. Πάντως, επειδή στην πράξη για λόγους κυρίως κατασκευαστικούς δεν υλοποιείται η παραπάνω συνθήκη ακόμα και όταν το πηδάλιο είναι στη μέση θέση (γωνία εκτροπής πηδαλίου ), πρέπει να υπάρχει προσοχή στον υπολογισμό του AR. 4

5 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Έτσι μια ελάχιστη απόσταση ελευθερίας (τζόγος) υπολογίζεται πάνω από την άνω χορδή μέχρι τη γάστρα στο σημείο τοποθέτησης του πηδαλίου ώστε να εκμηδενίζεται αυτή η επίδραση στο λόγο επιμήκους λόγω της γάστρας. Στο αρχικό στάδιο της μελέτης του πηδαλίου που είναι άγνωστες οι διαστάσεις του πτερυγίου, 1 θεωρείται αρκετή μια απόσταση που συνήθως είναι 15 H η οποία θα ελεγχθεί εάν επαρκεί για την τοποθέτηση και των απαραίτητων περιαυχενίων που συνδέουν τα πτερύγιο του πηδαλίου με το μηχανισμό του πηδαλίου (λαμβάνεται η απόσταση Η, θεωρώντας ότι το πηδάλιο πλησιάζει όσο το δυνατόν περισσότερο στη γάστρα του πλοίου). H = =, και θεωρώντας μια απόσταση περίπου 1 (mm) από την κάτω χορδή του πηδαλίου μέχρι το πέδιλο, προκύπτει : Από το σχέδιο της πρύμνης, προκύπτει 133,33( mm) Λαμβάνεται Καθαρό ύψος πηδαλίου = 17 (mm). Η μέγιστη επιφάνεια είναι,3 (m ), η οποία όμως δεν είναι εφικτό να δημιουργηθεί στην υπάρχουσα πρύμνη. Λαμβάνεται η μέση τιμή μεταξύ ελάχιστης και μέγιστης τιμής, οπότε προκύπτει Α = 1,811 (m ). Από τη σχέση : A h c μορφή του πτερυγίου του πηδαλίου έχει τις παρακάτω διαστάσεις : =, προκύπτει πλάτος μέσης χορδής c = 1,65 (m), και από το σχήμα 1 της πρύμνης η Είναι : c = µ ήκος άνω χορδής... = 1, mm r c = µ ήκος κάτω χορδής... = 1, mm t c = µ ήκος µ έσης χορδής...= 1,1 mm m b = ύψος πτερυγίου πηδαλίου... = 1,7 m AR 1,7 = aspect ratio = = 1,1 1,545 1, + 1, Επιφάνεια πηδαλίου : A = 1,7 = 1,87 ( m ) 5

6 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΒΗΜΑ 4 : Υπολογισµός διαµέτρου άξονα πηδαλίου Η πραγματική επιφάνεια του πηδαλίου έχει υπολογιστεί μέχρι τώρα σε Α = 1,87 ( m ). Η ταχύτητα του πλοίου είναι 14 (kn). Οπότε υπολογίζεται η διάμετρος του άξονα του μηχανισμού του πηδαλίου, με τις σχέσεις της παραγράφου 15 / σελίδα 88, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17). S l 4 M = S R ( mm), όπου S = N 3 Q u 3 Q R K S ( mm) - K S = 1 - N u = 4, - Q = συνολική ροπή στρέψεως, σε ( kn m) R Η ροπή στρέψης υπολογίζεται από την παρακάτω σχέση, για κίνηση πρόσω και κίνηση ανάποδα : Q R = P r kn m,(σελ. 85, παραγρ. 14.Α., ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) P = δύναμη ( σε kn ) επί του πηδαλίου : P n k k k A V kn = R c l R, (σελ. 83, παραγρ. 14.Α.1, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) n =,13, Είναι : P= 6,9 ( kn) b 1,7 + A + t 1,87 kr = = = 1,18, k c = 1,1 1, 3 3 l r = c ( a k) ( m) με ελάχιστη τιμή,1 c ( m) k =, V 14 ( kn) R =, Α = 1,87 ( m ) c = μήκος μέσης χορδής, σε (m), στο Σχήμα 73 Σελ. 83, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17. A f k = ποσοστό ζυγοστάθμισης = A,(σελ. 86, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) όπου A f η επιφάνεια του πτερυγίου του πηδαλίου πλώρα του άξονα περιστροφής του πηδαλίου (Σχήμα 73, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) 6

