Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις"

Transcript

1 Διπλωματική εργασία Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Καλλιανού Φωτεινή

2 Θέμα της εργασίας : Τα συστήματα και τα πλαίσια αναφοράς (ουράνια και γήινα) Οι κινήσεις της Γης που επηρεάζουν τους άξονες των συστημάτων Οι νέες συμβάσεις της IAU που αφορούν τον μετασχηματισμό ανάμεσα στο γήινο και το ουράνιο σύστημα

3 Σύστημα Αναφοράς είναι η πλήρης προδιαγραφή για το πώς ένα σύστημα συντεταγμένων πρόκειται να διαμορφωθεί και καθορίζει τους άξονες και τις διαδικασίες μέσω των οποίων γίνεται ο μετασχηματισμός μεταξύ των παρατηρήσεων και των μοντέλων που αφορούν το εν λόγω σύστημα Πλαίσιο Αναφοράς είναι ένα σύνολο σημείων αναφοράς και των συντεταγμένων τους που χρησιμεύει στην πρακτική υλοποίηση ενός συγκεκριμένου συστήματος αναφοράς

4 Στην αστρονομία και τη γεωδαισία χρησιμοποιούνται κυρίως τα : ICRS-ICRF Χρησιμοποιούνται οι γωνίες α,δ Βασίζεται στη θέση της εκλειπτικής και του μέσου ισημερινού την εποχή J2000 Κέντρο του το βαρύκεντρο του ηλιακού συστήματος Κινηματικός ορισμός: δεν παρουσιάζει κίνηση ως προς μακρινά εξωγαλαξιακά αντικείμενα

5 IΤRS-IΤRF Άξονας Z ο μέσος πόλος της περιόδου (CIO)( Κέντρο το κέντρο μάζας της Γης Άξονας Χ ο μεσημβρινός του Greenwich Υλοποιείται από ένα δίκτυο επίγειων σταθμών των οποίων οι συντεταγμένες προσδιορίζονται με μεθόδους δορυφορικής γεωδαισίας

6 Συστήματα μέτρησης χρόνου Ως τα μέσα του 20ου αιώνα Ως τα μέσα της δεκαετίας 1970 Κλίμακες που βασίζονται στην περιστροφή της Γης αστρικός παγκόσμιος Κλίμακες που βασίζονται στο δευτερόλεπτο του SI ατομικός UTC Η ανάγκη για μεγαλύτερη ακρίβεια στον συγχρονισμό των χρονομέτρων οδήγησε στην ανάπτυξη σχετικιστικών κλιμάκων

7 Σχετικιστικές κλίμακες χρόνου Ιδιοχρόνος Συντεταγμένος χρόνος Επαναπροσδιορισμός του ατομικού χρόνου Βαρυκεντρικός & Γεωκεντρικός Συντεταγμένος χρόνος TCB, TCG: ορίστηκαν το 1991 Γήινος χρόνος TT(είναι συμβατός με τις νέες συμβάσεις της IAU)

8 Περιστροφή γύρω από τον άξονα της Οι κινήσεις της Γης Πλανητική μετάπτωση Μετάπτωση Κλόνηση Κίνηση του πόλου Μεταβολή στο μήκος της μέρας Μετατόπιση της εκλειπτικής και του σημείου Μετατόπιση του άξονα περιστροφής και του σημείου Μεταβολή των αστρονομικών συντεταγμένων

9 Εκφράζεται από τη διαφορά μεταξύ Παγκόσμιου και Ατομικού χρόνου Μεταβολή του LOD Αίτια: Παλιρροιακά: Απώλεια ενέργειας λόγω παλιρροιών Κλιματικά: Άνεμοι, ωκεάνια ρεύματα Γεωφυσικά: Αλλαγές στην κατανομή μάζας στο εσωτερικό της Γης

10 Πλανητική μετάπτωση Το επίπεδο της εκλειπτικής αλλάζει θέση στο χώρο Οφείλεται στην έλξη που ασκείται στη Γη από τους άλλους πλανήτες Προκαλεί μετατόπιση του σημείου Αποτελεί μέρος του μοντέλου μετάπτωσης

