ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής"

Transcript

1 ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο, τα οποία θα είναι κατάλληλα για επεξεργασία µε σχεδιαστικές εφαρµογές (CAD). Η εξαγωγή των χαρακτηριστικών γίνεται απευθείας από το νέφος σηµείων που περιγράφει το 3 αντικείµενο, και το οποίο έχει παραχθεί από τη σάρωση του αντικειµένου µε 3 σαρωτή laser ή κάποια παρόµοια τεχνική. Σκοπός είναι η δηµιουργία ενός CAD µοντέλου το οποίο θα µπορεί να τροποποιείται ή να επανασχεδιαστεί και θα περιγράφει µε ακρίβεια τη δοµή και την τοπολογία του νέφους σηµείων. Προηγούµενες περίοδοι Στο παρελθόν είχαν µελετηθεί µέθοδοι ανάστροφης µηχανικής (reverse engineering) που έχουν αναπτυχθεί για διάφορες εφαρµογές και τα διάφορα είδη αναπαράστασης που χρησιµοποιούνται για την αναπαράσταση 3 µοντέλων. Πιο διεξοδικά µελετήθηκε η µέθοδος των Wu, Wong, Loh και Zhang [1], η οποία και υλοποιήθηκε. Η µέθοδος διαιρεί το νέφος σηµείων σε υποσύνολα χρησιµοποιώντας εγκάρσιες τοµές για να κόψει το αντικείµενο σε λεπτές φέτες, οι οποίες στη συνέχεια µπορούν να θεωρηθούν ως ξεχωριστά 2 νέφη σηµείων. Τα νέφη σηµείων που προκύπτουν επεξεργάζονται µε χρήση τεχνικών 2. Η µέθοδος αυτή αν και αναφέρεται για τη χρήση σε Rapid Prototyping, µπορεί να χρησιµοποιηθεί επιτυχώς και σε εφαρµογές Reverse Engineering. Μεταξύ άλλων παρατηρήθηκε ότι η µέθοδος αυτή είναι αρκετά ευαίσθητη στην διάταξη των σηµείων του νέφους, και τα αποτελέσµατα που δίνει αποκλίνουν από τα επιθυµητά όταν το νέφος σηµείων δεν είναι αρκετά πυκνό σε όλη του την επιφάνεια. Οι δοκιµές της µεθόδου έγιναν µε το νέφος σηµείου του κατσαβιδιού της Cyberware [2]. Τρέχουσα Εργασία Στη συνέχεια ο υποψήφιος ανέπτυξε µια νέα µέθοδο για την εξαγωγή των χαρακτηριστικών από το νέφος σηµείων, η οποία επίσης χρησιµοποιεί εγκάρσιες τοµές για να χωρίσει το 3 νέφος σηµείων σε λεπτές φέτες που µπορούν να θεωρηθούν ως ξεχωριστά 2 νέφη σηµείων, όπως φαίνεται στην Εικόνα 1α. Επειδή στην πραγµατικότητα η κάθε φέτα έχει διακριτό πάχος, τα σηµεία που ανήκουν σε αυτή θα είναι σηµεία του 3 χώρου και δεν θα ανήκουν στο ίδιο επίπεδο. Για το λόγο αυτό προβάλλονται τα σηµεία της φέτας σε ένα επίπεδο παράλληλο στη φέτα, όπως φαίνεται στην Εικόνα 1β. Το σφάλµα που προκύπτει από την προβολή των σηµείων στο επίπεδο εξαρτάται από τη διάταξη των σηµείων στη φέτα και το πάχος της φέτας. Έτσι το πάχος της φέτας πρέπει να είναι τέτοιο που να περιγράφει το κοµµάτι του 3 νέφους σηµείων επαρκώς και ταυτόχρονα να µην αλλοιώνεται η πληροφορία των σηµείων από την προβολή τους στο επίπεδο.