7 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Στη φάση αυτή της μελέτης δεν είναι γνωστή η θέση του άξονα περιστροφής, άρα δεν είναι γνωστό το ποσοστό ζυγοστάθμισης, οπότε για το rλαμβάνεται η ελάχιστη τιμή :,1 c m =,1 1,1 m =,11 m Με την τιμή αυτή υπολογίζεται το ποσοστό ζυγοστάθμισης : min,11 = r = c a k = 1,1,33 k k =, 3 Οπότε από τη σχέση k A 1 = A1 = 1,87, 3=, 43, και από τη σχέση : A ΟΛ A = d ' b 1 ' A1 d = =, 53 ( m) = απόσταση του άξονα περιστροφής από τη ακμή εισόδου b Είναι : Q P r ( kn m) 6,9,11 ( kn m) 6,919 ( kn m) R = = = 3 Είναι : S = N 3 Q K ( mm) = 4, 6,919 1, ( mm) = 8,3 ( mm) u R S Η διάμετρος του άξονα του μηχανισμού του πηδαλίου είναι : S l 4 M 3 Q R S 6 n = 1 + ( mm) Η καμπτική ροπή υπολογίζεται από : ΠΗ ΑΛΙΑ 17), όπου : Mn = P b, σε ( kn m),(σελ. 85, παραγρ. 15, ΠΗ ΑΛΙΟΥΧΙΑ - b = απόσταση, σε (m), από το κέντρο του άξονα περιστροφής μέχρι το κέντρο της επιφάνειας του πηδαλίου. 7

8 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Από τη γεωμετρία του πτερυγίου : ( c + c ) 1,7 ( 1, + 1, ) h t r Ag = = =,84 3 ct + cr 3 1, + 1, Bg = 1, 7,84=,876 t ( β γ) x= c e+ 1+ ct 1+ 1, β = = =, , ( c ) t c 1, 1,, γ = = = =,167 c 1, 1, r ( a) e=,5,5 β 1 =,5,5,5 1 1, =, 55 ( β γ) x= c e+ = 1,,55+,5,167 =, 6335 t προκύπτει b = ( 1,, 6335), 53 =,3135 ( m) Οπότε είναι : M = ( P b)( kn m) = 6,9,3135= 19, 719( kn m) Και : n 4 M 4 19, 719 S 6 n 1 8,3 1 = 1,8 6 Sl = + mm = + mm mm 3 Q R 3 6, 919 Επιλέγεται = 1 (mm) ΒΗΜΑ 5 : Υπολογισµός πάχους περιαυχενίων / έλεγχος ύψους (ελευθερίας) Υπολογίζεται το πάχος των περιαυχενίων και η διάμετρος των βιδών (σελ. 91, παραγρ. 16.1, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17): Διάμετρος βίδας : dβιδας,65 S = ( mm ) = = = = 3,37 ( mm) n, 65 S, 65 1 n 6 Επιλέγεται = 33 (mm) 8

9 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Το πάχος του κάθε περιαυχενίου είναι το μεγαλύτερο των : ( tπεριαυχ.) =, 5 S, 5 1 3,5 1 i = = mm ( tπεριαυχ ) = d = 33 ( mm). βιδας Από τη σελίδα -4- η απόσταση (ελευθερία, τζόγος) από την άνω χορδή του πηδαλίου μέχρι τη γάστρα είναι : y άνω = (, 1,7,1) (m) =, (m) = (mm) Το υπολογισθέν πάχος του ενός περιαυχενίου είναι 33 (mm), επομένως η απόσταση που έχει υπολογισθεί ως άνω ελευθερία επαρκεί για την τοποθέτηση των δύο περιαυχενίων τα οποία θα συνδέσουν το πτερύγιο του πηδαλίου με τον μηχανισμό του πηδαλίου. ΣΗΜ. εάν το υπολογισθέν πάχος των περιαυχενίων συνεπάγεται μεγαλύτερη ελευθερία μεταξύ της άνω χορδής του πηδαλίου και της γάστρας, τότε καθορίζεται νέο ύψος πτερυγίου του πηδαλίου και επαναλαμβάνονται οι υπολογισμοί με τη νέα επιφάνεια πηδαλίου αφού καθορισθούν οι αντίστοιχες διατάσεις της μορφής του πτερυγίου από την πρύμνη του πλοίου. ΒΗΜΑ 6 : Τελικές διαστάσεις πηδαλίου / σχεδίαση τοµών Επομένως οι διαστάσεις του πηδαλίου τελικά, είναι : c = µ ήκος άνω χορδής... = 1, mm r c = µ ήκος κάτω χορδής... = 1, mm t c = µ ήκος µ έσης χορδής...= 1,1 mm m AR 1,7 = aspect ratio = = 1,1 1,545 b = ύψος πτερυγίου πηδαλίου... = 1,7 m 1, + 1, Επιφάνεια πηδαλίου : A = 1,7 = 1,87 ( m ) 9