11 Μετάπτωση Εμφανίζεται λόγω της ροπής που ασκείται στη Γη από τις ελκτικές δυνάμεις του Ήλιου και της Σελήνης Ο άξονας περιστροφής της Γης διαγράφει μια κωνική επιφάνεια με περίοδο περίπου χρόνια Υπολογίζεται ανάμεσα σε δύο χρονικές στιγμές με τη βοήθεια των γωνιών z, ζ και θ και η μετατροπή γίνεται με χρήση του πίνακα P = R 3 (-z)r 2 (θ)r 3 (-ζ) Οι γωνίες z, ζ, θ δίνονται από το εκάστοτε μοντέλο μετάπτωσης

12 Κλόνηση Αποτελεί το ακανόνιστο μέρος της κίνησης του άξονα περιστροφής Εμφανίζεται λόγω των σεληνοηλιακών δυνάμεων αλλά και λόγω της σύστασης του εσωτερικού της Γης Η βασική κίνηση έχει περίοδο 18.6 χρόνια Υπολογίζεται τη ζητούμενη χρονική στιγμή με τη βοήθεια των γωνιών ε 0, ε και Δψ και η μετατροπή γίνεται με χρήση του πίνακα Ν =R 1 (-ε 0 -Δε)R 3 (-Δψ)R 1 (ε 0 )

13 Κλόνηση Οι γωνίες ε 0, Δε, Δψ δίνονται από αθροίσματα πολλών όρων, από το εκάστοτε μοντέλο κλόνησης Τα αθροίσματα αυτά προκύπτουν από γραμμικούς συνδυασμούς των θεμελιωδών ορισμάτων κλόνησης Τα θεμελιώδη ορίσματα κλόνησης σχετίζονται με τις θέσεις του Ήλιου και της Σελήνης και είναι τα l, l, F, D, Ωόπου l : μέσο μήκος Σελήνης l : μέσο μήκος Ήλιου F: όρισμα πλάτους της Σελήνης D: μέση αποχή Σελήνης από τον Ήλιο Ω: μήκος ανιόντος δεσμού της Σελήνης

14 Κίνηση του πόλου Είναι η κίνηση του αληθούς ουράνιου πόλου (στιγμιαίου άξονα περιστροφής) ως προς ένα σημείο σταθερό στο φλοιό της Γης Οφείλεται στις σεληνοηλιακές επιδράσεις και σε γεωφυσικές διαδικασίες Οι βασικές συνιστώσες είναι η ταλάντωση Chandler (περίοδος 14 μήνες) και η ετήσια ταλάντωση Προκαλεί μεταβολή των αστρονομικών συντεταγμένων και έτσι απαιτείται αναγωγή αυτών Παρατηρείται από τις μεταβολές συντεταγμένων ενός συνόλου σταθμών Η περιγραφή της κίνησης γίνεται με τη βοήθεια των γωνιών χ p και y p

15 Νέες συμβάσεις IAU 2003 Νέο μοντέλο μετάπτωσης και κλόνησης Ορισμός ενδιάμεσου ουράνιου συστήματος Ορισμός ενδιάμεσου γήινου συστήματος Ορισμός γωνίας περιστροφής της Γης Χρήση της μή στρεφόμενης αφετηρίας Νέος μετασχηματισμός μεταξύ του ουράνιου και του γήινου συστήματος Μετάθεση πλαισίου μεταξύ του ICRS και του J2000

16 Μετάθεση πλαισίου Ανάμεσα στο ICRS και το J2000(μέσο σημείο και μέσος ισημερινός της εποχής J2000) υπάρχει μια συστηματική διαφορά που δίνεται από τον πίνακα B= R ( η ) R ( ξ ) R ( dα ) Μή στρεφόμενη αφετηρία Είναι ανεξάρτητη από την περιστροφή της Γης Οι αφετηρίες των ενδιάμεσων συστημάτων αποτελούν εφαρμογή της Γωνία περιστροφής της Γης

17 Ενδιάμεσο Ουράνιο Σύστημα Ουράνιο γεωκεντρικό σύστημα Ορίζεται από τις συντεταγμένες του πόλου και από τη θέση της αφετηρίας του Έχει τον ίδιο προσανατολισμό με το σύστημα αληθούς Ισημερινού Τα στοιχεία του μοναδιαίου διανύσματος του πόλου CIP δίνονται από τις σχέσεις Χ = ΝΡΒ(3,1) και Υ = ΝΡΒ(3,2) Η θέση της αφετηρίας CIO δίνεται από την τιμή της γωνίας s s T c A 6 ( ) = XY/ '' 10 + Σ κ k sin k +...

18 Ενδιάμεσο Γήινο Σύστημα Ίδια χαρακτηριστικά με το ουράνιο ενδιάμεσο σύστημα αλλά περιστρέφεται μαζί με τη Γη Πόλος ο CIP, αφετηρία η γήινη ενδιάμεση αφετηρία ΤΙΟ στον αληθή Ισημερινό Η θέση της αφετηρίας ΤΙΟ δίνεται από τη σχέση s ' = 0'' T Ο μέσος αστρικός χρόνος δίνεται από τη σχέση : s s s GMST ( D, T ) = θ T T U s T T 3 s 4 2

19 Νέο μοντέλο μετάπτωσης Ακρίβεια συνολικά για το μοντέλο μετάπτωσης και κλόνησης καλύτερη από 0.2mas Οι τιμές για τις γωνίες μετάπτωσης δίνονται από τις ακόλουθες σχέσεις όπου t ο γήινος χρόνος ΤΤ ζ θ z Α = '' '' t '' t '' t '' t '' t, Α = '' t '' t '' t '' t '' t, A 2 3 = '' '' t '' t '' t '' t '' t 2 3 t = ( JD ) / 36525

20 Νέο μοντέλο κλόνησης Οι γωνίες Δψ και Δε δίνονται από αθροίσματα 678 σεληνοηλιακών όρων και 687 πλανητικών όρων μέσω των ακόλουθων σχέσεων: N Δ ψ = ( A + A' t)sin( ARGUMENT ) + ( A'' + A''' t)cos( ARGUMENT ) i= 1 N i= x x x x Δ ε = ( B + B ' t)cos( ARGUMENT ) + ( B '' + B ''' t)sin( ARGUMENT ).... x x x x όπου οι συντελεστές Α, Β δίνονται από το μοντέλο κλόνησης ενώ τα ορίσματα των σχέσεων είναι τα πέντε γνωστά θεμελιώδη ορίσματα l, l, l F, D, Ω και άλλα επιπλέον 9 ορίσματα που σχετίζονται με τη θέση των πλανητών

21 Νέος μετασχηματισμός μεταξύ του ουράνιου και του γήινου συστήματος Χρησιμοποιούνται οι ακόλουθοι πίνακες : C: πίνακας μετατροπής από το ουρανογραφικό στο ενδιάμεσο σύστημα 2 1 ax 0 X C= R3 ( s) 0 1 Y X Y a X + Y ( ) R 3 (θ): Πίνακας γωνίας περιστροφής της Γης r = R ( x) R ( y) R ( s') R ( θ ) r ter int. r int. = Cr ICRS

22 Μετατροπή από το ουράνιο στο γήινο σύστημα (Ι) Υπολογισμός φαινόμενων συντεταγμένων 1. Αναγωγή για ίδια κίνηση, παράλλαξη και αποπλάνηση του φωτός mx = μα cosδ sin a μ sinδ cos a + υπ cosδ cos a m = μ cosδ cos a μ sinδ sin a + υπ cosδ sin a m y z α 0 0 δ δ = μ sinδ + υπ sinδ δ 0 0 P= q+ Tm π E B r = ( β r + (1 + ( r V)/(1 + β )) V)/(1 + r V) (απαιτούνται τα στοιχεία θέσης και κίνησης της Γης τα οποία λαμβάνονται από την βαρυκεντρική εφημερίδα JPL DE405/LE405)

23 Μετατροπή από το ουράνιο στο γήινο σύστημα (ΙΙ) 2. Αναγωγή για μετάθεση πλαισίου, μετάπτωση και κλόνηση Μέθοδος σημείου Μέθοδος CIO r NPBr φαινομενες = r φαινομενες = Cr Υπολογισμός γήινων συντεταγμένων r = R ( x) R ( y) R ( s') R ( A) r γηινες φαινομενες Α=Αληθής Αστρικός χρόνος Greenwich A=Γωνία περιστροφής της Γης

24 Περιγραφή της Εφαρμογής Σκοπός να δειχθεί η βελτίωση των αποτελεσμάτων με τη χρήση του νέου μοντέλου μετάπτωσης και κλόνησης Επιλογή 5 άστρων με βάση τη θέση τους στην ουράνια σφαίρα και την ίδια κίνησή τους Δεδομένα συντεταγμένων άστρων από τους καταλόγους που είναι συμβατοί με την εποχή αναφοράς των μοντέλων μετάπτωσης και κλόνησης Χρήση 3 μοντέλων μετάπτωσης και κλόνησης Κίνηση πόλου από τις προβλέψεις της IERS Δημιουργία λογισμικού που πραγματοποιεί μετατροπή από το ουράνιο στο γήινο σύστημα την

25 Λογισμικό εφαρμογής Αρχική Οθόνη Μετασχηματισμός από το ουράνιο στο γήινο σύστημα μοντέλο 1950

26 Δεδομένα εφαρμογής Επειδή η επίδραση της μετάπτωσης και της κλόνησης εξαρτάται από τη θέση των άστρων, ενώ το μέγεθός τους εξαρτάται και από την ημερομηνία, οι υπολογισμοί γίνονται για 4 ημερομηνίες μοντέλο 1950 κατάλογος SAO μοντέλο 1980 κατάλογος ΡΡΜ μοντέλο 2000 κατάλογος Τycho2

27 Αποτελέσματα εφαρμογής άστρο Ημερομ. Μοντέλο α app δ app Δα (s) Δδ ( ) h 37 m 55 s º h 37 m 55 s º h 37 m 55 s º CIO 1 h 37 m 36 s º h 37 m 55 s º h 37 m 55 s º h 37 m 57 s º h 37 m 57 s º h 37 m 57 s º CIO 1 h 37 m 37 s º h 37 m 56 s º h 37 m 57 s º h 38 m 0 s º h 38 m 0 s º h 38 m 0 s º CIO 1 h 37 m 40 s º h 38 m 0 s º h 38 m 0 s º h 38 m 0 s º h 38 m 0 s º h 38 m 0 s º CIO 1 h 37 m 38 s º h 38 m 0 s º h 38 m 0 s º

28 Αποτελέσματα εφαρμογής 0,25 0,2 0,15 0,1 0,05 0 Μαρ-06 Ιουν-06 Σεπ-06 Δεκ-06 Διαφορά ορθής αναφοράς μοντέλου 2000 με μοντέλο (sec) Ημερομηνία ,6 0,5 0,4 0,3 0,2 0,1 0-0,1-0,2-0,3-0,4-0,5 Μαρ-06 Ιουν-06 Σεπ-06 Δεκ-06 Διαφορά απόκλισης μοντέλου 2000 με μοντέλο (arcsec) Ημερομηνία 0,015 0,01 0, ,005-0,01-0,015 Μαρ-06 Ιουν-06 Σεπ-06 Δεκ-06 Ημερομηνία ,15 0,1 0,05 0-0,05-0,1-0, Διαφορά ορθής αναφοράς μοντέλου 2000 με μοντέλο (sec) Διαφορά απόκλισης μοντέλου 2000 με μοντέλο (arcsec) Μαρ-06 Ιουν-06 Σεπ-06 Δεκ-06 Ημερομηνία

29 Σύγκριση αποτελεσμάτων Η διαφορά των ορθών αναφορών των 2 μεθόδων του 2000 ισούται με την εξίσωση των αφετηριών Η διαφορά στις φαινόμενες συντεταγμένες οφείλεται είτε στο μοντέλο μετάπτωσης-κλόνησης είτε στις διαφορές των αρχικών πληροφοριών των καταλόγων Σύγκριση : 30% οφείλεται στις αρχικές πληροφορίες,, 70% οφείλεται στο μοντέλο μετάπτωσης-κλόνησης και στις σχέσεις που χρησιμοποιούνται για την αναγωγή της αποπλάνησης Σύγκριση : 90% οφείλεται στις αρχικές πληροφορίες,, 10% οφείλεται στο μοντέλο μετάπτωσης-κλόνησης

30 Συμπεράσματα Σημασία νέων συμβάσεων: Ακριβέστερο ουράνιο και γήινο πλαίσιο Χρήση μη στρεφόμενης αφετηρίας Νέος μετασχηματισμός μεταξύ ουράνιου και γήινου πλαισίου Ακριβέστερο μοντέλο μετάπτωσης-κλόνησης που λαμβάνει υπόψην και τις πλανητικές επιδράσεις Προοπτικές: Συνεχής παρακολούθηση και διατήρηση των υπαρχόντων πλαισίων Αναζήτηση ακόμη πιο ακριβούς μοντέλου κλόνησης

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 37 5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 5.1 Εισαγωγή Οι κύριες κινήσεις της Γης είναι: μια τροχιακή κίνηση του κέντρου μάζας γύρω από τον Ήλιο και μια περιστροφική κίνηση γύρω από τον άξονα που περνά από

Διαβάστε περισσότερα

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD)

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Διαταραχές των κινήσεων της Γης Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Μεταβολή στην διεύθυνση του άξονα περιστροφής στον χώρο (μετάπτωση

Διαβάστε περισσότερα

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 45 6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 6.1 Εισαγωγή Ως τώρα έχουμε δεχθεί ότι οι ουρανογραφικές συντεταγμένες (α,δ) κάθε άστρου ή οι αστρονομικές συντεταγμένες (Λ,Φ) ενός συγκεκριμένου τόπου παραμένουν σταθερές,

Διαβάστε περισσότερα

Γεωδαιτική Αστρονομία

Γεωδαιτική Αστρονομία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης Οι Κινήσεις της Γης. Eπιπτώσεις στα Συστήματα για τη ορυφορική Γεωδαισία Οι αρχαίοι θεωρούσαν τη Γη ακίνητη και κέντρο του σύμπαντος Η κίνηση της Γης TEPAK ορυφορική Γεωδαισία 6 ο Εξάμηνο 2011-12 Στην

Διαβάστε περισσότερα

Σφαιρικό σύστημα αναφοράς

Σφαιρικό σύστημα αναφοράς Σφαιρικό σύστημα αναφοράς Ουρανογραφικό σύστημα αναφοράς Αστρονομικό σύστημα αναφοράς Οριζόντιο σύστημα αναφοράς Ισημερινό σύστημα αναφοράς Το τρίγωνο θέσης Αστρικός Χρόνος - 1 Ο αστρικός χρόνος είναι

Διαβάστε περισσότερα

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number) ΚΛΙΜΑΚΕΣ ΧΡΟΝΟΥ Διάστημα ισχύος ( 0 h UTC ) TAI - UTC Άλλες κλίμακες 1980 Jan 1. - 1981 Jul 1. 19 s TAI - GPS Time = 19 s 1981 Jul 1. - 1982 Jul 1. 20 s 1982 Jul 1. - 1983 Jul 1. 21 s 1983 Jul 1. - 1985

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 3: Συστήματα Χρόνου Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 23 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συμβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονομάζεται κλίμακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 25 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συµβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονοµάζεται κλίµακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle 21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ. Διπλωματική εργασία.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ. Διπλωματική εργασία. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Διπλωματική εργασία ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΠΛΑΙΣΙΑ ΑΝΑΦΟΡΑΣ ΣΤΗ ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΟΙ ΔΙΕΘNΕΙΣ ΣΥΜΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Άσκηση ετοιμότητας για το Ενδιάμεσο Διαγώνισμα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το ίδιο από τη Γη. Τα δύο σηµεία που έχουν ενδιαφέρον

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση)

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 4ο εξάμηνο ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός της ς - Συνδέσεις των γεωεπιστημών

Διαβάστε περισσότερα

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών

Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Διονύσης Στεφανάτος Ειδικός Επιστήμονας, Στρατιωτική Σχολή Ευελπίδων 1. Εισαγωγή Σε αυτήν την ενότητα παρουσιάζουμε μια απλή

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη

Διαβάστε περισσότερα

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται ΚΕΦΑΛΑΙΟ 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΧΡΟΝΟΣ 2.1 Ουράνια σφαίρα-βασικοί ορισµοί Για να ορίσουµε τις θέσεις των αστέρων, τους θεωρούµε να προβάλλονται σαν σηµεία στην εσωτερική επιφάνεια µιας σφαίρας µε αυθαίρετη

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω Παράρτημα Αʹ Στοιχεία αστρονομίας θέσης - πηγές δεδομένων Αʹ.1 Εισαγωγή Απαραίτητη προϋπόθεση για να αξιοποιηθούν όλα όσα αναπτύξαμε στο κυρίως βιβλίο είναι να γνωρίζουμε τη θέση στον ουρανό του αντικειμένου

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Επιµορφωτικά Σεµινάρια ΑΤΜ Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Συστήματα & πλαίσια αναφοράς Μετασχηματισμοί συντεταγμένων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΩΚΕΑΝΟΓΡΑΦΙΑΣ Ε ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ ΩΚΕΑΝΟΓΡΑΦΙΑΣ Ε ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ ΩΚΕΑΝΟΓΡΑΦΙΑΣ Ε ΕΞΑΜΗΝΟ Παλίρροιες Ορισμός Παλίρροιες είναι οι διαδοχικές εναλλασσόμενες άνοδοι (πλημμυρίδα) και κάθοδοι (άμπωτη) της στάθμης της θάλασσας σε σχέση με την ξηρά, οι οποίες δημιουργούνται

Διαβάστε περισσότερα

Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία

Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία Αντωνοπούλου Αλεξάνδρα Διπλωματική Εργασία που υποβλήθηκε στη Σχολή Μηχανικών Ορυκτών Πόρων ως μέρος των απαιτήσεων για

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 8: Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 3: Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις

Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH TZΕΜΟΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 3507 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH Όλοι γνωρίζουμε ότι η εναλλαγή των 4 εποχών οφείλεται στην κλίση που παρουσιάζει ο άξονας περιστροφής

Διαβάστε περισσότερα

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων

Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Μέθοδος των γραμμών πόλωσης των εγκαρσίων κυμάτων Πρώτες αποκλίσεις των SH και SV κυμάτων καθορισμός των ορικών επιφανειών u V =0 και u H =0 Μειονέκτημα : η ανάλυση της πρώτης απόκλισης δεν είναι εύκολη

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ II ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER ΜΑΘΗΜΑ 3 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΑΓΩΓΕΣ ΤΟΥ ΜΕΤΡΗΜΕΝΟΥ ΠΕΔΙΟΥ ΒΑΡΥΤΗΤΑΣ ΑΝΩΜΑΛΙΑ BOUGUER Υπολογισμός της ανωμαλίας Bouguer Ανωμαλία Bouguer = Μετρημένη Βαρύτητα - Μοντέλο

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη

ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική

Διαβάστε περισσότερα

1.2: 1.2 D R r (1.1) 1.3: 206.265 (1.2)

1.2: 1.2    D R r (1.1) 1.3: 206.265 (1.2) ΕΙΣΑΓΩΓΗ Η Αστρονοµία κατέχει ξεχωριστή θέση ανάµεσα στις επιστήµες και από πολλούς θεωρείται η αρχαιότερη όλων. Παρά ταύτα πρόδροµος και «µητέρα» της θεωρείται η Αστρολογία. Η Αστρονοµία ξεκίνησε παρατηρώντας

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΑΥΣΙΠΛΟΪΑ 1 o ΔΙΑΓΩΝΙΣΜΑ α. Τι είναι έξαρμα του πόλου υπέρ τον ορίζοντα και γιατί ενδιαφέρει τον ναυτιλλόμενο. β. Να ορίσετε τα είδη των αστέρων (αειφανείς, αφανείς και Αμφιφανείς)και να γράψετε τις συνθήκες

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή

Διαβάστε περισσότερα

Δορυφορικές τροχιές. Θεωρία-Βασικές Αρχές. Κανονική Τροχιακή Κίνηση. Σύστημα Αναφοράς Τροχιακών Συντεταγμένων. 1ος Νόμος του Kepler...

Δορυφορικές τροχιές. Θεωρία-Βασικές Αρχές. Κανονική Τροχιακή Κίνηση. Σύστημα Αναφοράς Τροχιακών Συντεταγμένων. 1ος Νόμος του Kepler... Δορυφορικές τροχιές Θεωρία-Βασικές Αρχές Σύστημα Αναφοράς Τροχιακών Συντεταγμένων Η μελέτη της τροχιάς ενός δορυφόρου, αφορά τον προσδιορισμό της διαδρομής που ακολουθεί στο διάστημα. Εφαρμόζονται αρχές

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ. Διπλωματική εργασία

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ. Διπλωματική εργασία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ Διπλωματική εργασία Ταυτόχρονος προσδιορισμός των αστρονομικών συντεταγμένων με τη μέτρηση οριζόντιων γωνιών αστέρων

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΟΡΥΦΟΡΙΚΗΣ ΓΕΩ ΑΙΣΙΑΣ. ημήτρης εληκαράογλου Επικ. Καθ. Ε.Μ.Π.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΟΡΥΦΟΡΙΚΗΣ ΓΕΩ ΑΙΣΙΑΣ. ημήτρης εληκαράογλου Επικ. Καθ. Ε.Μ.Π. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΟΡΥΦΟΡΙΚΗΣ ΓΕΩ ΑΙΣΙΑΣ ημήτρης εληκαράογλου Επικ. Καθ. Ε.Μ.Π. Αθήνα 2005 ΠΡΟΛΟΓΟΣ Το παρόν εγχειρίδιο σημειώσεων αποσκοπεί

Διαβάστε περισσότερα

HEPOS workshop 25-26/9/2008. 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ. ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ

HEPOS workshop 25-26/9/2008. 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ. ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ HEPOS και σύγχρονα γεωδαιτικά συστήµατα αναφοράς: Θεωρία και υλοποίηση, προοπτικές και εφαρµογές. HEPOS workshop 25-26/9/2008 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ Γεωδαιτικά Συστήµατα

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

Released under a. Creative Commons. Attribute & Non-commercial

Released under a. Creative Commons. Attribute & Non-commercial 3. ΟΡΥΦΟΡΙΚΕΣ ΤΡΟΧΙΕΣ «ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΟΡΥΦΟΡΙΚΗΣ ΓΕΩ ΑΙΣΙΑΣ» ΠΕΡΙΕΧΟΜΕΝΑ 3.00 ΡΟΛΟΣ, ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΧΡΗΣΗ ΤΩΝ ΔΟΡΥΦΟΡΙΚΩΝ ΤΡΟΧΙΩΝ... 3 3.01 ΑΝΑΓΚΕΣ ΓΙΑ ΤΙΣ ΕΦΑΡΜΟΓΕΣ ΑΚΡΙΒΕΙΑΣ... 4 3.02 ΧΡΗΣΗ ΠΡΟΣΕΓΓΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 9: Συστήματα Συντεταγμένων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 9 ΙΟΥΝΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ

Διαβάστε περισσότερα

18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ»

18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ» Θέμα 1 ο (Σύντομης ανάπτυξης): 18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ» Θέματα του Γυμνασίου (Α) Ποιοι πλανήτες ονομάζονται Δίιοι; (Β) Αναφέρατε και

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2. ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

Δορυφορικές τροχιές. Μετατροπές δορυφορικών συντεταγμένων. Εξίσωση του Kepler. Εξίσωση του Kepler Μ = Ε e sine, M E

Δορυφορικές τροχιές. Μετατροπές δορυφορικών συντεταγμένων. Εξίσωση του Kepler. Εξίσωση του Kepler Μ = Ε e sine, M E Δορυφορικές τροχιές Μετατροπές δορυφορικών συντεταγμένων Εξίσωση του Kepler Η Μέση Ανωμαλία Μ, για μη κυκλικές τροχιές δεν τιστοιχεί σε κάποια υλοποιήσιμη γωνία, καθώς δεν αφέρεται στο πραγματικό σώμα,

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ KΕΦΑΛΑΙΟ 1: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ Σελ. : 03 έως 16 του βιβλίου ΚΣ 0 ο VIDO, 11013 0λ έως 8:40λ : Σχόλια στα αποτελέσματα της εξέτασης προόδου 8:40λ έως το τέλος: Σε ένα πλανήτη η βαρυτική του αυτοενέργεια

Διαβάστε περισσότερα

2.0 H κίνηση των δορυφόρων. 2.1 Γενικά

2.0 H κίνηση των δορυφόρων. 2.1 Γενικά .0 H κίνηση των δορυφόρων.1 Γενικά Η κίνηση ενός τεχνητού δορυφόρου γύρω από τη γη εκφράζεται από μια πολύπλοκη τροχιά, μια ανοικτή σπείρα στο χώρο, που υπολογίζεται με τους νόμους της ουράνιας μηχανικής.

Διαβάστε περισσότερα

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια)

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Τµήµα Αρχιτεκτόνων Μηχανικών ΜΕ801 Χαρτογραφία 1 Μάθηµα επιλογής χειµερινού εξαµήνου Πάτρα, 2016 Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Βασίλης Παππάς, Καθηγητής

Διαβάστε περισσότερα