2 Εικόνα 1 (a) Το νέφος σηµείων διαιρείται σε λεπτές φέτες που θεωρούνται ξεχωριστά 2 νέφη σηµείων. (b) Τα σηµεία που ανήκουν σε κάθε φέτα προβέλλονται σε ένα επίπεδο παράλληλο στη φέτα. Εικόνα 2 Το κυρτό περίβληµα των σηµείων µιας φέτας και µια περιοχή µε το δικό της κυρτό περίβληµα. Σηµαντική επίσης είναι και η επιλογή της κατεύθυνσης που θα χρησιµοποιηθεί για τη διαίρεση του 3 αντικειµένου, καθώς τα χαρακτηριστικά που θα εξαχθούν εξαρτώνται από την κατεύθυνση της διαίρεσης σε φέτες. Πράγµατι, αν επιλεγεί µια κατεύθυνση διαφορετική από την επιθυµητή, οι φέτες που θα προκύψουν θα περιγράφουν διαφορετικά τοπικά χαρακτηριστικά του αντικειµένου από τα αναµενόµενα. Αφού διαιρέσει το 3 αντικείµενο σε 2 φέτες, ο υποψήφιος επεξεργάζεται την κάθε φέτα ξεχωριστά. Αρχικά παίρνει το κυρτό περίβληµα (Convex Hull) [3] των σηµείων της φέτας (Εικόνα 2), και για κάθε ευθύγραµµο τµήµα του κυρτού περιβλήµατος ορίζει µια περιοχή στην οποία ανήκουν τα πιο κοντινά σηµεία στο ευθύγραµµο τµήµα αυτό. Στο σηµείο αυτό έχουν αναπτυχθεί δυο εναλλακτικές µεθόδους για την εξαγωγή των χαρακτηριστικών σηµείων (feature points) της φέτας. Ένας τρόπος είναι να πάρει για κάθε περιοχή το δικό της κυρτό περίβληµα και να συνδυάσει τα ευθύγραµµα τµήµατα του αρχικού περιβλήµατος µε αυτά των επιµέρους περιοχών, ώστε να προκύψει ένα πολύγωνο το οποίο θα βρίσκεται κοντά στα σηµεία της φέτας σε αρκετές περιοχές. Για να πλησιάσει το πολύγωνο τα σηµεία σε όλες τις περιοχές επαναλαµβάνει υπολογίζοντας εκ νέου τις περιοχές για κάθε τµήµα το πολυγώνου και εφαρµόζοντας το κυρτό περίβληµα σε κάθε µια από αυτές. Το παράδειγµα της Εικόνας 2 φαίνεται ολοκληρωµένο (µετά από δυο επαναλήψεις) στην Εικόνα 3. Η µέθοδος τερµατίζει όταν όλες οι περιοχές της φέτας περιγράφουν επαρκώς τα σηµεία που αντιστοιχίζονται σε αυτές (Το κριτήριο τερµατισµού περιγράφεται αναλυτικά από τον Said [4]. Η προσέγγιση αυτή είναι ικανοποιητική όταν τα σηµεία της φέτας παρουσιάζουν µικρή διασπορά. Σε περίπτωση που υπάρχει µεγάλη διασπορά των σηµείων θα πρέπει να ακολουθηθεί µια διαφορετική προσέγγιση, αφού µπορεί να παρατηρηθεί το φαινόµενο ασυνέχειας στα σηµεία όπου ενώνονται οι γειτονικές περιοχές (Εικόνα 4).

3 Εικόνα 3 (a) Στο πρώτο βήµα περιγράφονται Εικόνα 4 Αν τα σηµεία παρουσιάζουν µεγάλη επαρκώς κάποιες περιοχές. (b) Στο δεύτερο βήµα διασπορά, ενδέχεται να παρουσιαστούν περιγράφονται επαρκώς οι περισσότερες ασυνέχειες. περιοχές. Ο δεύτερος τρόπος είναι να υπολογιστεί για τα σηµεία της φέτας το διάγραµµα Voronoi [3], και για κάθε περιοχή να βρεθεί η πιο αποµακρυσµένη κορυφή voronoi (ή η πιο αποµακρυσµένη εντός µιας περιοχής) από το ευθύγραµµο τµήµα και στην αντίθετη πλευρά από εκείνη που βρίσκονται τα σηµεία. Για την κορυφή voronoi που επιλέγει, ο υποψήφιος παίρνει τα τρία (ή περισσότερα) σηµεία που βρίσκονται πάνω στον µέγιστο κενό κύκλο [3] µε κέντρο την κορυφή voronoi, όπως φαίνεται στην Εικόνα 5. Τα σηµεία αυτά αναγνωρίζονται ως χαρακτηριστικά σηµεία και η µέθοδος συνεχίζει µε κάποια πιο κοντινή voronoi ώστε να εντοπιστούν επιπλέον χαρακτηριστικά σηµεία. Αν εντοπιστούν αρκετά χαρακτηριστικά σηµεία στην περιοχή αυτή, ώστε να περιγράφονται τα σηµεία της περιοχής επαρκώς, δεν απαιτούνται επιπλέον υπολογισµοί. Όταν εφαρµοστεί η µέθοδος σε όλες τις περιοχές σηµείων της φέτας θα προκύψει ένα πολύγωνο που θα περιγράφει επαρκώς όλα τα σηµεία της φέτας και δεν θα παρουσιάζονται οι ασυνέχειες της προηγούµενης µεθόδου αν τα σηµεία της φέτας παρουσιάζουν µεγάλη διασπορά. Στην Εικόνα 6 φαίνεται το πολύγωνο όπως προσδιορίστηκε µε την τελευταία µέθοδο για µια περιοχή της φέτας. Εικόνα 5 Η πιο αποµακρυσµένη κορυφή voronoi που δεν έχει απόσταση µεγαλύτερη από τα σηµεία της περιοχής, και ο µέγιστος κενός κύκλος για την κορυφή αυτή. Εικόνα 6 Το πολύγωνο τώρα δεν παρουσιάζει ασυνέχειες όπως στην προηγούµενη προσέγγιση.