10 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Το δε σχήμα του είναι αυτό το επόμενου σχήματος. Η μορφή του πτερυγίου του πηδαλίου είναι υδροδυναμική και για τη σχεδίαση των γραμμών του πηδαλίου επιλέγεται προφίλ NAA 18. Επειδή το πτερύγιο είναι τραπεζοειδές, θα σχεδιαστεί η άνω χορδή, η μεσαία χορδή και η κάτω χορδή. Από τον πίνακα του σχήματος -53- στη σελίδα -63- (ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17), λαμβάνονται οι συντελεστές για τον υπολογισμό των ημιπλατών. Το μήκος της κάθε χορδής υποδιαιρείται σε 1 ίσα τμήματα και η τιμή του κάθε ημιπλάτους υπολογίζεται από την παρακάτω σχέση : Ημιπλάτος = (συντελεστής) χ (μήκος χορδής σε μέτρα) χ 1 = ημιπλάτος σε χιλιοστά. Επειδή η κάθε χορδή είναι συμμετρική ως προς το διαμήκη άξονα, σχεδιάζεται η μισή χορδή και γράφονται τα αντίστοιχα ημιπλάτη σε κάθε σταθμό. Για τη σχεδίαση των κατασκευαστικών τομών για κάθε χορδή, σχεδιάζεται πλήρης η κάθε χορδή. Στις δύο επόμενες σελίδες, επισυνάπτονται ο πίνακας της υδροδυναμικής μορφής NAA 18 με τα ημιπλάτη κάθε χορδής και το σχέδιο των τριών χορδών. 1

11 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Λαμβάνεται ως ακτίνα r = 43 (mm). 11

12 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια 1

13 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΒΗΜΑ 7 Ακολουθεί ο υπολογισμός των υδροδυναμικών συντελεστών, οπότε θα καθορισθεί η θέση του άξονα περιστροφής. Στις σχέσεις των υδροδυναμικών συντελεστών, υπάρχει το ημίτονο και το συνημίτονο της γωνίας Λ (σελ. 79, σχήμα 71 και σελ. 46, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) και στο επόμενο σχήμα παρουσιάζεται ο προσδιορισμός της και ο υπολογισμός των τριγωνομετρικών της αριθμών : 13

14 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Οι σχέσεις για τον υπολογισμό των υδροδυναμικών συντελεστών, δίδονται στις σελίδες (77 8) των διδακτικών σημειώσεων ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ Λόγος διαμήκους : Υπενθυμίζεται εδώ ότι (σελ. 77, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) : Όταν η άνω επιφάνεια του πηδαλίου είναι πολύ κοντά στη γάστρα, τότε το πηδάλιο για σκοπούς υδροδυναμικών μελετών (εξ αιτίας του κατοπτρισμού της ροής) ενεργεί ως ο λόγος επιμήκους να είναι διπλάσιος του γεωμετρικού (που είναι και η πραγματική απεικόνιση της μορφής του πτερυγίου του πηδαλίου). Βέβαια αυτό συμβαίνει όταν το πηδάλιο είναι στη μέση (γωνία εκτροπής πηδαλίου ), ενώ όταν το πηδάλιο απομακρύνεται από τη μέση θέση και η απόσταση της άνω χορδής από τη γάστρα μεγαλώνει, λαμβάνεται γραμμική μεταβολή του λόγου διαμήκους από AR με πηδάλιο στη μέση έως 1 AR με πηδάλιο στη μέγιστη γωνία που λαμβάνεται στις 35. Έτσι για κάθε γωνία εκτροπής στο διάστημα ( 5 35 ) β AR = AR AR 35 ' ο λόγος διαμήκους υπολογίζεται από τη σχέση :. Συντελεστής καθέτου δυνάμεως : N Υπενθυμίζεται ότι (σελ. 79, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17) : Η σχέση N = cos a + D sena για τον υπολογισμό του N ισχύει όταν το πηδάλιο είναι πλήρως βυθισμένο στο νερό και μακριά από την επιφάνεια του νερού. Το γεγονός ότι το πηδάλιο πλησιάζει πολύ (και σε πολλές περιπτώσεις εξέχει της επιφάνειας του νερού) στην ελεύθερη επιφάνεια, μειώνεται η απόδοση του πηδαλίου από τη δημιουργία κυματισμών και από το γεγονός ότι το πτερύγιο δεν εμβαπτίζεται από την πλήρη ροή της έλικας. Συνέπεια αυτού είναι να μειώνεται η κάθετη δύναμη Ν, οπότε πρέπει να λαμβάνεται υπ όψιν η πραγματική θέση του πηδαλίου του πλοίου σε σχέση με την επιφάνεια του νερού. Αυτό επιτυγχάνεται διορθώνοντας την τιμή του N χρησιμοποιώντας το παρακάτω διάγραμμα (Σχήμα 71 α, σελ. 8, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ). Η διόρθωση αυτή εξαρτάται από το λόγο επιμήκους AR, το λόγο ολίσθησης πηδαλίου. S A και τη μέση βύθιση του b = ύψος πηδαλίου = 1,7 (m) SA = VSHIP 1, όπου : P= βήμα έλικας = 1,6, n = στροφές έλικας = 35 στρ. min P n, V SHIP = 14 (kn) 14

15 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια S A VSHIP 14,514 = 1 = 1 =, 84 S % 8, 4 P n 1,6 35 A = 6 Ι = μέση βύθιση πηδαλίου = 1,374 (m) (επόμενο σχήμα) Η διόρθωση γίνεται με γραμμική παρεμβολή μεταξύ των διαγραμμάτων για AR= 1,4 και AR= 1,68 για λόγο I 1,374,88 b = 1,7 = στη καμπύλη S A = 8. Προκύπτει : AR= 1,4 AR= 1,68 N N DEEP 4 1,,94, ,,94,969,96,96,96 1,88,96,91 Για τη γωνία 35, με γραμμική παρεμβολή στον παραπάνω πίνακα, προκύπτει N =,969. N DEEP 15

16 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Παρατίθεται ο υπολογισμός του AR και του N για γωνία συντελεστών για όλες τις γωνίες : Γωνία 1-1 και ' β 1 AR = AR AR = 1,545 1,545 =, , καθώς και όλων των υδροδυναμικών - D a = a+ a a= AR 57,3 όπου : a a=,9 π AR,9 π,649 = = =, 5 AR,649 57, 3 cosλ ,8 57,3, ,8 4 cos Λ,9988 Το D υπολογίζεται από το διάγραμμα του σχήματος 7 ( σελίδα 78) με βάση το λόγο για τετραγωνισμένα άκρα προκύπτει D= 1,44. ct 1,,833 c = 1,7 = και r Οπότε : a= D a 1, 44 7,143 = a+, 5 ( 7,143),367 a AR = + = 57,3 i i, ,3 - D (,367) = d +, 65, 6836,9 π AR = +,9 π, 649 = - a sena sen = cos + =,367 cos 7,143 +, ,143 =,365 N D Σύμφωνα με όσα περιγράφησαν, ο διορθωμένος συντελεστής είναι : ( N). = N,91 =,365,91 =,336 διορϑ - M c 4 =,5 M = a a= 1 D AR a 57,3 16

17 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια όπου ( AR ) 1 1 1, ,11, M 1 = = =,194 4 ( AR+ ) 4 (, 649+ ) = Οπότε : M 1 D a Mc =, 5 = a AR 57,3 4 a = = 1 1, 44 7,143, 5 (,194) (, 55 ) =, 1488, ,3 =, 5 =, 5, ,1 =, 76 N M 4 - ( P) ( ) Γωνία 15 ' β 15 AR = AR AR = 1,545 1,545 =, D a = a+ a a= AR 57,3 όπου : a π,9 AR,9, 48 = = =, 476 a= AR,48 57, 3 cosλ ,8 57,3, ,8 4 cos Λ,9988 Το D υπολογίζεται από το διάγραμμα του σχήματος 7 ( σελίδα 78) με βάση το λόγο για τετραγωνισμένα άκρα προκύπτει D= 1,44. π ct 1,,833 c = 1,7 = και r Οπότε : a= D a 1, 44 1,714 = a+, 476 ( 1, 714),3537 a AR = + = 57,3 i i, 48 57,3 17

18 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια - D (,3537) = d +, 65, 6836,9 π AR = +,9 π, 48 = - a sena sen = cos + =,537 cos 1, 714 +, 683 1, 714 =,5 N D - M c 4 =,5 M = a a= 1 D AR a 57,3 όπου ( AR ) 1 1 1, ,11, M 1 = = =,19 4 ( AR+ ) 4 (, 48+ ) = Οπότε : M 1 D a Mc =, 5 = a AR 57,3 4 a = = 1 1, 44 1, 714, 5 (,19) (, 55 ) =, 75, 48 57,3 =, 5 =, 5, 75 1,1 =, 83 N M 4 - ( P) ( ) Κατά τον ίδιο τρόπο υπολογίζονται τα στοιχεία του πίνακα για τις υπόλοιπες γωνίες, 5, 3, 35. Η δύναμη υπολογίζεται από την παρακάτω σχέση (σελ. 81, παραγρ. 13.1, ΠΗΔΑΛΙΟΥΧΙΑ - ΠΗΔΑΛΙΑ 17) : - F 1 = N ρ A T U, όπου ρ = 14,61 kp s 4, A m T = 1,87 (m ) U = ταχύτητα ροής στο πηδάλιο > ταχύτητα ροής πλοίου. Η ταχύτητα αυτή υπολογίζεται από το διάγραμμα του σχήματος 7 / σελ. 81, ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17, με το μέγεθος S A =,84 (σελίδα 15 της παρούσης μελέτης). Στο σημείο S A =,84 η κάθετος τέμνει τις καμπύλες στα σημεία 1,16 και 1,1 οπότε προκύπτει (ως μέση τιμή : 18

19 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Vr U = = 1,13 U = VSHIP 1,13 = 14,514 1,13 = 7,55 m V V sec SHIP SHIP Οπότε : F = 1 A U 1 14,61 1,87 7, , 434 kp N ρ T = N = N Όταν υπολογιστούν οι υδροδυναμικοί συντελεστές για όλες τις γωνίες κατά τον ίδιο τρόπο, συμπληρώνεται ο πίνακας της σελίδας 8 : Οι τιμές της ροπής Q M υπολογίζονται από τη σχέση Q F ( d ) = P ( σελίδα 8 ΠΗ ΑΛΙΟΥΧΙΑ ΠΗ ΑΛΙΑ 17), θεωρώντας ότι η απόσταση d υπολογίζεται με βάση την υπόθεση ότι η ροπή στρέψεως πρέπει να μηδενίζεται μεταξύ ( 1 15), οπότε λαμβάνεται σε πρώτη εκτίμηση ως 1 d = ( P ) 1 15, P = ΠΙΝΑΚΑΣ υπολογισμού της απόστασης d του άξονα περιστροφής από την ακμή εισόδου β α D N Mc/4 P F Q M 5 3,571,1894,6839,189,1756,73 153,757 6,85 1 7,143,367,6836,336 -,1488, ,346 6, ,714,537,683,5 -,75,83 91,376-1,186 14,86,68,68,634 -,1735, ,85-51, ,857,815,689,777 -,31,31 433,11-13,19 3 1,48,954,688,848 -,539, ,968-57, , 1,4,6774,918 -,856, ,48-458,83 19

20 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Η ακριβής τιμή του = d = P ευρίσκεται από το παρακάτω διάγραμμα : Q M Από το παραπάνω διάγραμμα προκύπτει : ( P ), 8 ( m) Q M = τιμών του = που είναι,795 ( m ) P μεταξύ ( 1 15) την ακμή εισόδου. Από την τιμή αυτή προκύπτει : όπως προϋπολογίστηκε προσεγγιστικά ως μέση τιμή των και η τιμή αυτή [ =,8( m )] είναι η απόσταση του άξονα περιστροφής από Ποσοστό ζυγοστάθμισης = k A1, 8 1, 7 = = = A ΟΛ 1,87,54

21 Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια Το ποσοστό ζυγοστάθμισης επηρεάζει την τιμή της ροπής στρέψεως και το μέγεθος της διαμέτρου του άξονα του μηχανισμού πηδαλίου, δεδομένου ότι λαμβάνεται στον υπολογισμό του μοχλοβραχίονα : r = c ( a k) ( m), η τιμή του οποίου είναι : r c ( a k) ( m) 1,1 (,33, 54)( m), 836( m) = = =, Αλλά η ελάχιστη τιμή του r είναι min.,1 c m =,1 x 1,1 =,11 >,836, οπότε δεν επαναλαμβάνονται ο υπολογισμοί στο ΒΗΜΑ 4 και στο ΒΗΜΑ 5. ΣΥΜΠΕΡΑΣΜΑ r = Μετά τους παραπάνω υπολογισμούς, προκύπτει η μορφή του πτερυγίου του πηδαλίου το οποίο ικανοποιεί τις απαιτήσεις των υδροδυναμικών υπολογισμών σε συνδυασμό με το διαθέσιμο χώρο της πρύμνης του πλοίου. ΠΤΕΡΥΓΙΟ ΠΗΔΑΛΙΟΥ 1 : 5 Στη συνέχεια της μελέτης (.3. ΠΑΡΑΔΕΙΓΜΑ ΠΗΔΑΛΙΟΥ / ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΗΔΑΛΙΟΥ ), υπολογίζονται τα πάχη των ελασμάτων και των ενισχυτικών σύμφωνα με τους Κανονισμούς ενός Νηογνώμονα, για τον έλεγχο της αντοχής του πτερυγίου του πηδαλίου. 1

Μηχανές Πλοίου ΙΙ (Ε)

Μηχανές Πλοίου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μηχανές Πλοίου ΙΙ (Ε) Ενότητα.: Παράδειγμα πηδαλίου Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός

Διαβάστε περισσότερα

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙ ΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Για αποκλειστική χρήση από τους φοιτητές

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΧΕ ΙΑΣΜΟΣ ΠΑΡΙΣΑΛΩΝ ΜΕ ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ Έστω ένα πλοίο το οποίο επιπλέει µε µια εγκάρσια κλίση που παριστάνεται µε το επίπεδο π. Σχήµα 1 Ζητείται

Διαβάστε περισσότερα

R f : C f : S : [0,4] V 2 : w : w x d W x GM. d : [0,4] W : GM :

R f : C f : S : [0,4] V 2 : w : w x d W x GM. d : [0,4] W : GM : ΑΕΝ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΑΚ. ΕΤΟΣ 2013-14 Εξεταστική περίοδος Φεβρουαρίου Ηµεροµηνία ΝΑΥΠΗΓΙΑ Β ΕΞΑΜΗΝΟΥ σελ. 1 / 10 Επώνυµο Όνοµα ΑΓΜ Εξάµηνο Βαθµολογία γραπτού ολογράφως πως ονοµάζεται η καµπύλη,

Διαβάστε περισσότερα

ΝΑΥΠΗΓΙΑ Β ΕΞΑΜΗΝΟΥ σελ. 1 / 8 BM L = I CF / V. Rts είναι Rfs είναι Rtm είναι Rfm είναι λ 3. είναι

ΝΑΥΠΗΓΙΑ Β ΕΞΑΜΗΝΟΥ σελ. 1 / 8 BM L = I CF / V. Rts είναι Rfs είναι Rtm είναι Rfm είναι λ 3. είναι ΑΕΝ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΑΚ. ΕΤΟΣ 2012-13 Εξεταστική περίοδος ΙΟΥΝΙΟΥ Ηµεροµηνία ΝΑΥΠΗΓΙΑ Β ΕΞΑΜΗΝΟΥ σελ. 1 / 8 Επώνυµο Όνοµα ΑΓΜ Εξάµηνο Βαθµολογία γραπτού ολογράφως Τρεις λάθος απαντήσεις σε ερωτήσεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Καθ. Γ. Γκοτζαµάνης σελ. 1 / 5

Καθ. Γ. Γκοτζαµάνης σελ. 1 / 5 ΑΕΝ ΜΑΚΕ ΟΝΙΑΣ ΙΟΥΝΙΟΣ 2015 ΑΚ. ΕΤΟΣ 2014-15 ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΝΑΥΠΗΓΙΑ I Α ΕΞΑΜΗΝΟΥ Καθ. Γ. Γκοτζαµάνης σελ. 1 / 5 Επώνυµο Όνοµα ΑΓΜ Εξάµηνο Βαθµολογία γραπτού ολογράφως Απαντήστε σταυρώνοντας τα γράµµατα

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2008-2009 ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ασκήσεις 1 έως 12 Για αποκλειστική

Διαβάστε περισσότερα

Σχήμα 22: Αλυσίδες κυλίνδρων

Σχήμα 22: Αλυσίδες κυλίνδρων Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης

Διαβάστε περισσότερα

ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ

ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ ΔΟΚΙΜΕΣ ΘΑΛΑΣΣΗΣ ΠΛΟΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 1/3 ΑΠΟΔΕΙΞΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΕΠΙΔΟΣΕΩΝ ΑΝΤΟΧΗΣ ΟΙΚΟΝΟΜΙΑΣ ΔΥΝΑΤΟΤΗΤΩΝ ΕΛΙΓΜΩΝ ΔΕΔΟΜΕΝΑ ΣΧΕΔΙΑΣΗΣ ΑΠΑΙΤΗΣΕΙΣ ΑΣΦΑΛΕΙΑΣ, ΠΛΟΙΟΥ, ΠΛΗΡΩΜΑΤΟΣ, ΕΠΙΒΑΤΩΝ

Διαβάστε περισσότερα

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065 Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΕΡΓΑΣΤΗΡΙΩΝ Α.Ε.Ι.

ΠΑΡΟΥΣΙΑΣΗ ΕΡΓΑΣΤΗΡΙΩΝ Α.Ε.Ι. ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2004 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΠΑΡΟΥΣΙΑΣΗ ΕΡΓΑΣΤΗΡΙΩΝ Α.Ε.Ι. Η πρόοδος και η ανάπτυξη της τεχνολογίας κατά τα τελευταία χρόνια οδήγησε στη σύσταση και λειτουργία εξειδικευμένων τεχνολογικών κέντρων

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Βασική ορολογία που χρησιμοποιείται στην περιγραφή των πλοίων

Βασική ορολογία που χρησιμοποιείται στην περιγραφή των πλοίων Διάλεξη 3η Βασική ορολογία που χρησιμοποιείται στην περιγραφή των πλοίων Στις επόμενες σελίδες καταγράφονται οι όροι που χρησιμοποιούνται συχνότερα στην περιγραφή των πλοίων και θα αναφέρονται συχνά στην

Διαβάστε περισσότερα

ΤΟ ΠΛΟΙΟ ΣΕ ΗΡΕΜΟ ΝΕΡΟ

ΤΟ ΠΛΟΙΟ ΣΕ ΗΡΕΜΟ ΝΕΡΟ AE 0 9 19 30 40 50.98 61 7 8 93.86 104 116 16 138 148.105 160 171 18 19 03 11 0.069 31 ΤΟ ΠΛΟΙΟ ΣΕ ΗΡΕΜΟ ΝΕΡΟ Διαγράμματα διατμητικών δυνάμεων και καμπτικών ροπών Έστω πλοίο σε ισορροπία σε ήρεμο νερό,

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΕΙΣΑΓΩΓΙΚΕΣ ΓΝΩΣΕΙΣ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΕΙΣΑΓΩΓΙΚΕΣ ΓΝΩΣΕΙΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΡΟΛΟΓΟΣ..... 13 ΣΥΝΤΜΗΣΕΙΣ ΚΑΙ ΣΥΜΒΟΛΑ.......... 15 ΜΕΡΟΣ ΠΡΩΤΟ ΕΙΣΑΓΩΓΙΚΕΣ ΓΝΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 - Η ΠΛΕΥΣΤΟΤΗΤΑ ΤΟΥ ΠΛΟΙΟΥ...... 19 1. Η πίεση του νερού.... 19 2. Η Αρχή του Αρχιμήδη......

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές Η Τεχνολογία των Ελικοπτέρων Τι είναι τα ελικόπτερα Κατηγορίες Ελικοπτέρων Τυπικό ελικόπτερο Υβριδικό αεροσκάφος Tilt-rotor Πως λειτουργεί μιά έλικα Ι U = ταχύτητα πτήσης η σχετική ταχύτητα του αέρα ως

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις. ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική

Διαβάστε περισσότερα

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M) . ΥΠΟΛΟΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M). Ορισμοί φορτίσεων μίας δοκού Οι φορτίσεις που μπορεί να εμφανισθούν σ'ένα σώμα είναι ο εφελκυσμός (ή η θλίψη με κίνδυνο λογισμού), η διάτμηση, η κάμψη και η στρέψη.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του Θέματος και η εκπόνηση της Εργαστηριακής

Διαβάστε περισσότερα

Αιολική Ενέργεια & Ενέργεια του Νερού

Αιολική Ενέργεια & Ενέργεια του Νερού Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 5: Σχεδίαση Πτερυγίων 1 Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Στοιχείο πτέρυγας ανάλυση ασκούμενων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Πίνακας Προτεινόμενων Πτυχιακών Εργασιών

Πίνακας Προτεινόμενων Πτυχιακών Εργασιών ΕΝ42.0-Α Έκδοση η / 2.0.204 ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΟΜΕΑΣ: A Α/Α Τίτλος Θέματος Μέλος Ε.Π. Σύντομη Περιγραφή Προαπαιτούμενα γνωστικά πεδία Αριθμός Φοιτητών Προκαταρκτική

Διαβάστε περισσότερα

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς. ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,

Διαβάστε περισσότερα

Αντοχή κατασκευαστικών στοιχείων σε κόπωση

Αντοχή κατασκευαστικών στοιχείων σε κόπωση 11.. ΚΟΠΩΣΗ Ενώ ο υπολογισμός της ροπής αντίστασης της μέσης τομής ως το πηλίκο της ροπής σχεδίασης προς τη μέγιστη επιτρεπόμενη τάση, όπως τα μεγέθη αυτά ορίζονται κατά ΙΑS, προσβλέπει στο να εξασφαλίσει

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Πάτρα 005 Έδρανα ολίσθησης Σελίδα - - 1.1 ΑΣΚΗΣΕΙΣ ΕΔΡΑΝΩΝ ΟΛΙΣΘΗΣΗΣ 1.1.1 ΑΣΚΗΣΗ Ένα πλήρες έδρανο ολίσθησης έχει διάμετρο 0 /d 1. Το φορτίο του

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008

Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008 1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ

ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ \ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΚΩΝΙΚΩΝ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ Απαραίτητα δεδομένα : αριθμός στροφών κινητήριου

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του θέματος και η εκπόνηση της εργαστηριακής

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.05.2: Ρυθμός Μεταβολής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.05.2: Ρυθμός

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ ΣΥΝΟΨΗ Μόνιμη κατάσταση και κατάσταση διαταραχής Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων Γραμμικοποίηση

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8.1 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΩΣΤΙΚΟ ΕΔΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 8.1. Εισαγωγή Το απλό επίπεδο ωστικό έδρανο ολίσθησης (Σχήμα 8.1) είναι ίσως η απλούστερη περίπτωση εφαρμογής της εξίσωσης Reynolds που περιγράφει τη

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 29 ΑΠΡΙΛΙΟΥ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 29 ΑΠΡΙΛΙΟΥ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 9 ΑΠΡΙΛΙΟΥ 016- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΧΤΩ (8) ΘΕΜΑ Α. Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΝΑΥΠΗΓΙΚΟ ΣΧΕ ΙΟ. Α. Πουλής & Γ.Κ. Χατζηκωσταντής. Αθήνα, 2003

ΝΑΥΠΗΓΙΚΟ ΣΧΕ ΙΟ. Α. Πουλής & Γ.Κ. Χατζηκωσταντής. Αθήνα, 2003 ΕΠΕΑΕΚ-ΕΚΤ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΤΕΙ-Α (Κωδ. αρ. προγράµµατος 10) ΝΑΥΠΗΓΙΚΟ ΣΧΕ ΙΟ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΕΚΛΟΓΗΣ ΤΩΝ ΚΥΡΙΩΝ ΙΑΣΤΑΣΕΩΝ ΚΑΙ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΤΗΣ ΜΟΡΦΗΣ ΤΟΥ ΠΛΟΙΟΥ Α. Πουλής & Γ.Κ. Χατζηκωσταντής Αθήνα,

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μηχανική Ρευστών Κεφάλαιο Λυμένα Προβλήματα Πρόβλημα Για το κλειστό δοχείο του παρακάτω σχήματος, όλα τα ρευστά είναι

Διαβάστε περισσότερα

e-book Πρόωση Πλοίου

e-book Πρόωση Πλοίου e-book Πρόωση Πλοίου (για επαγγελματίες και σπουδαστές ναυπηγούς και μηχανολόγους μηχανικούς) Συγγραφείς: Θόδωρος Α. Λουκάκης, ομότιμος καθ. ΕΜΠ Αθανάσιος Δόδουλας, διπλ. Ναυπ. Μηχ. ΕΜΠ Ειδικά κεφάλαια:

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΑΘΗΝΑΣ Τομέας ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΝΑΥΠΗΓΙΚΟ ΣΧΕΔΙΟ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΑΘΗΝΑΣ Τομέας ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΝΑΥΠΗΓΙΚΟ ΣΧΕΔΙΟ κωδικός μαθήματος : ΝΑ0204Β10 Υποχρεωτικό Μάθημα Μ.Ε.Υ.Τυπικό Εξάμηνο : Ζ Διδασκαλία μαθήματος : 5 ωρες / εβδομ. (1 Θ 4 Ε) ECTS : 4 Τυπικό εξάμηνο : Β Περίγραμμα / Αναλυτική περιγραφή : ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ)

(ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ) (ΤΑ ΑΓΑΘΑ ΚΟΠΟΙΣ ΚΤΩΝΤΑΙ) 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Περίμετρος ενός τριγώνου λέγεται το άθροισμα των μηκών των πλευρών του). Μια περίπτωση είναι οι πλευρές του να έχουν μήκος

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2010

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A Στις ηµιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία τη συµπληρώνει σωστά. Α.

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ 1 ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ A Να γράψετε στο

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

A e (t σε sec). Το πλάτος των ταλαντώσεων

A e (t σε sec). Το πλάτος των ταλαντώσεων ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ

1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ 1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ Ο στραγγαλισμός του ατμού υλοποιείται εξαναγκάζοντας τον ατμό, πριν παροχετευθεί στο στρόβιλο, να περάσει μέσα από κατάλληλη βαλβίδα όπου μικραίνει η διατομή διέλευσης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ηµεροµηνία και

Διαβάστε περισσότερα

Η Διεύθυνση και οι καθηγητές του Σχολείου σάς εύχονται καλή επιτυχία στις εξετάσεις

Η Διεύθυνση και οι καθηγητές του Σχολείου σάς εύχονται καλή επιτυχία στις εξετάσεις ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Ο ΓΕ.Λ ΚΑΤΕΡΙΝΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ' ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΜΑΪΟΥ 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΟΨΗ ΤΡΟΠΩΝ ΑΝΑΤΡΟΠΗΣ ΚΑΙ ΟΔΗΓΙΑ ΙΜΟ ΓΙΑ ΤΗΝ ΑΠΟΦΥΓΗ ΤΟΥΣ ΚΑΤΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΠΛΟΙΟΥ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΥΨΗΛΩΝ ΚΥΜΑΤΙΣΜΩΝ

Κεφάλαιο 11 ΣΥΝΟΨΗ ΤΡΟΠΩΝ ΑΝΑΤΡΟΠΗΣ ΚΑΙ ΟΔΗΓΙΑ ΙΜΟ ΓΙΑ ΤΗΝ ΑΠΟΦΥΓΗ ΤΟΥΣ ΚΑΤΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΠΛΟΙΟΥ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΥΨΗΛΩΝ ΚΥΜΑΤΙΣΜΩΝ Κεφάλαιο 11 ΣΥΝΟΨΗ ΤΡΟΠΩΝ ΑΝΑΤΡΟΠΗΣ ΚΑΙ ΟΔΗΓΙΑ ΙΜΟ ΓΙΑ ΤΗΝ ΑΠΟΦΥΓΗ ΤΟΥΣ ΚΑΤΑ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΠΛΟΙΟΥ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΥΨΗΛΩΝ ΚΥΜΑΤΙΣΜΩΝ Σύνοψη Το κεφάλαιο αυτό περιλαμβάνει, στην αρχή, σύνοψη των γνωστών μηχανισμών

Διαβάστε περισσότερα

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες.

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. Διαγώνισμα εφ όλης της ύλης Θέμα ο Στα θέματα 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. ) Στο σχήμα φαίνεται το στιγμιότυπο ενός τρέχοντος αρμονικού κύματος

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β Άλυτες ασκήσεις

ΠΑΡΑΡΤΗΜΑ Β Άλυτες ασκήσεις ΠΑΡΑΡΤΗΜΑ Β Άλυτες ασκήσεις - 434 - Άσκηση 1η Ποντόνι σχήματος ορθογωνίου παραλληλεπιπέδου πλέει αρχικά ισοβύθιστο, όταν βάρος 5 t, που βρίσκεται πάνω του, μετακινείται κατά: Δx = 15 m (κατά τον διαμήκη

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα