Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ"

Transcript

1 Ζήτηµα ο Α.. Α.. Β.. Β.. Β.. Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε καθεµιά από αυτές µε το κατάλληλο σύµβολο, (,, ) έτσι ώστε να είναι αληθής: α. Ρ (Α )... Ρ(Α) Μονάδες β. αν Α Β τότε Ρ(Β)... Ρ(Α). Μονάδες Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. Τα Α και Β είναι ενδεχόµενα του ίδιου δειγµατικού χώρου Ω και Α το αντίθετο του ενδεχοµένου Α. α. Αν Α Β τότε Ρ(Α) + Ρ(Β) <. β. Αν Ρ(Α) Ρ(Α ) τότε Ρ(Α) Ρ(Ω). Μονάδες 4 Να γράψετε στο τετράδιό σας το γράµµα που αντιστοιχεί στη σωστή απάντηση. Αν Α Β, Ρ(Α) /4 και Ρ(Β) / τότε η Ρ (Α Β) είναι ίση µε: α. /4 β. / γ. / δ. /6. Μονάδες, Να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Α και δίπλα σε κάθε γράµµα τον αριθµό της Στήλης Β, που αντιστοιχεί στη σωστή απάντηση. Τα Α και Β είναι ενδεχόµενα του ίδιου δειγµατικού χώρου Ω και ισχύει ότι: Ρ(Α) /, Ρ(Β) /4 και Ρ(Α Β) /. Στήλη Α α. Ρ (Α Β). /0 β. Ρ ( ) ) γ. Ρ ( ) ) (. / (. 4/ 4. /. 9/0 Στήλη Β Μονάδες 6

2 Ζήτηµα ο ίνεται η συνάρτηση f() συν+ηµ.. Να αποδείξετε ότι f() + f''() 0. Μονάδες 8 Β. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Α (0,). Μονάδες 8 Γ. Να βρείτε την τιµή λ IR για την οποία ισχύει η σχέση: λ π π. Ζήτηµα ο f f Μονάδες 9 Στον παρακάτω πίνακα δίνεται η κατανοµή των αθροιστικών σχετικών συχνοτήτων του βάρους 80 µαθητών της Γ τάξης ενός Λυκείου. Τα δεδοµένα έχουν οµαδοποιηθεί σε 4 κλάσεις. Βάρος σε κιλά [ ) Αθροιστική Σχετική Συχνότητα F i 4-0, -6 0, Α. Αν γνωρίζετε ότι η σχετική συχνότητα της τρίτης κλάσης είναι διπλάσια της σχετικής συχνότητας της πρώτης κλάσης, να βρείτε τις τιµές της αθροιστικής σχετικής συχνότητας που αντιστοιχούν στην τρίτη και τέταρτη κλάση. Μονάδες 8 Β. Να υπολογίσετε τη µέση τιµή των παραπάνω δεδοµένων. Μονάδες 9 Γ. Επιλέγουµε τυχαία από το δείγµα των 80 µαθητών ένα µαθητή. α. Να βρείτε την πιθανότητα να έχει βάρος µικρότερο από 6 κιλά. Μονάδες 4 β. Να βρείτε την πιθανότητα ο µαθητής να έχει βάρος µεγαλύτερο ή ίσο των κιλών και µικρότερο των 7 κιλών. Μονάδες 4

3 Ζήτηµα 4ο Σε έρευνα που έγινε στους µαθητές µιας πόλης, για τον χρόνο που κάνουν να πάνε από το σπίτι στο σχολείο, διαπιστώθηκε ότι το 0% περίπου των µαθητών χρειάζεται περισσότερο από λεπτά, ενώ το 6% περίπου χρειάζεται λιγότερο από 0 λεπτά. Υποθέτουµε ότι η κατανοµή του χρόνου της διαδροµής είναι κατά προσέγγιση κανονική. Α. Να βρείτε το µέσο χρόνο διαδροµής των µαθητών και την τυπική απόκλιση του χρόνου διαδροµής τους. Μονάδες 6 Β. Να εξετάσετε, αν το δείγµα είναι οµοιογενές. Μονάδες 6 Γ. Αν οι µαθητές της πόλης είναι 4.000, πόσοι µαθητές θα κάνουν χρόνο διαδροµής από 4 έως 6 λεπτά. Μονάδες 6. Μια µέρα, λόγω έργων στον κεντρικό δρόµο της πόλης, κάθε µαθητής καθυστέρησε λεπτά. Να βρείτε πόσο µεταβάλλεται ο συντελεστής µεταβολής (CV). Μονάδες 7

4 Ζήτηµα ο Α α. Αφού Β.. Β.. ΑΠΑΝΤΗΣΕΙΣ Επειδή τα ενδεχόµενα Α Β και Α Β είναι ασυµβίβαστα και (Α Β) U (Α Β) Έχουµε: P() P(Α Β) + P(Α Β) Άρα: P(Α Β) P(Α) P(Α Β) α. P(') P() β. Α τότε: P(Β) P(Α) Άρα: β. Επειδή: Άρα: Αφού: οπότε: Eποµένως: Άρα: Α' Β P(') P() P() P() P() + P() α. Λάθος P() P(') P() P() P() P() P(Ω) β. Σωστό Α Α Β Α P(Α Β) P() /4 P(U) P() + P() P(Α Β) /4 + / - /4 / β. Σωστό P( ) P() P(Α Β) / - / / P(( - )') P( ) [P() P(Α Β)] P() + P(Α Β) - /4 + / /4 + / 9/0 P(( Β)') P( Β) - / 4/ Άρα: α. β. γ. 4

5 Ζήτηµα ο Α. Η συνάρτηση f είναι ορισµένη και παραγωγίσιµη φορές στο R µε: Άρα: f () (συν + ηµ ) ηµ + συν. f '' () ( ηµ + συν ) συν ηµ f () + f '' () συν + ηµ συν ηµ 0.. Έστω ψ α + β η εξίσωση της εφαπτοµένης της C f στο σηµείο Α (0,). Τότε θα είναι: f (0) α και β. Όµως Άρα η εξίσωση της εφαπτοµένης είναι: Γ. Είναι: Εποµένως: Άρα: f () ηµ + συν, οπότε: f (0) ηµ 0 + συν 0 y + π π π f ηµ + συν. π π π f συν + ηµ. π π λ f f λ ( ) λ λ 4

6 Ζήτηµα ο. Επειδή η σχετική συχνότητα f είναι διπλάσια της f F 0, Έχουµε: Ακόµα: f f 0, 0,4 F f + f 0, 0, + f f 0, Από την σχέση f + f + f + f 4 Έχουµε: Άρα: Άρα: 0, + 0, + 0,4 + f 4 f 4 0,9 0, f 0,, f 0,, f 0,4 και f 4 0, F f + f + f 0,9 και F 4 Β. Είναι: vi fi vi v fi v Επειδή το µέγεθος του δείγµατος είναι ν 80, οι αντίστοιχες συχνότητες ν i µε i,,, 4 είναι: ν 80 0, 6 ν 80 0, 4 ν 80 0,4 ν , 8 Κατασκευάζουµε τον παρακάτω πίνακα: Γ. Άρα: [ ) i ν i f i F i ν i i , 0, , 0, ,4 0, , v 80 4 v i i ( ) v i α. Αν Α είναι το ενδεχόµενο "βάρος µικρότερο από 6 κιλά" τότε η πιθανότητα P() είναι: P() β. Αν Β είναι το ενδεχόµενο "βάρος µεγαλύτερο ή ίσο των κιλών και µικρότερο των 7 κιλών" τότε η πιθανότητα P() είναι: P()

7 Ζήτηµα 4ο Α. Αφού το 0% των µαθητών χρειάζεται περισσότερο από λεπτά, προκύπτει ότι:. Επειδή το 6% χρειάζεται λιγότερο από 0 λεπτά, προκύπτει ότι από 0 έως λεπτά χρειάζεται το (0 6)% 4% (68/)% των µαθητών. Άρα: s 0 s 0 s Β. Είναι: CV s 6 περίπου 6,6%. Επειδή 6,6% > 0%, προκύπτει ότι το δείγµα είναι ανοµοιογενές. Γ. Έχουµε: + s + 4 s 6 Το ποσοστό των µαθητών που κάνουν χρόνο διαδροµής από 4 έως 6 λεπτά θα είναι: Άρα το ζητούµενο πλήθος είναι: 9 68 %,%, , Αφού η καθυστέρηση για κάθε µαθητή είναι λεπτά έχουµε σύµφωνα µε την εφαρµογή σελίδα 99 του σχολ. βιβλίου ότι: Η νέα µέση τιµή είναι: Η νέα τυπική απόκλιση είναι: οπότε: Άρα η µεταβολή είναι περίπου %. ψ S ψ S ψ CV s περίπου,7%. ψ 7 7

8 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Α. ς υποθέσουµε ότι,,, k είναι οι τιµές µιας µεταβλητής Χ, που αφορά Β.. τα άτοµα ενός δείγµατος µεγέθους ν, όπου k,ν µη µηδενικοί φυσικοί αριθµοί µε k ν. α. Τι ονοµάζεται απόλυτη συχνότητα ν i, που αντιστοιχεί στην τιµή i, i,,,k; β. Τι ονοµάζεται σχετική συχνότητα f i της τιµής i, i,,,k; γ. Να αποδείξετε ότι: i) 0 f i για i,,,k ii) f + f + + f k. Μονάδες Μονάδες Μονάδες 4 Για οποιαδήποτε ασυµβίβαστα µεταξύ τους ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ (Α Β) Ρ(Α) + Ρ(Β). Μονάδες 8 Β.. α. Να δώσετε τον κλασικό ορισµό της πιθανότητας ενός ενδεχοµένου Α κάποιου δειγµατικού χώρου Ω. β. Να δώσετε τις αριθµητικές τιµές των παρακάτω πιθανοτήτων: i) P(Ω) ii) Ρ ( ). Μονάδες Μονάδες

9 ΘΕΜΑ ο ίνεται η συνάρτηση f() + α. Να βρείτε το πεδίο ορισµού της συνάρτησης f. β. Να υπολογίσετε το όριο lim f() γ. Να βρεθεί η πρώτη παράγωγος της f... Μονάδες 4 Μονάδες 4 Μονάδες 7 δ. Να βρεθούν οι εφαπτόµενες της καµπύλης της συνάρτησης f που είναι παράλληλες στην ευθεία y +. Μονάδες 0 ΘΕΜΑ ο Ένα προϊόν πωλείται σε 0 διαφορετικά καταστήµατα στις παρακάτω τιµές, σε Ευρώ: 8, 0,,,, 6, 8, 4, 4, 9. α. Να υπολογίσετε τη µέση τιµή, τη διάµεσο και την επικρατούσα τιµή. Μονάδες 6 β. Να υπολογίσετε το εύρος, την τυπική απόκλιση και τον συντελεστή µεταβολής. Μονάδες 6 γ. Αν οι τιµές του προϊόντος σε όλα τα καταστήµατα υποστούν έκπτωση 0%, να εξετάσετε αν θα µεταβληθεί ο συντελεστής µεταβολής. Μονάδες ΘΕΜΑ 4ο Έστω Α,Β δύο ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) + Ρ(Β) Ρ(Α Β). ίνεται ακόµα η συνάρτηση: α. Να δείξετε ότι P( ) P( ). f() ( - P( )) - ( - P( )), R. Μονάδες β. Να δείξετε ότι η συνάρτηση f() παρουσιάζει µέγιστο στο σηµείο P( ) + P(). Μονάδες γ. Εάν τα ενδεχόµενα Α, Β είναι ασυµβίβαστα, να δείξετε ότι f(p()) f(p()). Μονάδες 7

10 ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ α) Ονοµάζουµε απόλυτη συχνότητα, το φυσικό αριθµό ν i, ο οποίος δείχνει πόσες φορές εµφανίζεται η τιµή i της εξεταζόµενης µεταβλητής Χ στο σύνολο των παρατηρήσεων ν. β) Ονοµάζουµε σχετική συχνότητα τον αριθµό fi που προκύπτει αν διαιρέσουµε την απόλυτη συχνότητα ν i που αντιστοιχεί στην τιµή i µε το µέγεθος ν του δείγµατος. ν i Ισχύει δηλαδή ότι: f i µε i,,, κ. ν γ) i) Επειδή είναι 0 ν i ν για κάθε i,,, κ προκύπτει ότι νi 0. ν Άρα 0 fi για κάθε i,,, κ. ii) Έχουµε ν ν ν κ ν + ν ν κ ν f + f + + f κ ν ν ν ν ν Β.. Κανόνες λογισµού των Πιθανοτήτων Θεώρηµα. Σελ. 0 σχολ. βιβλίου. Β. α. Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης µε ισοπίθανα απλά ενδεχόµενα. Ορίζουµε ως πιθανότητα του ενδεχοµένου Α Ω τον αριθµό Πλήθος Ευνοϊκών Περιπτώσεων Ν(Α) P() Πλήθος υνατών Περιπτώσεων Ν(Ω) Β..β. (i) P(Ω). (ii) P( ) 0 ΘΕΜΑ ο (α) Πρέπει + 0, οπότε - Άρα f R -{-} (β) lim f ( ) 6 lim + 4 ' ()'( + ) ( + )' (γ) f '( ) + ( + )

11 ( + ) + ( + ) ( + ) ( + ) (δ) Αναζητούµε R { } ώστε f '( ) Όµως: o f '( ) ( + ) οπότε: ( + ) o ( + ) o ( o + ) 0 ( o + ) 0 + )( + + ) 0 ( + ) 0 ( 0 ή ) ( o o o o Έτσι τα σηµεία επαφής είναι τα Α(0,f(0)) (0,0) καί (-,f(-)) (-,4). Οι αντίστοιχες εξισώσεις εφαπτοµένων είναι : Στο σηµείο Α(0,0) y f ( 0) f '(0)( 0) y 0 άρα y Στο σηµείο Β(-,4) άρα Σηµείωση: o y f ( ) f '( )( + ) y 4 ( + ) y y + 8 Ως απάντηση στην εύρεση των εξισώσεων των εφαπτοµένων (ερώτηση δ) θα µπορούσε να δοθεί και η ακόλουθη: Έστω y α+β η εξίσωση της εφαπτοµένης της καµπύλης της f στο Α(0,0). Τότε: α f ' (0) και β άρα β 0 Οπότε y Έστω y α'+β' η εξίσωση της εφαπτοµένης της καµπύλης της f στο (,4). Τότε: α' f ' (-) και 4 (-)+β άρα β 8 Οπότε y +8 o o 4

12 ΘΕΜΑ ο α) i ν i ν i i ν i i i 0. Είναι 0 0. Για τη διάµεσο θέτοντας τα δεδοµένα σε αύξουσα σειρά έχουµε: t + t Είναι: δ,. Έχουµε δύο επικρατούσες τιµές, 4. β) Το εύρος R Η διακύµανση s είναι: s [( 8 ) + ( 9 ) + ( 0 ) + ( ) + ( 4 ) + ( ) + ( 6 ) + ( 8 ) ] [ ] 9 Άρα s s s και CV Περίπου %. γ). Έστω y i, i,,, 0 οι τιµές που προκύπτουν µετά την έκπτωση κατά 0% ή ισοδύναµα µε πολλαπλασιασµό κατά 0,9. Η νέα µέση τιµή είναι y 0,9, ενώ η νέα τυπική απόκλιση είναι s y 0,9 s Έτσι ο νέος συντελεστής µεταβολής που προκύπτει είναι 0,9 s s CV CV 0,9 Εποµένως δεν θα µεταβληθεί ο συντελεστής µεταβολής.

13 ΘΕΜΑ 4ο α) Από την υπόθεση έχουµε: P()+P() P( ) δηλ. P()+P() - P( ) P( ) P( ) P( ) β) Είναι: f '() ( P( ) ) ( P( ) ) R Ακόµη: f '()0 ( ) ( ) P( ) P( ) 0 P( ) P( ) ή P( ) + P( ) P( ) P( ) ή αδύνατο P( ) + P( ) P() + P() P() + P() Επίσης: f ' ()>0 ( P( ) ) ( P( ) ) > 0 ( P( ) - + P( ) )( P( ) + P( ) ) > 0 ( P( ) - P( ) )[ ( P( ) + P( ) )] > 0 ( P( ) - P( ) )[ ( P() + P() )] > 0 () Όµως: P( ) P( ) και επειδή: P( ) P( ) είναι: P( ) < P( ) Έτσι: P( ) - P( ) < 0 Οπότε: () < P()+P() P() + P() < P() + P() ντίστοιχα προκύπτει ότι: f ' ()<0 > P() + P() Άρα η f παρουσιάζει ma για γ) Αφού P( )0 () και P( ) P()+P() () f P() P() P( ) P() P( ) Έτσι: ( ) [ ] [ ] Άρα: f (),() [ P() P() P() ] [ P() ] -P () - P () P() P( ) P() P( ) ( P() ) [ ] [ ] (),() [ P() P() P() ] P () f(p()) f(p()). -P () - P () 6

14 ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ Α. Να αποδείξετε ότι η παράγωγος της συνάρτησης f() είναι f (). Μονάδες 8 Β. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; Μονάδες 6 Γ. Να δώσετε τον ορισµό της διαµέσου (δ) ενός δείγµατος ν παρατηρήσεων. Μονάδες 6. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Το εύρος είναι µέτρο θέσης. β. Η διακύµανση εκφράζεται µε τις ίδιες µονάδες µε τις οποίες εκφράζονται οι παρατηρήσεις. γ. Ισχύει (f(g())) f (g()). g () όπου f, g παραγωγίσιµες συναρτήσεις. δ. ύο ενδεχόµενα Α και Β του ίδιου δειγµατικού χώρου Ω λέγονται ασυµβίβαστα, όταν Α Β. ε. Το κυκλικό διάγραµµα χρησιµοποιείται µόνο για τη γραφική παράσταση των ποσοτικών µεταβλητών. ΘΕΜΑ ο Στο σύλλογο καθηγητών ενός λυκείου το % είναι γυναίκες, το 40% των καθηγητών είναι φιλόλογοι και το 0% είναι γυναίκες φιλόλογοι. Επιλέγουµε τυχαία έναν καθηγητή για να εκπροσωπήσει το σύλλογο σε κάποια επιτροπή. Να υπολογίσετε τις πιθανότητες ο καθηγητής να είναι: α. γυναίκα ή φιλόλογος β. γυναίκα και όχι φιλόλογος γ. άνδρας και φιλόλογος δ. άνδρας ή φιλόλογος. Μονάδες Μονάδες Μονάδες Μονάδες 7 Μονάδες 8

15 ΘΕΜΑ ο f() ίνεται η συνάρτηση Α. Να γράψετε στο τετράδιό σας το γράµµα που αντιστοιχεί στη σωστή απάντηση. Το πεδίο ορισµού της συνάρτησης είναι το σύνολο: α. R β. (-,) γ. R- {-,} δ. (, + ) Μονάδες Β. Να αποδείξετε ότι f ()<0 για κάθε του πεδίου ορισµού της. Γ. Να υπολογίσετε το [( + ) f () ] lim Μονάδες 7 Μονάδες 6. Να βρείτε τη γωνία που σχηµατίζει η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο (0, f(0)) µε τον άξονα. Μονάδες 7 ΘΕΜΑ 4ο Στον πίνακα που ακολουθεί παρουσιάζεται η χρηµατική παροχή από τους γονείς, σε Ευρώ, δείγµατος έξι µαθητών της πρώτης τάξης (οµάδα Α) και έξι µαθητών της δεύτερης τάξης (οµάδα Β) ενός Γυµνασίου. Οµάδα Α Οµάδα Β α. Να υπολογίσετε τη µέση τιµή και τη διάµεσο των παρατηρήσεων κάθε οµάδας. Μονάδες 6 β. Να συγκρίνετε µεταξύ τους ως προς την οµοιογένεια τις δύο οµάδες. Μονάδες γ. Αν σε κάθε παρατήρηση της οµάδας Α γίνει αύξηση 0% και οι παρατηρήσεις της οµάδας Β αυξηθούν κατά Ευρώ η κάθε µία, πώς διαµορφώνονται οι νέες µέσες τιµές των δύο οµάδων; Μονάδες 8 δ. Να συγκρίνετε µεταξύ τους ως προς την οµοιογένεια τις δύο οµάδες µε τα νέα δεδοµένα. Μονάδες 6

16 ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία: Παράγωγος της ταυτοτικής συνάρτησης f(), σελ. 8 σχολικού βιβλίου. Β. Ορισµός: σελ. σχολικού βιβλίου. Γ. Ορισµός: σελ. 87 σχολικού βιβλίου.. α-λ β-λ γ-σ δ-σ ε-λ. ΘΕΜΑ ο Θεωρούµε τα ενδεχόµενα: Γ: ο καθηγητής είναι γυναίκα Φ: ο καθηγητής είναι φιλόλογος Επειδή το % των καθηγητών του λυκείου είναι γυναίκες, έχουµε ότι: P(Γ)0,. Επειδή το 40% των καθηγητών του λυκείου είναι φιλόλογοι, έχουµε ότι: P(Φ)0,40. Επειδή το 0% των καθηγητών του λυκείου είναι γυναίκες φιλόλογοι, έχουµε ότι: P(Φ Γ)P(Γ Φ)0,0. Εποµένως: α. P(Γ Φ)P(Γ)+P(Φ)-P(Γ Φ)0,+0,40-0,00,6. β. P(Γ Φ )P(Γ)-P(Γ Φ)0,-0,00,. γ. Το ενδεχόµενο ο καθηγητής να είναι άνδρας και φιλόλογος είναι το Γ Φ, άρα: P(Γ Φ)P(Φ)-P(Γ Φ)0,40-0,00,0. δ. Το ενδεχόµενο ο καθηγητής να είναι άνδρας ή φιλόλογος είναι το Γ Φ, άρα: P(Γ Φ) P(Γ )+P(Φ)-P(Γ Φ) -P(Γ)+P(Φ)-P(Φ)+P(Γ Φ) -P(Γ) +P(Γ Φ) -0,+0,00,7. ΘΕΜΑ ο Α. Πρέπει - 0 (-)(+) 0 {- 0 και + 0} { και - } Άρα το πεδίο ορισµού της f είναι το R-{-,} και η σωστή απάντηση είναι η γ. Β. Η συνάρτηση f ως ρητή είναι παραγωγίσιµη στο R-{-,} µε ( ) ( ) f () ( ) ( ) + < 0 για κάθε R-{-,}. ( ) ( ) Γ. Είναι:

17 ( + ) lim [( + ) f ( )] lim ( ) lim lim + ( )( ) +. Αν ω είναι η γωνία που σχηµατίζει η εφαπτόµενη της γραφικής παράστασης της f στο σηµείο (0,f(0)) µε τον άξονα, τότε θα έχουµε εφω f (0) 0 + Όµως f (0) και επειδή 0 ω < 80 ο, προκύπτει ω ο. (0 ) ΘΕΜΑ 4ο α. Η µέση τιµή είναι: Οµάδα Α: X Οµάδα Β: X ιατάσσουµε τις παρατηρήσεις κατ αύξουσα σειρά και έχουµε: 4 + Οµάδα Α:,, 4,, 8, 9. Εποµένως η διάµεσος είναι: δ Α 4, Οµάδα Β: 4,, 6, 7,, 4. Εποµένως η διάµεσος είναι: δ Β 6, β. Προκειµένου να συγκρίνουµε τις οµάδες ως προς την οµοιογένεια θα πρέπει να βρούµε τις τυπικές αποκλίσεις S και S. Έχουµε: S 6. [(-) + (8-) + (9-) + (-) + (-) + (4-) ] 6. [(-4) (-) + (-) ] 6 ( ) οπότε: S. S 6 [(7-8) + (4-8) + (6-8) + (4-8) + (-8) + (-8) ] 6. [(-) (-) + (-4) (-) ] 6. [ ] οπότε S. Εποµένως, 4

18 S CV CV 0, 0. 7 CV 4 S 4 0,. 8 9 Άρα CV > CV Β που σηµαίνει ότι είναι περισσότερο οµοιογενής η Οµάδα Β. γ. Αν y i µε i,,,4,,6 είναι οι παρατηρήσεις της οµάδας Α µετά την αύξηση καθεµιάς κατά 0%, τότε έχουµε 0i 0 yi i + i +, i Αν ω i µε i,,,4,,6 είναι οι παρατηρήσεις της οµάδας Β µετά την αύξηση καθεµιάς κατά ευρώ, τότε έχουµε ω i i +. Σύµφωνα τώρα µε την εφαρµογή, σελίδα 99 του σχολικού βιβλίου έχουµε y,, 6 ευρώ και ω ευρώ Β δ. Έχουµε Sy, S,. 4 Sω S. Εποµένως οι συντελεστές µεταβολής των νέων οµάδων είναι αντίστοιχα: Sy, S CV CV 0,0 y, 4 S 4 CV ω 0,08. ω 07 Συνεπώς CV Α > CV Β, που σηµαίνει ότι η οµάδα Β είναι περισσότερο οµοιογενής από την οµάδα Α.

19 ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης f()c είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας µιας συνάρτησης f στο σηµείο 0 του πεδίου ορισµού της. Μονάδες Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Η συχνότητα της τιµής i µιας µεταβλητής Χ είναι αρνητικός αριθµός. β. Στην κανονική κατανοµή το 9% των παρατηρήσεων βρίσκεται στο διάστηµα ( s, + s), όπου είναι η µέση τιµή των παρατηρήσεων και s η τυπική τους απόκλιση. γ. Αν διαιρέσουµε τη συχνότητα ν i µιας µεταβλητής Χ µε το µέγεθος ν του δείγµατος, προκύπτει η σχετική συχνότητα f i της τιµής i. Μονάδες 6. Στον παρακάτω πίνακα τα Α και Β συµβολίζουν ενδεχόµενα ενός πειράµατος τύχης. Στη Στήλη Ι αναγράφονται διάφορες σχέσεις για τα Α και Β διατυπωµένες στην κοινή γλώσσα και στη Στήλη ΙΙ σχέσεις διατυπωµένες στη γλώσσα των συνόλων. Να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Ι και δίπλα σε κάθε γράµµα τον αριθµό της Στήλης ΙΙ που αντιστοιχεί στην ίδια διατύπωση. α β γ Στήλη Ι πραγµατοποιείται ένα τουλάχιστον από τα Α, Β πραγµατοποιείται το Α αλλά όχι το Β πραγµατιποιούνται συγχρόνως τα Α και Β Α - Β 4 Στήλη ΙΙ ( ) Στη Στήλη ΙΙ περισσεύει µία σχέση. Μονάδες 6

20 ΘΕΜΑ ο 4 + ίνεται η συνάρτηση f µε τύπο f(). Α. Να βρείτε το πεδίο ορισµού της f. Μονάδες 0 Β. Να υπολογίσετε το lim f() Μονάδες ΘΕΜΑ ο Στην "Αττική οδό" εξυπηρετούνται καθηµερινά 00 χιλιάδες οχήµατα, τα οποία διανύουν από έως 4 χιλιόµετρα. Η διανυόµενη απόσταση σε χιλιόµετρα από τα οχήµατα αυτά παρουσιάζεται στην πρώτη στήλη του πίνακα: Κλάσεις Κέντρο Συχνότητα Σχετική Αθροιστική Αθρ. Σχετ. σε χλµ. κλάσης ν i σε χλµ. συχνότητα Συχνότητα N i Συχνότητα i f i % σε χλµ. F i % [, ) 60 [, ) 68 [, ) 80 [, 4) Σύνολο 00 Α. Να µεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα και να συµπληρώσετε τις τιµές των αντίστοιχων µεγεθών. Μονάδες 0 Β. Να σχεδιάσετε το ιστόγραµµα ( i, f i %) και το πολύγωνο σχετικών συχνοτήτων. Μονάδες Γ. Να βρείτε τη µέση τιµή. Μονάδες. Να βρείτε το πλήθος των οχηµάτων που διανύουν απόσταση τουλάχιστον χιλιοµέτρων. Μονάδες ΘΕΜΑ 4ο ίνεται η συνάρτηση f µε τύπο f() Οι πιθανότητες Ρ(Α) και Ρ(Β) δύο ενδεχοµένων Α και Β ενός δειγµατικού χώρου Ω είναι ίσες µε τις τιµές του, στις οποίες η f έχει αντίστοιχα τοπικό ελάχιστο και τοπικό µέγιστο. Α. Να δείξετε ότι P() και P(). Μονάδες 9 Β. Για τις παραπάνω τιµές των Ρ(Α), Ρ(Β) καθώς και για P( ), να βρείτε τις πιθανότητες: i. P( ) ii. P( - )

21 iii. P[( ) ] iv. P[( - ) ( - )]. Μονάδες 6

22 ΘΕΜΑ ο Α. Είναι: Α f R και f(+h) - f() c - c 0. ΑΠΑΝΤΗΣΕΙΣ f ( + h) f ( ) Οπότε για h 0 είναι 0. h f ( + h) f ( ) Άρα lim 0 h 0 h Συνεπώς (c) 0 Β. Μια συνάρτηση f λέγεται συνεχής στο σηµείο 0 του πεδίου ορισµού της αν και µόνον αν lim f ( ) f ( 0 ) 0 Γ. α. Λάθος β. Λάθος γ. Σωστό. α. 4 β. γ. ΘΕΜΑ ο Α. Πρέπει (i) 0 καί (ii) δηλ Άρα [ 0, ) (, + ). f. Για [ 0, ) (, + ) έχουµε: f 4 + ( )( ) ( ) ( + ) ( )( + ) ( )( ) ( + ) ( ) ( + ) lim[ + ] Οπότε lim f ( ) ( ) ( ) ( ) ( + ) 4

23 ΘΕΜΑ ο Α. Β. Γ. i ν i f i % N i F i % [, ) [, ) [, ) [, 4) ν i i ν i , Km Είναι ν + ν χιλιάδες οχήµατα. ΘΕΜΑ 4ο Α. Η συνάρτηση f είναι ορισµένη και παραγωγίσιµη σ όλο το R ως πολυωνυµική µε f '( ) 6 + Έτσι έχουµε f '( ) ή Εποµένως

24 ( ) P και ) ( P Β. Για τις τιµές των ( ) ) ( P, ) ( P P και βρίσκουµε: i. 6 ) ( ) ( ) ( ) ( + + P P P P ii. 6 6 ) ( ) ( ) ( P P P iii. ( ) [ ] 6 6 ) ( ' P P iv. Τα ενδεχόµενα Α-Β, Β-Α είναι ασυµβίβαστα σύµφωνα µε την εφαρµογή σελ. σχολ. βιβλίου. ( ) ( ) [ ] ( ) ( ) ( ) ( ) + + ) ( ) ( P P P P P P P 6 ) ( ) ( ) ( P P P.

25 ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P( ) P() + P() P( ) Τα απλά ενδεχόµενα του δειγµατικού χώρου Ω να θεωρηθούν ισοπίθανα. Μονάδες 0 Β. α. Ποιες µεταβλητές λέγονται ποσοτικές; Μονάδες β. Πότε µια ποσοτική µεταβλητή ονοµάζεται διακριτή και πότε συνεχής; Μονάδες 4 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα και ισχύει f ()>0 για κάθε εσωτερικό σηµείο του, τότε η f είναι γνησίως αύξουσα στο. Μονάδες β. Ισχύει: f ( ) f '( ) g( ) + g( ) όπου f, g παραγωγίσιµες συναρτήσεις. γ. Η διακύµανση είναι µέτρο θέσης. δ. Αν Α Β τότε P() > P(). ( g( ) ) f ( ) g' ( ) Μονάδες Μονάδες Μονάδες

26 ΘΕΜΑ Σε ένα διαγώνισµα Βιολογίας η βαθµολογία των µαθητών δίνεται από το παρακάτω ιστόγραµµα συχνοτήτων ν i : v i α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα: Κλάσεις βαθ/γίας [ ) [4, 8) [8,) [,6) [6,0) Σύνολο Κέντρο κλάσης i Συχνότητα β. Να βρείτε τη µέση τιµή των βαθµών. ν i Σχετική συχνότητα γ. Πόσοι µαθητές έχουν βαθµό το πολύ µέχρι και 0; f i Βαθµός Αθροιστική συχνότητα Ν i Αθρ. σχετ. συχνότητα F i Μονάδες Μονάδες 8 Μονάδες 6

27 ΘΕΜΑ Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω, ώστε να ισχύουν: (i) Η πιθανότητα να πραγµατοποιηθεί ένα τουλάχιστον από τα ενδεχόµενα Α, Β είναι 7/8 (ii) Οι πιθανότητες P(), P( ) δεν είναι ίσες και ανήκουν στο σύνολο X k,,, όπου: 4 k lim 6 + α. Να βρεθεί το k Μονάδες β. Να βρεθούν τα P(), P( ) και να αιτιολογήσετε την απάντησή σας. Μονάδες 8 γ. Να βρεθούν οι πιθανότητες: () Να πραγµατοποιηθεί το ενδεχόµενο Α () Να πραγµατοποιηθεί µόνο το ενδεχόµενο Α ΘΕΜΑ 4 ίνεται η συνάρτηση f µε τύπο f ( ), (0, + ) α. Να βρεθεί η εξίσωση της εφαπτοµένης της f στο σηµείο Λ(,). Μονάδες 6 Μονάδες 6 Μονάδες 7 β. Από τυχαίο σηµείο Μ(, y) της γραφικής παράστασης της f φέρνουµε παράλληλες ευθείες προς τους άξονες και yy, οι οποίες σχηµατίζουν µε τους ηµιάξονες Ο, Oy ορθογώνιο παραλληλόγραµµο. Να βρεθούν οι συντεταγµένες του σηµείου Μ, ώστε η περίµετρος του ορθογωνίου παραλληλογράµµου να είναι ελάχιστη. Μονάδες 0 γ. Οι τετµηµένες πέντε διαφορετικών σηµείων της εφαπτοµένης του ερωτήµατος (α) έχουν µέση τιµή και τυπική απόκλιση s. Να βρεθεί η µέση τιµή y και η τυπική απόκλιση s y των τεταγµένων των σηµείων αυτών. Μονάδες 8

28 ΘΕΜΑ ΑΠΑΝΤΗΣΕΙΣ Α. ος κανόνας λογισµού των πιθανοτήτων: Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P( ) P() + P() P( ) ΑΠΟ ΕΙΞΗ Για δύο ενδεχόµενα Α και Β έχουµε Ν(Α Β) + Ν(Α) + Ν(Β) Ν(Α Β), () αφού στο άθροισµα Ν(Α) + Ν(Β) το πλήθος των στοιχείων υπολογίζεται δυο φορές. Αν διαιρέσουµε τα µέλη της () µε Ν(Ω) έχουµε: Ν( Α Β) Ν( Α) Ν( Β) Ν( Α Β) + Ν( Ω) Ν( Ω) Ν( Ω) Ν( Ω) και εποµένως P( ) P() + P() P( ). Η ιδιότητα αυτή είναι γνωστή ως προσθετικός νόµος (additive law). Β. α. Ποσοτικές λέγονται οι µεταβλητές των οποίων οι τιµές είναι αριθµοί. β. ιακριτή ονοµάζεται η ποσοτική µεταβλητή η οποία παίρνει µόνο µεµονωµένες τιµές. Συνεχής ονοµάζεται η ποσοτική µεταβλητή η οποία µπορεί να πάρει οποιαδήποτε τιµή από ένα διάστηµα πραγµατικών αριθµών (α, β). Γ. α Σ β Λ γ Λ δ Λ ΘΕΜΑ α. Κλάσεις βαθ/γίας Κέντρο κλάσης Συχνότητα Σχετική συχνότητα Αθροιστική συχνότητα Αθρ.σχετ. συχνότητα [ ) i v i f i N i F i [4, 8) 6 0, 0, [8, ) 0 0 0, 0, [, 6) 4 0, 40 0,8 [6, 0) 8 0 0, 0 Σύνολο β.,. 0 0

29 γ. Βαθµό το πολύ µέχρι και 0 έχουν + 0 µαθητές. ΘΕΜΑ ( ) α. Είναι κ lim lim lim. 6 + ( )( ) 4 β. Αφού κ, το σύνολο X,, Επειδή >, η τιµή αποκλείεται να ισούται µε κάποια από τις τιµές 4 4 P ( ), P (). Έτσι {P( ),P()},. 4 Ισχύει άρα P ( ) P () και επειδή P ( ) P () είναι P ( ) < P (). Άρα P( ), P(). 4 γ. () P ( ) P () + P () P ( ). 7 Άρα P() +, οπότε P() () Η πιθανότητα να πραγµατοποιηθεί µόνο το ενδεχόµενο Α είναι: P( ) P() P( ). 8 8 ΘΕΜΑ 4 α. ος τρόπος λύσης: Η συνάρτηση f() είναι παραγωγίσιµη στο (0, + ), µε f (). Η εφαπτοµένη της καµπύλης της f στο σηµείο Λ(, ) έχει συντελεστή διεύθυνσης λ f () -. Εποµένως η εξίσωσή της είναι y - + β. Επειδή όµως το σηµείο Λ(, ) ανήκει στην εφαπτοµένη, είναι - + β β. Άρα η ζητούµενη εξίσωση της εφαπτοµένης είναι y - +. ος τρόπος λύσης: Η εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Λ (, ) είναι : y f() f () ( ). Όµως f() και f ( ). Εποµένως y ( ) y + + y +.

30 β. ' y O y' M(,y) ε Έστω Μ(, y) τυχαίο σηµείο της γραφικής παράστασης της f() και ε, ε οι ευθείες που διέρχονται από το Μ και είναι παράλληλες αντίστοιχα προς τους άξονες και y y. Η περίµετρος του σχηµατιζόµενου ορθογωνίου παραλληλογράµου ΟΑΜΒ είναι Π + y ( + y) () Λόγω της σχέσης y, η () γράφεται : Θεωρούµε τη συνάρτηση Π +. + Π() µε (0, + ). Η Π() είναι παραγωγίσιµη στο (0, + ) µε Από την εξίσωση Π () 0 έχουµε: ( )( + ) Π (). ( )( + ). 0 + Η τιµή - απορρίπτεται γιατί (0, + ). ή ε

31 Σχηµατίζουµε τον πίνακα µεταβολών: Π' () Π () ελαχ. Π() 4 + Οπότε για την τιµή, η Π() παρουσιάζει ελάχιστο. Άρα το ζητούµενο σηµείο είναι το Μ(, ). γ. Είναι : y + και.

32 ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f()) c f (), ΙR. Μονάδες 0.α. Πότε δύο ενδεχόµενα Α,Β ενός δειγµατικού χώρου Ω λέγονται ασυµβίβαστα; Μονάδες β. Πότε µια συνάρτηση f µε πεδίο ορισµού Α λέγεται συνεχής; Μονάδες 4 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Μια συνάρτηση f µε πεδίο ορισµού το Α, λέµε ότι παρουσιάζει τοπικό µέγιστο στο 0, όταν f() f( 0 ) για κάθε σε µια περιοχή του 0. Μονάδες β. ν το ενδεχόµενο Α, συµπληρωµατικό του ενδεχοµένου Α, πραγµατοποιείται, τότε δεν πραγµατοποιείται το Α. ' γ. Για κάθε 0 ισχύει:. Μονάδες Μονάδες δ. Το κυκλικό διάγραµµα χρησιµοποιείται για τη γραφική παράσταση µόνο ποσοτικών δεδοµένων. Μονάδες

33 ΘΕΜΑ ο Κατά την αρχή της σχολικής χρονιάς οι 0 µαθητές της τρίτης τάξης ενός Λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των θερινών διακοπών. Σύµφωνα µε τις απαντήσεις που δόθηκαν, συντάχθηκε ο παρακάτω πίνακας: Αριθµός Βιβλίων α. Να υπολογίσετε την τιµή του α. i Αριθµός Μαθητών ν i 0 α+4 α+8 4α α- 4 α Σύνολο 0 Μονάδες Στη συνέχεια να βρείτε: β. Τη µέση τιµή του αριθµού των βιβλίων που διάβασαν οι µαθητές. Μονάδες 7 γ. Τη διάµεσο του αριθµού των βιβλίων που διάβασαν οι µαθητές. Μονάδες 7 δ. Την πιθανότητα ένας µαθητής να έχει διαβάσει τουλάχιστο βιβλία. Μονάδες 8 ΘΕΜΑ o Σε ένα χορευτικό όµιλο συµµετέχουν αγόρια και (+4) κορίτσια. α. Επιλέγουµε τυχαία ένα άτοµο, για να εκπροσωπήσει τον όµιλο σε µια εκδήλωση. Να εκφράσετε ως συνάρτηση του την πιθανότητα να επιλεγεί αγόρι. Μονάδες 7 β. Αν η πιθανότητα να επιλεγεί αγόρι είναι ίση µε 9 και ο όµιλος περιλαµβάνει λιγότερα από 00 µέλη, να βρείτε τον αριθµό των µελών του οµίλου, καθώς και την πιθανότητα να επιλεγεί κορίτσι. Μονάδες 8 γ. Ποιος πρέπει να είναι ο αριθµός των αγοριών του οµίλου, ώστε να µεγιστοποιείται η πιθανότητα να επιλεγεί αγόρι, και ποια είναι η τιµή της πιθανότητας αυτής; Μονάδες 0

34 ΘΕΜΑ 4ο Έστω η συνάρτηση f() - +k , 0. α. ν η εφαπτοµένη της γραφικής παράστασης της συνάρτησης στο σηµείο Α(,f()) είναι παράλληλη στον άξονα, να αποδείξετε ότι k και να βρείτε την εξίσωσή της. Μονάδες β. Μία τυχαία µεταβλητή Χ ακολουθεί την κανονική κατανοµή µε µέση τιµή f (4) f () και τυπική απόκλιση s. Τρεις παρατηρήσεις, αντιπροσωπευτικού δείγµατος µεγέθους ν, είναι µικρότερες ή ίσες του 8. (i) Να βρείτε τον αριθµό των παρατηρήσεων που βρίσκονται στο διάστηµα (0,6). Μονάδες 0 (ii)να αποδείξετε ότι το δείγµα των παρατηρήσεων που έχει ληφθεί, δεν είναι οµοιογενές. Να βρείτε τη µικρότερη τιµή της παραµέτρου α > 0, που πρέπει να προστεθεί σε κάθε µία από τις προηγούµενες παρατηρήσεις, ώστε το δείγµα των νέων παρατηρήσεων να είναι οµοιογενές. Μονάδες 0

35 Θέµα ο Α. Θεωρία. Σχολικό βιβλίο σελίδα 0. ΑΠΑΝΤΗΣΕΙΣ Β α. Θεωρία. Σχολικό βιβλίο σελίδα 4. Β β. Θεωρία. Σχολικό βιβλίο σελίδα 6. Γ. α - Σ β - Σ γ - Λ δ - Λ Θέµα ο α. a a a + a + a 0 β. a 9 a t + t6 + γ. δ i v i i v i N i Σύνολο δ. Έστω Α το ενδεχόµενο ένας µαθητής να έχει διαβάσει τουλάχιστον βιβλία. 8 4 Τότε P ( ). 0 4

36 Θέµα ο α. Έστω Ω ο δειγµατικός χώρος. Τότε Ν(Ω) + ( + 4). Αν Α το ενδεχόµενο να επιλεγεί αγόρι τότε Ν(Α). Άρα η πιθανότητα να επιλεγεί αγόρι είναι N( ) P ( ), R N( Ω) + ( + 4) (Σύµφωνα µε διευκρίνιση που δόθηκε κατά τη διάρκεια των εξετάσεων). Επειδή όµως ο εκφράζει τον αριθµό των αγοριών είναι 0. Οπότε είναι και 0 + ( + 4) άρα 0 + ( + 4). β. ( ) P ( ή 8) 9 + ( + 4) 9 Αν 8 τότε Ν(Ω) 8 + (8 + 4) > 00. Άρα η τιµή 8 απορρίπτεται. Αν τότε Ν(Ω) + ( + 4) 8 < 00. Άρα η τιµή είναι δεκτή. Αν Κ είναι το ενδεχόµενο να επιλεγεί κορίτσι, τότε Ν(Κ) ( + 4) N( K) 6 8 6, οπότε P( K) N( Ω) 8 9 γ. Θεωρούµε τη συνάρτηση f ( ), 0. + ( + 4) Η f είναι παραγωγίσιµη στο πεδίο ορισµού της ως ρητή µε: 6 f ( ), 0. [ + ( + 4) ] Από τον επόµενο πίνακα µεταβολών f + - f προκύπτει ότι η f έχει για 4 µέγιστη τιµή 7 f ( 4 ). 7 Οι τιµές της Ρ(Α) είναι ένα υποσύνολο από διακριτές τιµές του συνόλου τιµών της f.

37 Συγκεκριµένα η Ρ(Α) παίρνει τιµές από το σύνολο Β {f(), f(), f(),f(4),f(),... }, όπου Β f(). Επειδή f ( ) f (4) για κάθε [ 0, + ) το σύνολο f() έχει µέγιστη τιµή f ( 4) που είναι µία από τις τιµές του συνόλου Β. 7 Οπότε η µέγιστη τιµή που παίρνει η Ρ(Α) είναι µε αντίστοιχο αριθµό 7 αγοριών 4. Θέµα 4ο α. Η συνάρτηση f ( ) + k , 0 είναι παραγωγίσιµη για > 0 µε f ( ) 4 + k + Επειδή η εφαπτοµένη της C f στο σηµείο Α(, f()) είναι παράλληλη στον προκύπτει f ) k + 0 k (. Για k είναι f ( ) οπότε f() 4 και το σηµείο Α(, f()) είναι το Α(,4). Αφού τώρα η εφαπτοµένη της C f στο Α είναι οριζόντια, η εξίσωσή της είναι y 4. β. f ( ) 4 (-) f ( 4 ), άρα s - (i) Αφού η τυχαία µεταβλητή Χ ακολουθεί την κανονική κατανοµή µε µέση τιµή 4 και τυπική απόκλιση s έχουµε την ακόλουθη κατανοµή: Τιµές της X Ποσοστό ,%,%,0% 4% 4%,0%,% 0,% Αφού παρατηρήσεις είναι µικρότερες ή ίσες του 8 είναι 0, ν ν Στο διάστηµα (0, 6) όπως προκύπτει από το προηγούµενο διάγραµµα βρίσκονται 8,% του συνόλου ν 000 των παρατηρήσεων, δηλαδή 8, παρατηρήσεις. (ii) Ο συντελεστής µεταβολής του δείγµατος είναι s cv 0,4 > 0,

38 Άρα το δείγµα δεν είναι οµοιογενές. Αν προστεθεί ο α > 0 σε κάθε µία από τις προηγούµενες παρατηρήσεις, ο νέος συντελεστής µεταβλητής είναι 4 + α 4 + α Θέλουµε 0, 0, 4 + 0, α 0, α 0, 6 α 6. Έτσι η µικρότερη τιµή που µπορεί να πάρει η παράµετρος α είναι α 6.. 7

39 ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 007 ΕΚΦΩΝΗΣΕΙΣ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει Ρ(Α Β) Ρ(Α) Ρ(Α Β). Μονάδες 8 Β. α. Πότε µια συνάρτηση f λέµε ότι είναι παραγωγίσιµη στο σηµείο 0 του πεδίου ορισµού της; Μονάδες 4 β. Να δώσετε τον ορισµό της διαµέσου (δ) ενός δείγµατος ν παρατηρήσεων, όταν ο ν είναι άρτιος αριθµός. Μονάδες Γ.Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α. Στην περίπτωση των ποσοτικών µεταβλητών, οι αθροιστικές σχετικές συχνότητες F j εκφράζουν το ποσοστό των παρατηρήσεων που είναι µικρότερες ή ίσες της τιµής j. Μονάδες β. Αν f, g είναι δύο παραγωγίσιµες συναρτήσεις, τότε για την παράγωγο της σύνθετης συνάρτησης ισχύει: (f(g())) f (g()) g (). Μονάδες γ. Αν για µια συνάρτηση f ισχύουν f ( 0 ) 0 για 0 (α, β), f () > 0 στο (α, 0 ) και f () < 0 στο ( 0, β), τότε η f παρουσιάζει στο διάστηµα (α, β) για 0 ελάχιστο. Μονάδες Γ.Να γράψετε στο τετράδιό σας τις παραγώγους των παρακάτω συναρτήσεων: f () ν, όπου ν φυσικός f () ln, όπου > 0 f (), όπου > 0 f 4 () συν, όπου πραγµατικός Μονάδες 4

40 ΘΕΜΑ ο ίνεται η συνάρτηση µε τύπο f () e +, όπου πραγµατικός αριθµός. α. Να αποδείξετε ότι f () f () + e f ( ) e β. Να βρεθεί το lim 0 ΘΕΜΑ ο Μονάδες 0 Μονάδες Έστω ο δειγµατικός χώρος Ω {, 0,,,, 4, } για τον οποίο ισχύει: P( ) P(0) P() P() P() P(4) P(). Ορίζουµε τα ενδεχόµενα του Ω: Α {,, }, {, +, +, + } όπου ένας πραγµατικός αριθµός. α. Να βρεθούν οι πιθανότητες των απλών ενδεχοµένων του Ω, δηλαδή οι: P( ), P(0), P(), P(), P(), P(4), P(). Μονάδες 7 β. Να βρεθεί η µοναδική τιµή του για την οποία ισχύει Α Β {, } Μονάδες 8 γ. Για να δειχθεί ότι: P() /, P() 7/, P(Α Β) / και στη συνέχεια να υπολογιστούν οι πιθανότητες P( ) και P( '). Μονάδες 0 ΘΕΜΑ 4ο Θεωρούµε δείγµατα Α και Β µε παρατηρήσεις: είγµα Α:, 8, t, t 4,, t είγµα Β: 6, 4, t, t 4,, t ίνεται ότι t + t t 4. α. Να αποδείξετε ότι οι µέσες τιµές, αντίστοιχα είναι. β. Αν s είναι η διακύµανση του δείγµατος Α και δείγµατος Β, να αποδείξετε ότι s και των δύο δειγµάτων Α και Β s 6/ Μονάδες 7 s είναι η διακύµανση του Μονάδες 8 γ. Αν ο συντελεστής µεταβολής του δείγµατος Α είναι ίσος µε CV /, να βρείτε τον συντελεστή µεταβολής CV του δείγµατος Β. Μονάδες 0

41 ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία (Απάντηση στο σχολ. βιβλίο σελ. ) Β. α. Θεωρία (Απάντηση στο σχολ. βιβλίο σελ. ) β. Θεωρία (Απάντηση στο σχολ. βιβλίο σελ. 87) Γ. α Σ, β Σ, γ Λ Γ. f () ν ν, f () /, > 0 f (), > 0 f 4 () ηµ, ΘΕΜΑ ο α. Η f είναι ορισµένη και παραγωγίσιµη σε όλο το µε: f () (e + ) e + e e + f () διότι f () e + e f () f () e e + f () e β. lim lim 0 0 f () e + e lim lim ( ) lim e e lim. (Επειδή η συνάρτηση 0 0 {} ως πηλίκο συνεχών συναρτήσεων.) ΘΕΜΑ ο 0 e g() είναι συνεχής στο α. Αφού Ω {, 0,,,, 4, }, είναι Ρ(Ω) Ρ( ) + Ρ(0) + Ρ() + Ρ() + Ρ() + Ρ(4) + Ρ(). Έστω Ρ( ) Ρ(0) Ρ() Ρ() Ρ() Ρ(4) Ρ() κ. Τότε Ρ( ) Ρ(0) Ρ() Ρ() κ, ενώ Ρ() Ρ(4) Ρ() κ/.

42 Έτσι είναι κ + κ + κ + κ + (κ/) + (κ/) + (κ/) κ 4κ + 8κ + κ κ κ. Άρα Ρ( ) Ρ(0) Ρ() Ρ() / ενώ Ρ() Ρ(4) Ρ() /. β. Αφού Α Β Α {, } {,, } Άρα {,, }. Οπότε 0 ή. Για το ενδεχόµενο Β γράφεται: Β {,, 8, } Τότε όµως Α Β {} {, } Άρα η τιµή απορρίπτεται. Για το ενδεχόµενο Β γράφεται: Β {, 0,, } Τότε Α Β {, } και η τιµή είναι η ζητούµενη τιµή. γ. Για είναι Α {,, } και Β {, 0,, }. Τότε Ρ(Α) Ρ() + Ρ() + Ρ( ) Ρ(Β) Ρ() + Ρ(0) + Ρ( ) + Ρ() Ρ(Α Β) Ρ( ) + Ρ() Ρ(Α Β) Ρ(Α) Ρ(Α Β) Ρ(Α Β ) Ρ(Α) + Ρ(Β ) Ρ(Α Β ) Ρ(Α) + Ρ(Β) [Ρ(Α) Ρ(Α Β)] 7 7 Ρ(Β) + Ρ(Α Β) + ΘΕΜΑ 4ο α t + t t t + t t

43 β. S S [( ) + (8 ) + ( t ) ( ) ] t [(6 ) + (4 ) + ( t ) ( ) ] t Έτσι S ( + ) γ. S 6 S. 6 S S 6 S ( ) ( ) 6 ( CV ) ( CV ) ( CV ) ( CV ) ( CV ) 9 ( CV ) CV CV.

44 ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 008 ΕΚΦΩΝΗΣΕΙΣ. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης f()c (όπου πραγµατικός αριθµός) είναι ίση µε 0, δηλαδή (c) 0. Μονάδες 8. Πώς ορίζεται ο συντελεστής µεταβολής ή συντελεστής µεταβλητότητας µιας µεταβλητής, αν και πώς, αν > 0 και πώς, αν < 0 Μονάδες 7 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν Α, Β είναι δύο ενδεχόµενα ενός δειγµατικού χώρου Ω, τότε ο τύπος Ρ(Α Β) Ρ(Α) + Ρ(Β) Ρ(Α Β) ισχύει µόνον όταν τα απλά ενδεχόµενα του δειγµατικού χώρου Ω είναι ισοπίθανα. Μονάδες β. Η διάµεσος δ ενός δείγµατος ν παρατηρήσεων t, t,, t ν είναι πάντοτε µία από τις παρατηρήσεις αυτές. Μονάδες γ. Αν > 0, τότε ( ) δ. Αν ο είναι ένας πραγµατικός αριθµός τότε lim ηµ ηµ o o Μονάδες Μονάδες ε. Στο ιστόγραµµα συχνοτήτων οµαδοποιηµένων δεδοµένων, το εµβαδόν του χωρίου που ορίζεται από το πολύγωνο συχνοτήτων και τον οριζόντιο άξονα είναι ίσο µε το µέγεθος του δείγµατος. Μονάδες ΘΕΜΑ ο ίνεται η συνάρτηση µε τύπο f ( ), όπου πραγµατικός αριθµός. e e f ( ) α. Να υπολογίσετε το όριο lim Μονάδες 7 β. Να αποδείξετε ότι e f ( ) γ. Να βρείτε τα ακρότατα της συνάρτησης f(). Μονάδες 9 Μονάδες 9

45 ΘΕΜΑ ο Για δύο τύπους µπαταριών Α και Β επιλέχθηκαν δύο δείγµατα µεγέθους το καθένα. Οι χρόνοι ζωής των µπαταριών για το κάθε δείγµα (σε χιλιάδες ώρες) δίνονται στον επόµενο πίνακα: α. Να βρείτε τη µέση διάρκεια ζωής µιας µπαταρίας τύπου Α και µιας µπαταρίας τύπου Β. Μονάδες β. Αν µια µπαταρία τύπου Α στοιχίζει 8 ευρώ και µια µπαταρία τύπου Β στοιχίζει 40 ευρώ, ποιον τύπο µπαταρίας συµφέρει να αγοράσετε; (Να αιτιολογήσετε την απάντησή σας). Μονάδες γ. Να βρείτε τις τυπικές αποκλίσεις S και S της διάρκειας ζωής των δύο τύπων µπαταριών. Μονάδες 7 δ. Να βρείτε ποιος από τους δύο τύπους µπαταριών Α και Β παρουσιάζει τη µεγαλύτερη οµοιογένεια ως προς τη διάρκεια ζωής του. ίνεται ότι, Μονάδες 8 ΘΕΜΑ 4ο Το 0% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα α, ενώ το 0% των κατοίκων διαβάζουν την εφηµερίδα α και δεν διαβάζουν την εφηµερίδα β. α. Ποια είναι η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία, να µη διαβάζει την εφηµερίδα α ή να διαβάζει την εφηµερίδα β; Μονάδες 7 β. Ορίζουµε το ενδεχόµενο: Β: «ένας κάτοικος της πόλης που επιλέγεται τυχαία, διαβάζει την εφηµερίδα β». Να αποδείξετε ότι 7 P() 0 Μονάδες 9 γ. Θεωρούµε τη συνάρτηση µε τύπο: f ( ) + P( ) όπου πραγµατικός αριθµός και Β το ενδεχόµενο που ορίστηκε στο προηγούµενο ερώτηµα. Να αποδείξετε ότι η συνάρτηση f() δεν έχει ακρότατα. Μονάδες 9

46 ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία: (Η παράγωγος της σταθερής συνάρτησης f ( ) c ). Σελ. 8 σχολ. βιβλίο. Β. Θεωρία: Σελ. 96 σχολ. βιβλίο. Γ. α - Λ β - Λ γ - Σ δ - Σ ε - Σ. ΘΕΜΑ ο e f ( ) e α. Είναι e + e f ( ) Έτσι lim lim. + ( ) e ( )( e ) β. Είναι f ( ) ( ) e e e e ( ) e ( + ) e e e Έτσι: e f ( ) e. e γ. Επειδή e > 0, για κάθε R, προκύπτουν: i) f () 0 ii) f () > 0 > 0 < iii) f () < 0 < 0 > ηλαδή έχουµε τον επόµενο πίνακα µεταβολών:

47 - + f + - f e Η f είναι γνησίως αύξουσα στο (, ] και γνησίως φθίνουσα στο [, + ), ενώ f ( ) 0. Άρα η f έχει µέγιστο για, f (). e ΘΕΜΑ ο α β. Κατά µέσο όρο µια µπαταρία τύπου Α στοιχίζει ευρώ / χίλιες ώρες, ενώ 40 µια µπαταρία τύπου Β στοιχίζει ευρώ / χίλιες ώρες 4 9 Επειδή < συµφέρει να αγορασθεί µπαταρία τύπου Β. [ ] [( ) + (4) ( 4) ] 40 ( ) 8 οπότε S 8 γ. S ( 0 ) + ( 6 ) + ( 4 ) + ( ) + ( 8 ) [( 6 4) + ( 4) + ( 9 4) + ( 0 4) + ( 4) ] S [() ( ) + ( 4) + ] 0 ( ) οπότε 4

48 δ. S CV CV S. Α S. 4 Είναι CV > CV διότι > > > 4, που ισχύει 4 4 επειδή, και, > 4 6, > 4. Άρα το δείγµα Α παρουσιάζει µεγαλύτερη οµοιογένεια ως προς την διάρκεια ζωής σε σχέση µε το δείγµα Β. ΘΕΜΑ 4ο Έστω Α το ενδεχόµενο οι κάτοικοι της πόλης να διαβάζουν την εφηµερίδα α και Β το ενδεχόµενο να διαβάζουν την εφηµερίδα β. Τότε από τα δεδοµένα προκύπτει ότι: P ( ) 0,, P ( ) 0,. α. Ζητείται η P( ). Όµως P ( ) P( ) + P( ) P( ) P ( ) + P( ) P( ) P ( ) + P( ) [ P( ) P( )] P ( ) + P( )] 7 [ P( ) P( )] P ( ) 0, 0, β. Επειδή P( ) P( ) P ( ). 0 Επίσης από P ( ) 0, έχουµε: P( ) P( ) 0, 0, P( ) 0, P ( ) 0,. Όµως P( ) P( ) P( ). γ. Είναι f ( ) + P( ). Η f είναι ένα τριώνυµο µε διακρίνουσα P( ). 7 Επειδή P ( ) έπεται P ( ) και P ( ) < 0 Αφού < 0, είναι f ( ) > 0 για κάθε R, άρα η f είναι γνησίως αύξουσα στο και εποµένως δεν έχει ακρότατα.

49 ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 009 ΕΚΦΩΝΗΣΕΙΣ. Να αποδείξετε ότι για οποιαδήποτε ασυµβίβαστα µεταξύ τους ενδεχόµενα Α και Β ισχύει ότι Ρ (Α Β) Ρ (Α) + Ρ (Β) Μονάδες 0. Αν,,, κ είναι οι τιµές µιας µεταβλητής X που αφορά τα άτοµα ενός δείγµατος µεγέθους ν (κ ν), να ορίσετε τη σχετική συχνότητα f i της τιµής i, i,,, κ. Μονάδες Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. ΘΕΜΑ o α. Για το γινόµενο δύο παραγωγίσιµων συναρτήσεων f, g ισχύει ότι (f () g ()) f () g () + f () g () Μονάδες β. ν Α, Β είναι δύο ενδεχόµενα ενός δειγµατικού χώρου Ω, τότε ισχύει ότι Β Μονάδες γ. Για τη συνάρτηση f () ηµ ισχύει ότι (ηµ ) συν Μονάδες δ. Το ραβδόγραµµα χρησιµοποιείται για τη γραφική παράσταση των τιµών µιας ποιοτικής µεταβλητής. Μονάδες ε. Η µέση τιµή ενός συνόλου ν παρατηρήσεων είναι ένα µέτρο θέσης. Μονάδες Στον επόµενο πίνακα δίνονται οι τιµές i, i,,, 4 µιας µεταβλητής Χ µε αντίστοιχες συχνότητες ν i, i,,, 4. Η συχνότητα ν που αντιστοιχεί στην τιµή είναι άγνωστη. ίνεται ότι η µέση τιµή των παρατηρήσεων είναι ίση µε 4.

50 i ν i 6 ; 8 4 α. Να αποδείξετε ότι ν 7. Μονάδες 9 β. Να αποδείξετε ότι η διακύµανση των παρατηρήσεων είναι ίση µε 4,9. Μονάδες 9 γ. Να εξετάσετε αν το δείγµα των τιµών της µεταβλητής X είναι οµοιογενές. ίνεται ότι 4,9,. Μονάδες 7 ΘΕΜΑ o ίνεται η συνάρτηση f () 6 + α 7, όπου α πραγµατικός αριθµός, για την οποία ισχύει f () + f () +, α. Να δείξετε ότι α 9 Μονάδες 7 f ( ) β. Να υπολογίσετε το όριο lim. Μονάδες 8 γ. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f, η οποία είναι παράλληλη στην ευθεία y. Μονάδες 0 ΘΕΜΑ 4o ίνεται η συνάρτηση f ( ) ln + λ 6λ +, > 0 όπου λ ένας πραγµατικός αριθµός. Α. α. Να προσδιοριστεί το διάστηµα στο οποίο η f είναι γνησίως αύξουσα και το διάστηµα στο οποίο η f είναι γνησίως φθίνουσα. Μονάδες 6 β. Να µελετηθεί η συνάρτηση f ως προς τα ακρότατα. Μονάδες 6

51 Β. Θεωρούµε ότι οι τιµές της συνάρτησης f (), f (4), f (8), f () και f () είναι παρατηρήσεις µιας µεταβλητής Χ. α. Αν R είναι το εύρος και δ η διάµεσος των παρατηρήσεων, να δειχθεί ότι R + ln και δ ln4 + λ 6λ 4 Μονάδες 7 β. Έστω ο δειγµατικός χώρος Ω {,,,, 00} ο οποίος αποτελείται από απλά ισοπίθανα ενδεχόµενα. ν το λ παίρνει τιµές στο δειγµατικό χώρο Ω, να υπολογίσετε την πιθανότητα του ενδεχοµένου Α {λ Ω R + δ < } Μονάδες 6

52 ΘΕΜΑ ο Α. Θεωρία σελίδα 0 σχολ. βιβλίο. Β. Θεωρία, σελίδα 6 σχολ. βιβλίο. Γ. α Λ, β Σ, γ Λ, δ Σ, ε Σ ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ α) Είναι 4 v + v + v + v v vii / ν 4 i v 6 + v v ( + v) 9 + v + 4v 9 + v v + v β) Είναι 4 v ( i ) i v( ) S v 6( 4) + 7( 4) + ( 4) , S γ) Είναι CV 7. + v ( ) + v ( ) + v4 ( 4 ) v + 4(8 4) i S 4,9 4, 4 άρα το δείγµα δεν είναι οµοιογενές. % > 0%,

53 ΘΕΜΑ ο α) Είναι Α f R. Η f είναι δύο φορές παραγωγίσιµη στο R ως πολυωνυµική. Είναι: Έτσι: f () + α, f () 6. f () + f () + (6 ) + + α α + 0 α 9. β) Είναι για ±: f ( ) + 9 f ( ) 9 6 Οπότε: lim lim. + γ) Έστω Α( o, f ( o )) το σηµείο επαφής. ( 4 + ) ( )( ) 9 ( )( + ) ( )( + ) +. Επειδή η εφαπτοµένη στο Α είναι παράλληλη στην ευθεία λ εφ f ( o o ) o + 9 o o o + 0 o Άρα το σηµείο επαφής είναι το Α(, f ()). ( ) 0 o y o Όµως f () οπότε το σηµείο επαφής είναι Α(, -). Η εξίσωση της εφαπτοµένης είναι:. y f ( ) + β, δηλ. y + β. Όµως Α ανήκει στην εφαπτοµένη + β β. Άρα η εξίσωση της εφαπτοµένης είναι: y +.

54 ΘΕΜΑ 4ο Α. α. Είναι Με > 0 είναι: f ( ) 0 f ( ) > 0 0 < < f ( ) < 0 >. f ( ). Έτσι η f είναι γνησίως αύξουσα στο διάστηµα (0,] και γνησίως φθίνουσα στο διάστηµα [, + ). β. Η f παρουσιάζει µέγιστη τιµή: f () ln + λ 6λ +. Β. α. Επειδή η f είναι γνησίως φθίνουσα στο διάστηµα [, + ) είναι: < < 4 < < 8 f ( ) > f () > f (4) > f () > f (8). Έτσι προκύπτει ότι το εύρος είναι: R f () f (8) (ln + λ 6λ + ) (ln λ 6λ + ) ln ln 8 + ln +. 4 Επίσης, η διάµεσος προκύπτει ότι είναι: f (4) ln 4 + λ 6λ + ln 4 + λ 6λ. β. Είναι Α λ Ω + ln + ln 4 + λ 6λ < 4 { λ 6 + < 0} λ Ω λ. Επειδή λ 6λ + < 0 λ (, ), µε λ Ω είναι Α {,, 4} Ν( Α). Έτσι P ( ). Ν( Ω) 00 6

55 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή. Σχηµατίζουµε τις διαφορές t, t,..., t v. Να αποδείξετε ότι ο αριθµητικός µέσος των διαφορών αυτών είναι ίσος µε µηδέν. Μονάδες 7 Α. Αν,,, ν είναι οι παρατηρήσεις µιας ποσοτικής µεταβλητής X ενός δείγµατος µεγέθους ν και w, w,..., w ν είναι οι αντίστοιχοι συντελεστές στάθµισης (βαρύτητας), να ορίσετε το σταθµικό µέσο της µεταβλητής Χ. Μονάδες 4 Α. Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης. Να δώσετε τους ορισµούς του βέβαιου ενδεχοµένου και του αδύνατου ενδεχοµένου. Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α) Αν οι συναρτήσεις f, g έχουν στο 0 όρια πραγµατικούς αριθµούς, τότε β) Για κάθε > 0 ισχύει ( ) lim( f ( ) g( )) lim f ( ) limg( ) γ) Η ταχύτητα ενός κινητού που κινείται ευθύγραµµα και η θέση του στον άξονα κίνησής του εκφράζεται από τη συνάρτηση f (t), τη χρονική στιγµή t 0 είναι υ(t 0 ) f (t 0 ). δ) Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε σηµεία, µε < ισχύει f ( ) < f ( ). ε) Η διάµεσος είναι ένα µέτρο θέσης, το οποίο επηρεάζεται από τις ακραίες παρατηρήσεις. Μονάδες 0

56 ΘΕΜΑ Β ίνεται η συνάρτηση f ( ) +, f ( ) Β. Να υπολογίσετε το lim. Μονάδες 0 Β. Να υπολογίσετε το συντελεστή διεύθυνσης της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f στο σηµείο της µε τετµηµένη 0 0. Μονάδες 0. Να υπολογίσετε τη γωνία που σχηµατίζει η παραπάνω εφαπτοµένη µε τον άξονα. Μονάδες ΘΕΜΑ Γ Οι τιµές της απώλειας βάρους, σε κιλά, 60 ατόµων, τα οποία ακολούθησαν ένα πρόγραµµα αδυνατίσµατος, έχουν οµαδοποιηθεί σε κλάσεις ίσου πλάτους, όπως εµφανίζονται στον παρακάτω πίνακα: ΑΠΩΛΕΙΑ ΒΑΡΟΥΣ ΣΕ ΚΙΛΑ ΚΕΝΤΡΟ ΚΛΑΣΗΣ i ΣΥΧΝΟΤΗΤΑ [0...)... 0 [......) 6 40 [......)... 4 [......)... 0 [......)... ΣΥΝΟΛΟ 60 Γ. Να αποδείξετε ότι το πλάτος c κάθε κλάσης είναι ίσο µε 4. ν i Μονάδες 6 Γ. Αφού µεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα σωστά συµπληρωµένο, να υπολογίσετε τη µέση τιµή και την τυπική απόκλιση s. Μονάδες 8 Γ. Να εξετάσετε αν το δείγµα είναι οµοιογενές. Μονάδες Γ4. Αν κάθε άτοµο έχει την ίδια πιθανότητα να επιλεγεί, να υπολογίσετε την πιθανότητα του ενδεχοµένου Α: «η απώλεια βάρους ενός ατόµου που επιλέχθηκε τυχαία να είναι από 7 µέχρι και 4 κιλά». Μονάδες 6

57 ίνεται ο τύπος ΘΕΜΑ ν k i i ν i s k i iν i ν Έστω Α, Β δύο ενδεχόµενα ενός δειγµατικού χώρου Ω µε αντίστοιχες πιθανότητες Ρ(Α), Ρ(Β) και η συνάρτηση f ( ) ln( P( )) ( P( )) + P( ), > P( ). Να µελετήσετε τη συνάρτηση f ως προς τη µονοτονία και τα ακρότατα. Μονάδες. Αν η συνάρτηση f παρουσιάζει ακρότατο στο σηµείο 0 µε τιµή f ( 0 ) 0, να αποδείξετε ότι: P ( ) και P ( ) Μονάδες Λαµβάνοντας υπόψη το ερώτηµα και επιπλέον ότι πιθανότητα:. να µην πραγµατοποιηθούν ταυτόχρονα τα ενδεχόµενα Α, Β. 4. να πραγµατοποιηθεί µόνο ένα από τα ενδεχόµενα Α, Β. P ( ), να βρείτε την 6 Μονάδες Μονάδες

58 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Ο ζητούµενος αριθµητικός µέσος είναι: ( t ) + ( t ) +... ( t ) (... ) ν t + t + + tv ( v) t + t +... t v 0. ν v v Α. Θεωρία σελίδα 86, 87, σχολικό βιβλίο. Α. Θεωρία σελ. 40, σχολικό βιβλίο. Βέβαιο είναι το ενδεχόµενο που πραγµατοποιείται πάντα και τέτοιο είναι το σύνολο Ω. Αδύνατο ενδεχόµενο είναι το ενδεχόµενο που δεν πραγµατοποιείται ποτέ και τέτοιο είναι το κενό σύνολο. Α4. ΘΕΜΑ Β Β. Για είναι: α β γ δ ε Σ Λ Σ Λ Λ f ( ) ( ) ( + )( + + ) ( + ) ( )( + + ) ( )( + + ) ( ) ( ) ( )( + + ) ( )( + + ) + + Άρα f ( ) lim lim Είναι f ( ) ( + ) ( + ) ( ) Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f στο σηµείο µε τετµηµένη 0 0 είναι: 0 f (0) Β. Αν ω είναι η γωνία που σχηµατίζει η παραπάνω εφαπτοµένη µε τον άξονα τότε π είναι: εφω f (0), και επειδή 0 ω < π, προκύπτει ω. 4 4

59 ΘΕΜΑ Γ Γ. Αν το πλάτος κάθε κλάσης είναι c, τότε οι δύο πρώτες κλάσεις είναι [0, c) και [c, c). Αφού το κέντρο της ης c + c κλάσης δίνεται ότι είναι 6, προκύπτει 6 c 4. Γ. Γ. Είναι Γ4. ΑΠΩΛΕΙΑ ΒΑΡΟΥΣ ΣΕ ΚΙΛΑ ΚΕΝΤΡΟ ΚΛΑΣΗΣ Χ i ΣΥΧΝΟΤΗΤΑ [0, 4) 0 [4, 8) 6 40 [8, ) 0 4 [, 6) 4 0 [6, 0) 8 ΣΥΝΟΛΟ 60 ν ii 600 ι ( ) 0 κιλά s ν i( i ) 0( 0) + 40(6 0) + 4(0 0) + 0(4 0) + (8 0) 60 i Άρα s κιλά. 60 s CV 0% >0%. Άρα το δείγµα δεν είναι οµοιογενές. 0 N( ) ν + ν + ν P ( ). N( Ω) Παρατήρηση: Για τον υπολογισµό της τυπικής απόκλισης s στο Γ ερώτηµα θα µπορούσε εναλλακτικά να χρησιµοποιηθεί και ο τύπος που δίνεται ως εξής: v s v ( ) (0000) ( ) 00. Άρα s κιλά. i i i i i 60 i ν i

60 ΘΕΜΑ. ( P ) ( ) ( + P( )) ( + P( )) f ( ) ( P( ). P( ) P( ) P( ) Είναι f ( ) 0 P( ) + ή P( ). Είναι > P() διότι Ρ(Α) + > Ρ(Α) > 0 που ισχύει, ενώ < P() διότι Ρ(Α) < Ρ(Α) < 0, άρα η απορρίπτεται. Για το πρόσηµο της f ( ) έχουµε: α) > P() άρα P() > 0 β) > P() άρα P() > 0 και P() + > > 0. γ) Έτσι f ( ) > 0 + P( ) > 0 < + P( ) και f ( ) < 0 + P ( ) < 0 > + P( ). Έτσι ο πίνακας µεταβολών για την f είναι: f() f() P( Α) + +P( Α) Εποµένως η f είναι γνησίως αύξουσα στο (Ρ(Α), + Ρ(Α)] και γνησίως φθίνουσα στο [ + P(), + ). Η f παρουσιάζει µέγιστο στο + Ρ(Α) το f ( + P( ) ) ln ( + P( ) P( ) ) ( + P( ) P( ) ) + P( ) ln + P ( ) P ( ).. Αφού η f παρουσιάζει ακρότατο στο σηµείο 0 /, από θα είναι: + Ρ(Α) / Ρ(Α) / Ρ(Α) /. Επίσης αφού f ( 0 ) 0 είναι λόγω του f ( + P( )) 0 P( ) 0 P( ).. Η ζητούµενη πιθανότητα είναι: P ( ) P ( ). Όµως P ( ) P( ) + P( ) P( ) άρα P ( ) P( ) + P( ) P( ) +. 6 Άρα P ( ). 4. Η ζητούµενη πιθανότητα είναι: [ ] Άρα P[ ] - + P ( ) ( ) P( ) + P( ) P( ). ( ) ( )

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 0 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σχολικό βιβλίο σελ. 8 Α. Θεωρία, σχολικό βιβλίο σελ. 4 Α. Θεωρία, σχολικό βιβλίο σελ. 87 Α4.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα

Διαβάστε περισσότερα

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x). Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης fxc είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4 ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 25 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR.

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 000 0 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞETΑΣΕΙΣ 000 ΘΕΜΑ ο Α. α) Δίνεται η συνάρτηση F() = f()+g(). Αν οι συναρτήσεις f,g είναι παραγωγίσιμες, να αποδείξετε ότι F () f () g (). Μονάδες 8 β) Να γράψετε

Διαβάστε περισσότερα

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

i μιας μεταβλητής Χ είναι αρνητικός αριθμός ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

P A B P(A) P(B) P(A. , όπου l 1

P A B P(A) P(B) P(A. , όπου l 1 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Γ ΛΥΚΕΙΟΥ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ... ΝΟΕΜΒΡΙΟΣ 013 ΘΕΜΑ 1 Ο 1Α. α). Πότε λέμε ότι μια συνάρτηση f

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η εκάδα. Στην αρχή της σχολικής χρονιάς, οι 50 µαθητές της τρίτης τάξης ενός λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των διακοπών τους. Τα δεδοµένα

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα

Διαβάστε περισσότερα

Πέµπτη, 22 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Πέµπτη, 22 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 008 Πέµπτη, Μαΐου 008 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης f()c (όπου πραγµατικός αριθµός) είναι ίση µε 0, δηλαδή (c)

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Α Για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΕΠΑ.Λ. 8 ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι: ( f (x) + g (x)) = f (x) + g(x) Μονάδες 0 Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ 4 ΘΕΜΑ 1ο Α. ς υποθέσουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν (2001 2012) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε (2003 2012) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν (2001 2012) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε (2003 2012) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν (00 0) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε (003 0) Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ

Διαβάστε περισσότερα

Μονάδες 2 β. αν Α Β τότε Ρ(Β)... Ρ(Α). Μονάδες 2 Β.1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

Μονάδες 2 β. αν Α Β τότε Ρ(Β)... Ρ(Α). Μονάδες 2 Β.1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1.

Διαβάστε περισσότερα

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A. Να αποδείξετε ότι η παράγωγος της ταυτοτικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ»

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση

Διαβάστε περισσότερα

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 000 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ ο A.. Σχολικό βιβλίο σελίδα 5 A.. α.

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1) ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α. Το 50% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα (α), ενώ το 30% των κατοίκων διαβάζουν την εφηµερίδα (α) και δε διαβάζουν την εφηµερίδα (β). Ποια είναι η πιθανότητα ένας

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ Γ. Ε. ΛΥΚΕΙΟ 008 43 Γ. Ε. ΛΥΚΕΙΟ 008 44 Α. Έστω f συνάρτηση με πεδίο ορισμού Α παραγωγίσιμη σε κάθε Α και c πραγματική σταθερά. Να αποδείξετε ότι: (cf ()) = cf () Μονάδες 5 Β. Να χαρακτηρίσετε με Σ (σωστό)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Να αποδείξετε

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Χρόνια υπηρεσίας [ - )

Χρόνια υπηρεσίας [ - ) Το 4 ο Θέμα (Πανελλαδικές 000-03) ) 000 Στα σ χολεί α ενός Δή μου υπη ρετούν συνολικά 00 εκπ αιδευτικοί. Ο συνολικός χρόνος υ- πηρεσίας των εκπαιδευτικών δίνεται από τον παρακάτω πίνακα: Χρόνια υπηρεσίας

Διαβάστε περισσότερα

F x h F x f x h f x g x h g x h h h. lim lim lim f x

F x h F x f x h f x g x h g x h h h. lim lim lim f x 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)

Διαβάστε περισσότερα

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 20 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

,,, και τα ενδεχόμενα

,,, και τα ενδεχόμενα ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) 0 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f(x)=x είναι f( x=, ) για κάθε x Α. Έστω μια

Διαβάστε περισσότερα

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε

Διαβάστε περισσότερα