4 Υλοποίηση Οι µέθοδοι που περιγράφηκαν έχουν υλοποιηθεί σε περιβάλλον Visual C++ µε τη χρήση OpenGL για την οπτικοποίηση των δεδοµένων. Στις εικόνες εµφανίζονται στιγµιότυπα της εφαρµογής και των δυνατοτήτων της. Για τον υπολογισµό του κυρτού περιβλήµατος, αλλά και του διαγράµµατος voronoi, όπου απαιτείται, χρησιµοποιήθηκε η υλοποίηση του αλγορίθµου Qhull από τους Barber, Dobkin, και Huhdanpaa [5]. Επόµενοι Στόχοι Οι µέθοδοι βελτιώνονται συνεχώς για την πιο αποδοτική εκτέλεσή τους, και εµπλουτίζονται µε νέες δυνατότητες και χαρακτηριστικά. Ένα πρόβληµα που δεν έχει επιλυθεί ακόµη εντοπίζεται στη διαίρεση των σηµείων µιας 2 φέτας σε περιοχές. Προς το παρόν αντιστοιχίζουµε τα σηµεία στο αντίστοιχο ευθύγραµµο τµήµα του ήδη υπολογισµένου πολυγώνου ανάλογα µε την απόστασή του. Φαίνεται πως η προσέγγιση αυτή επαρκεί και είναι σωστή. Όµως έχουν εντοπιστεί περιπτώσεις στις οποίες δεν ισχύει ο ισχυρισµός αυτός, καθώς κάποια σηµεία µπορεί να βρίσκονται κοντά σε ένα τµήµα του πολυγώνου, αλλά να πρέπει να αντιστοιχιστούν σε κάποιο άλλο τµήµα του πολυγώνου, που βρίσκεται στην απέναντι πλευρά της φέτας. Μια τέτοια Εικόνα 7 Κάποια σηµεία ανήκουν σε περιοχή διαφορετική από αυτή που θα θέλαµε. περίπτωση εµφανίζεται στην Εικόνα 7, όπου βλέπουµε µια φέτα του νέφους σηµείων µιας βάρκας, επίσης από τη Cyberware [2]. Η λύση είναι να αντιστοιχίσουµε το κάθε σηµείο στο σωστό τµήµα του πολυγώνου, ανάλογα µε το που έχουν αντιστοιχιστεί οι γείτονες του σηµείου. Η µελέτη του προβλήµατος αυτού όµως δεν έχει ολοκληρωθεί ακόµα και η αναλυτική περιγραφή του θα δοθεί σε επόµενη φάση. ηµοσιεύσεις Σχετική µε την εργασία είναι η δηµοσίευση που έγινε στο συνέδριο GRAPP 07 µε τίτλο: Ι. Kyriazis, I. Fudos, and L. Palios, Detecting Features from Sliced Point Clouds. 2 nd International Conference on Computer Graphics Theory and Applications GRAPP, March 2007, Επίσης η τρέχουσα εργασία έχει υποβληθεί για δηµοσίευση στο συνέδριο 11 th IEEE International Conference on Computer Vision ICCV 07, October, 2007.

5 Βιβλιογραφία [1] Y. Wu, Y. Wong, H. Loh, and Y.F. Zhang. Modelling cloud data using an adaptive slicing approach. Computer-Aided Design, 36: , [2] Cyberware. Cyberware Rapid 3D Scanners Desktop 3D Scanner Samples [3] M. e. a. De Berg. Computational Geometry Algorithms and Applications. Springer-Verlag, [4] M. A. Said. Polyline approximation of single-valued digital curves using alternating convex hulls. Computer Graphics and Geometry, 4:75 99, [5] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The Quickhull Algorithm for Convex Hulls. ACM Transactions on Mathematical Software, 22, 4, ,

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο,

Διαβάστε περισσότερα

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής

ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο,

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Spline Αναπαραστάσεις

Γραφικά Υπολογιστών: Spline Αναπαραστάσεις 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Spline Αναπαραστάσεις Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τις εύκαμπτες (spline)

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

R k = r k x r k y r k z

R k = r k x r k y r k z Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες Καλογήρου Χαρίλαος Ηλ. Ταχυδροµείο : harkal@cs.uoi.gr Πανεπιστήµιο Ιωαννίνων Τµήµα Πληροφορικής Κατασκευή 3D µοντέλων κεφαλιών από ϕωτογραφίες p.1/ Εισαγωγή

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis Στόχοι Ενότητας Chapter 6 Problem Solving and Algorithm Design Nell Dale John Lewis Αναγνώριση αν ένα πρόβληµα µπορεί να επιλυθεί µε τη χρήση υπολογιστή Περιγραφή της διαδικασίας επίλυσης προβληµάτων και

Διαβάστε περισσότερα

Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών

Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών Τεχνικός Εφαρμογών Πληροφορικής Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών Εισαγωγή Εξάμηνο: 2014Β Διδάσκουσα: Ηλεκτρονική Τάξη: http://moodleforall.ictlab.edu.gr/ Περιεχόμενα Τι είναι τα γραφικά Είδη

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam)

Κεφάλαιο 1. Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) Κεφάλαιο 1 Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή computer aided design and manufacture (cad/cam) 1.1 Ορισμός σχεδιομελέτης και παραγωγής με χρήση υπολογιστή CAD (Computer

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:

Διαβάστε περισσότερα

ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams

ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς

Διαβάστε περισσότερα

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς Detecting Duplicates over Distributed Data Sources Δημήτρης Σουραβλιάς Δομή παρουσίασης Εισαγωγή Ορισμός του προβλήματος Παράδειγμα Αρχιτεκτονικές ανίχνευσης διπλότυπων Γενικές παρατηρήσεις Αναφορές DMOD

Διαβάστε περισσότερα

Μορφές προϊόντων (1/3) Πλέγµα τριγώνων (polygon meshes) Εικόνες απόστασης (range images)

Μορφές προϊόντων (1/3) Πλέγµα τριγώνων (polygon meshes) Εικόνες απόστασης (range images) Μορφές προϊόντων (1/3) Νέφη σηµείων (point clouds) + Εύκολος τρόπος παρουσίασης στον Η/Υ + Ικανοποιητικό τελικό προϊόν για απλά σχήµατα / όψεις υσκολία ερµηνείας για αντικείµενα µε σύνθετες µορφές Απώλεια

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική

Διαβάστε περισσότερα

Ευρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής

Ευρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Ευρετικές Μέθοδοι Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου

ΗΜΥ 325: Επαναληπτικές Μέθοδοι. Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι Διδάσκων: Χρίστος Παναγιώτου ΗΜΥ 325: Επαναληπτικές Μέθοδοι. A. Levitin, Introduction to the Design and Analysis of Algorithms, 2 nd Ed. Περίληψη µαθήµατος Επιπρόσθετες Πληροφορίες

Διαβάστε περισσότερα

East Mediterranean Technology Transfer Unit (EMTTU): Σύγχρονες ιαδικασίες Σχεδιασµού, Ανάπτυξης και Παραγωγής προϊόντων στην ανώτατη εκπαίδευση

East Mediterranean Technology Transfer Unit (EMTTU): Σύγχρονες ιαδικασίες Σχεδιασµού, Ανάπτυξης και Παραγωγής προϊόντων στην ανώτατη εκπαίδευση ενηµέρωση East Mediterranean Technology Transfer Unit (EMTTU): Σύγχρονες ιαδικασίες Σχεδιασµού, Ανάπτυξης και Παραγωγής προϊόντων στην ανώτατη εκπαίδευση οµή και εκπαιδευτικές δραστηριότητες 1. Μονάδα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στόχος Θεματικής Ενότητας Οι μαθητές να περιγράφουν τους βασικούς τομείς της Επιστήμης των Υπολογιστών και να μπορούν

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε Κεφάλαιο 6 Αποκοπή (clipping) Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε η διαδικασία προβολής µεµονωµένων σηµείων και µόνο προς το τέλος του κεφαλαίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)»

ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)» ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (Ε.Ε.Ο.Τ.)» ΥΠΟΕΡΓΟ 4: ΑΝΑΠΤΥΞΗ ΝΕΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ, ΠΡΟΣΟΜΟΙΩΣΗ, ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ

Διαβάστε περισσότερα

Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση

Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση Χριστοδουλόπουλος Αντώνιος 1 Εισαγωγή Κατηγορίες οδοντωτών τροχών Χαρακτηριστικά μεγέθη Κατασκευαστικές τεχνολογίες

Διαβάστε περισσότερα

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες Miroshnikov & Tchepine 1999 Ahn & Freeman 1984 Ένας σηµαντικός παράγοντας που επηρεάζει την αποτελεσµατικότητα ενός χάρτη ως µέσω επικοινωνίας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (CAD) Διαλέξεις και Εργαστηριακές Ασκήσεις ,5

ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (CAD) Διαλέξεις και Εργαστηριακές Ασκήσεις ,5 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2702002 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δημιουργία Ψηφιακού Μοντέλου Βυθού για τον κόλπο του Σαρωνικού, με τη χρήση Συστημάτων Γεωγραφικών Πληροφοριών

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δημιουργία Ψηφιακού Μοντέλου Βυθού για τον κόλπο του Σαρωνικού, με τη χρήση Συστημάτων Γεωγραφικών Πληροφοριών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Μεγαλοοικονόμου Βασίλειος Τμήμα Μηχ. Η/ΥκαιΠληροφορικής Επιστημονικός Υπεύθυνος Στόχος Προτεινόμενου Έργου Ανάπτυξη μεθόδων

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

ΝΕΕΣ ΜΕΘΟΔΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΔΕΔΟΜΕΝΩΝ ΕΠΙΓΕΙΑΣ ΣΑΡΩΣΗΣ ΜΕΓΑΛΟΥ ΒΕΛΗΝΕΚΟΥΣ

ΝΕΕΣ ΜΕΘΟΔΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΔΕΔΟΜΕΝΩΝ ΕΠΙΓΕΙΑΣ ΣΑΡΩΣΗΣ ΜΕΓΑΛΟΥ ΒΕΛΗΝΕΚΟΥΣ ΑΡΧΙΜΗΔΗΣ ΙΙΙ ΝΕΕΣ ΜΕΘΟΔΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΔΕΔΟΜΕΝΩΝ ΕΠΙΓΕΙΑΣ ΣΑΡΩΣΗΣ ΜΕΓΑΛΟΥ ΒΕΛΗΝΕΚΟΥΣ ΜΕ ΚΑΘΕΤΕΣ ΕΦΑΡΜΟΓΕΣ Μαραβελάκης Μανόλης Επίκουρος Καθηγητής Τμήμα Μηχ. Φυσικών Πόρων & Περιβάλλοντος

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου Κάθε εικόνα μπορεί να αναπαρασταθεί με έναν πίνακα, κάθε κελί του οποίου αντιστοιχεί

Διαβάστε περισσότερα

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι

Σ ΣΤ Σ Η Τ Μ Η ΑΤ Α Α Τ ΠΑΡΑ Ρ ΓΩΓ Ω ΗΣ Η Σ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΜΕ Η/Υ (CAD-CAM-CAE) Ι ΤΕΧΝΙΚΟ / ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ Σύμβολα R: Radius-ακτίνα, Ø (Φι): Διάμετρος, κύκλου ή τόξου ΟΨΕΙΣ ΟΡΘΟΓΩΝΙΕΣ ΠΡΟΒΟΛΕΣ Βασικές όψεις: Ορθογώνιες προβολές στις έξι

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Εισαγωγή

Γραφικά Υπολογιστών: Εισαγωγή 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Εισαγωγή Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή Γραφικά Υπολογιστών Τι είναι? Περιοχές εφαρμογής

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

Παρουσίαση Διπλωματικής Εργασίας

Παρουσίαση Διπλωματικής Εργασίας 1 Παρουσίαση Διπλωματικής Εργασίας 2 Αντίστροφη Μηχανική Στόχος εργασίας-επιλογή του Geomagic Studio 2012 Περιγραφή βασικών εντολών της επεξεργασίας του Νέφους Σημείων Σύνθεση τελικού μοντέλου επιφάνειας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 2 1 / 26 Ενότητα 2 Τεχνολογίες Υλοποίησης Αλγορίθµων

Διαβάστε περισσότερα

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35)

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Γινόµενα σηµεία, τοµή ευθυγράµµων τµηµάτων Εύρεση κυρτών περιβληµάτων: Ο αλγόριθµος του Grm και ο αλγόριθµος του

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D

Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D (Octrees & Fractals) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Τεχνικές

Διαβάστε περισσότερα

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΧΕΔΙΑΣΗΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΧΕΔΙΑΣΗΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΧΕΔΙΑΣΗΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Ορισμοί: Σχέδιο (sketch/schizzo): από την αρχαία

Διαβάστε περισσότερα

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents

Διαβάστε περισσότερα

Περιγραφή αλγορίθµων. ιαγράµµατα ροής

Περιγραφή αλγορίθµων. ιαγράµµατα ροής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην Πληροφορική Ρωµύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr Περιγραφή αλγορίθµων Η έννοια του αλγορίθµου

Διαβάστε περισσότερα

Στόχος της εργασίας και ιδιαιτερότητες του προβλήματος

Στόχος της εργασίας και ιδιαιτερότητες του προβλήματος ΑΝΑΠΤΥΞΗ ΟΠΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΚΑΤΕΡΓΑΣΙΑΣ ΥΛΙΚΩΝ Κουλουμέντας Παναγιώτης Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Χανιά,Νοέμβριος 2014 Επιτροπή: Ζερβάκης Μιχάλης (επιβλέπων)

Διαβάστε περισσότερα

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015 MIS έργου:346983 Τίτλος Έργου: Epirus on Androids: Έμπιστη, με Διαφύλαξη της Ιδιωτικότητας και Αποδοτική Διάχυση Πληροφορίας σε Κοινωνικά Δίκτυα με Γεωγραφικές Εφαρμογές Έργο συγχρηματοδοτούμενο από την

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΠΑΡΑ ΟΤΕΟ 9 ΠΛΑΤΦΟΡΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ Συγγραφείς: ημήτρης Παρώνης, Αδριανός Ρετάλης, Φίλιππος Τύμβιος,

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

DECO DECoration Ontology

DECO DECoration Ontology Πράξη: «Αρχιμήδης ΙΙI Ενίσχυση Ερευνητικών Ομάδων στο ΤΕΙ Κρήτης» Υποέργο 32 DECO DECoration Ontology Οντολογία και εφαρμογές σημασιολογικής αναζήτησης και υποστήριξης στον αρχιτεκτονικό σχεδιασμό εσωτερικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΑΜΗΝΟ Η ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ : ΜΟΣΧΟΥΛΑ ΟΛΓΑ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ : 30/02 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΥΛΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΙΑΧΕΙΡΙΣΗΣ ΣΥΝΕ ΡΙΩΝ ΜΕ ΧΡΗΣΗ

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών & Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Κεφάλαιο 6 ο Εισαγωγή στον Προγραμματισμό 1

Κεφάλαιο 6 ο Εισαγωγή στον Προγραμματισμό 1 Κεφάλαιο 6 ο Εισαγωγή στον Προγραμματισμό 1 Ποιες γλώσσες αναφέρονται ως φυσικές και ποιες ως τεχνητές; Ως φυσικές γλώσσες αναφέρονται εκείνες οι οποίες χρησιμοποιούνται για την επικοινωνία μεταξύ ανθρώπων,

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία

ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ - ΕΝΟΤΗΤΑ 1 7/4/2013 ΕΝΟΤΗΤΕΣ ΜΑΘΗΜΑΤΟΣ. Ορισμός

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ - ΕΝΟΤΗΤΑ 1 7/4/2013 ΕΝΟΤΗΤΕΣ ΜΑΘΗΜΑΤΟΣ. Ορισμός ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΕΝΟΤΗΤΑ 1 : ΕΙΣΑΓΩΓΗ Διάλεξη 1: Γενικά για το ΓΣΠ, Ιστορική αναδρομή, Διαχρονική εξέλιξη Διάλεξη 2 : Ανάλυση χώρου (8/4/2013) Διάλεξη 3: Βασικές έννοιες των Γ.Σ.Π.. (8/4/2013)

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ 76 104 34 ΑΘΗΝΑ ΤΗΛ. 2108203111 FAX: 2108230488 URL: http://www.statathens.aueb.gr ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή - Computer aided design and manufacture (cad/cam)

Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή - Computer aided design and manufacture (cad/cam) 1 ΚΕΦΑΛΑΙΟ Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή - Computer aided design and manufacture (cad/cam) Περιεχόμενα κεφαλαίου 1.4 Εξέλιξη συστημάτων Cad σελ. 20 1.1 Ορισμός

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Μορφές των χωρικών δεδομένων

Μορφές των χωρικών δεδομένων Μορφές των χωρικών δεδομένων Eάν θελήσουμε να αναπαραστήσουμε το περιβάλλον με ακρίβεια, τότε θα χρειαζόταν μιά απείρως μεγάλη και πρακτικά μη πραγματοποιήσιμη βάση δεδομένων. Αυτό οδηγεί στην επιλογή

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1 ο. Τροποποίηση (editing) δεδοµένων ΣΓΠ

ΕΡΓΑΣΤΗΡΙΟ 1 ο. Τροποποίηση (editing) δεδοµένων ΣΓΠ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΜΑΘΗΜΑ : ΣΥΣΤΗΜΑΤΑ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΩΝ Ι I ΕΡΓΑΣΤΗΡΙΟ 1 ο Τροποποίηση (editing) δεδοµένων ΣΓΠ 1. Εισαγωγή Σκοπός του εργαστηρίου είναι η εξοικείωση µε τις ενέργειες

Διαβάστε περισσότερα

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6.

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6. Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Γνώσης από χωρικά δεδοµένα (κεφ. 8) Γιάννης Θεοδωρίδης Νίκος Πελέκης http://isl.cs.unipi.gr/db/courses/dwdm Περιεχόµενα

Διαβάστε περισσότερα

ΡΟΥΤΙΝΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΪΟΝΤΩΝ. ΠΑΡΑΔΕΙΓΜΑ ΓΕΩΜΕΤΡΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΣΤΟ PRO - MECHANICA

ΡΟΥΤΙΝΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΪΟΝΤΩΝ. ΠΑΡΑΔΕΙΓΜΑ ΓΕΩΜΕΤΡΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΣΤΟ PRO - MECHANICA e-περιοδικό Επιστήμης & Τεχνολογίας 7 ΡΟΥΤΙΝΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΪΟΝΤΩΝ. ΠΑΡΑΔΕΙΓΜΑ ΓΕΩΜΕΤΡΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΣΤΟ PRO - MECHANICA Μαρία Ν. Μανουσαρίδου Εργαστηριακός Συνεργάτης Τ.Ε.Ι.

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ Χαρτογραφία Η τέχνη ή επιστήμη της δημιουργίας χαρτών Δημιουργεί την ιστορία μιας περιοχής ενδιαφέροντος Αποσαφηνίζει και κάνει πιο ξεκάθαρο κάποιο συγκεκριμένο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ TABU SEARCH σε ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ TABU SEARCH σε ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ TABU SEARCH σε ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΠΕΡΙΓΡΑΦΗ ΕΦΑΡΜΟΓΗΣ Θεωρούµε τα παρακάτω 6 υποκαταστήµατα τριών διαφορετικών Τραπεζών: Υποκατάστηµα Τράπεζα 1 Α 2 Α 3 Β 4

Διαβάστε περισσότερα

Approximation Algorithms for the k-median problem

Approximation Algorithms for the k-median problem Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα

Διαβάστε περισσότερα

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter):

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter): 1 ΧΡΟΝΙΚΑ ΑΜΕΤΑΒΛΗΤΟ ΦΙΛΤΡΟ KALMAN Για το χρονικά αμετάβλητο μοντέλο, όπου οι μήτρες F( k 1, k) F, H( k 1) H, Q( k) Q και R( k 1) R είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Καθ. Κ. Κουρκουµπέτης Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1 Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή 2 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Καθηγητής Πληροφορικής ΠΕ19 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 6 ο : ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ Η έννοια του προγράμματος

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ Εισαγωγή Ηεµφάνιση ηλεκτρονικών υπολογιστών και λογισµικού σε εφαρµογές µε υψηλές απαιτήσεις αξιοπιστίας, όπως είναι διαστηµικά προγράµµατα, στρατιωτικές τηλεπικοινωνίες,

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1. Κεφάλαιο 2. Εισαγωγή... 17

Περιεχόμενα. Κεφάλαιο 1. Κεφάλαιο 2. Εισαγωγή... 17 Περιεχόμενα Εισαγωγή................................................................................ 17 Κεφάλαιο 1 Εισαγωγή στα συστήματα σχεδιομελέτης και παραγωγής με χρήση υπολογιστή - Computer Aided

Διαβάστε περισσότερα

Ποικιλομορφία μετρικών χαρακτήρων του ανθρώπινου σκελετού IΙ. Δρ. Μαρία-Ελένη Χοβαλοπούλου

Ποικιλομορφία μετρικών χαρακτήρων του ανθρώπινου σκελετού IΙ. Δρ. Μαρία-Ελένη Χοβαλοπούλου Ποικιλομορφία μετρικών χαρακτήρων του ανθρώπινου σκελετού IΙ Δρ. Μαρία-Ελένη Χοβαλοπούλου Μετρικοί χαρακτήρες Η ποσοτική μελέτη της σκελετικής μορφολογίας χωρίζεται σε δύο σκέλη: Μεγεθος και Σχήμα Παραδοσιακές

Διαβάστε περισσότερα

Σχεδιασµός & Ανάπτυξη Προϊόντος

Σχεδιασµός & Ανάπτυξη Προϊόντος Σχεδιασµός & Ανάπτυξη Προϊόντος Αρχές Χρήσης Πρωτοτύπων ιαφάνειες ιαλέξεων ιδάσκων: Αναπλ. Καθ.. Καραλέκας 1 Πρωτοτυποποίηση: Η δηµιουργία/κατασκευή φυσικών ή/και αναλυτικών µοντέλων προσοµοίωσης των αρχών

Διαβάστε περισσότερα

ΠΕΚΑΠ Σχολιασμός θεμάτων Πανελλαδικώς εξεταζόμενων μαθημάτων Πληροφορικής ΓΕΛ & ΕΠΑΛ

ΠΕΚΑΠ Σχολιασμός θεμάτων Πανελλαδικώς εξεταζόμενων μαθημάτων Πληροφορικής ΓΕΛ & ΕΠΑΛ ΠΕΚΑΠ Σχολιασμός θεμάτων Πανελλαδικώς εξεταζόμενων μαθημάτων Πληροφορικής ΓΕΛ & ΕΠΑΛ Σχολιασμός θεμάτων Πανελλαδικώς εξεταζόμενων μαθημάτων Πληροφορικής ΓΕΛ & ΕΠΑΛ Α.Ε.Π.Π. Τα θέματα στην Ανάπτυξη Εφαρμογών

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 10 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος Η έννοια του προβλήματος 1. Αναφέρετε μερικά από τα προβλήματα που συναντάτε στην καθημερινότητά σας. Απλά προβλήματα Ποιο δρόμο θα ακολουθήσω για να πάω στο σχολείο; Πως θα οργανώσω μια εκδρομή; Πως θα

Διαβάστε περισσότερα

Σχεδιασµός & Ανάπτυξη Προϊόντος

Σχεδιασµός & Ανάπτυξη Προϊόντος Σχεδιασµός & Ανάπτυξη Προϊόντος Αρχές Χρήσης Πρωτοτύπων ιαφάνειες ιαλέξεων ιδάσκων: Καθ.. Καραλέκας 1 Πρωτοτυποποίηση: Η δηµιουργία/κατασκευή φυσικών ή/και αναλυτικών µοντέλων προσοµοίωσης των αρχών λειτουργίας

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟΥ ΨΗΦΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΚΑΤΑΣΚΕΥΗΣ (DIGITAL DESIGN & FABRICATION LAB) ΤΜΗΜΑΤΟΣ ΑΡΧΙΤΕΚΤΟΝΩΝ ΑΠΘ

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟΥ ΨΗΦΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΚΑΤΑΣΚΕΥΗΣ (DIGITAL DESIGN & FABRICATION LAB) ΤΜΗΜΑΤΟΣ ΑΡΧΙΤΕΚΤΟΝΩΝ ΑΠΘ ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟΥ ΨΗΦΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΚΑΤΑΣΚΕΥΗΣ (DIGITAL DESIGN & FABRICATION LAB) ΤΜΗΜΑΤΟΣ ΑΡΧΙΤΕΚΤΟΝΩΝ ΑΠΘ 1. Τίτλος και Αντικείµενο Εργαστηρίου Το Εργαστήριο Ψηφιακού Σχεδιασµού και

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή Καθ. Κ. Κουρκουµπέτης Σηµείωση: Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα