4.6. Μη γραµµικοί ταξινοµητές Ν Back error propagation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.6. Μη γραµµικοί ταξινοµητές Ν Back error propagation"

Transcript

1 ΑΤΕΙ Σερρώ 4.6. Μη γραιοί ταξιοητές Back error propagaon Μία ιαφορετιή τεχιή χειαού εός πολυεπίπεου percepron για τη ταξιόηη η γραιά ιαχωριοέω λάεω βαίεται τη ατιατάταη της υάρτηης dx από ία υεχή αι ιαφορίιη υάρτηη x που τη προεγγίει. Υπάρχου ιάφορες ααλυτιές ορφές για τη x ε ποιο υηθιέη τη λεγόεη λογιτιή που ίεται από το τύπο 4.6. x, > x α a e Η παράετρος α λέγεται παράετρος λίης slope ή λοξότητος, Σχ a a Σχήα 4.6- Η λογιτιή υάρτηη για α αι α8. Ααγώριη προτύπω-ευρωιά ίτυα 4-9 Τήα Πληροφοριής & Επιοιωιώ

2 ΑΤΕΙ Σερρώ Η χρήη της x ιευολύει τη εφαρογή ιας τυποποιηέης εθόου ελαχιτοποίηης της ατάλληλης υάρτηης ότους. Το όλο όπως θα παρουιαθεί αι θα ααλυθεί παραάτω βαίεται τα παραπάω αι οοάεται λόγω της εθόου επαίευής του, Back error propagaon ή για υτοία Back propagaon. Στο ευρωιό ίτυο υπάρχου επίπεα ηλαή οάες ευρώω, πλήρως ιαυεεέα εταξύ τους, Σχ.4.6- Η έξοος άθε ευρώα εός επιπέου ειέρχεται ε άθε ευρώα του επόεου επιπέου, ε ατίτοιχη ύαψη βάρος, Σχ.4.6- Οι τιές του πίαα ειόου αποτελού το επίπεο ειόου. Ετός από το επίπεο ειόου υπάρχου Ζ το πλήθος επόεα ιαοχιά επίπεα, το τελευταίο τω οποίω οοάεται επίπεο εξόου. Τα επίπεα που εεχοέως υπάρχου εταξύ τω επιπέω ειόου αι εξόου, λέγοται ρυφά επίπεα. Στο Σχ φαίεται έα ευρωιό όπου το πρότυπο ειόου εχει ύο χαρατηριτιά x, x που ειέρχοται ε έα ρυφό επίπεο τριώ ευρώω οι έξοοι τω οποίω είαι είοοι εός επόεου επιπέου ε ύο ευρώες αι ύο τελιές εξόους. Για τη αρίθηη τω επιπέω θα χρηιοποιούε το είτη ε τιές,,ζ, ε για το επίπεο ειόου αι Ζ για το επίπεο εξόου Σχ Οοάουε το πλήθος τω ευρώω εός επιπέου. Ως ε τούτου το πλήθος τω τοιχείω του πίαα ειόου x είαι αι του πίαα εξόου είαι Ζ. Α είαι είτης για αρίθηη τω ευρώω του επιπέου, τότε οι υάψεις του υθέτου έα πίαα γραής. Α είτης για τη αρίθηη τω ευρώω του προηγουέου επιπέου - που αποτελείται από - ευρώες, τότε 4.6. [,...,,..., ] - Η έξοος του αθροιτή του ευρώα θα είαι ε Η τελιή έξοος του ευρώα, προύπτει από τη χέη Ααγώριη προτύπω-ευρωιά ίτυα 4- Τήα Πληροφοριής & Επιοιωιώ

3 ΑΤΕΙ Σερρώ όπου. ατάλληλη υάρτηη ε τη οποία θα αχοληθούε παραάτω. Στο Σχ φαίεται ααλυτιά η οή εός ευρώα όπως περιγράφηε παραπάω. Οι τιές τω εξόω άθε επιπέου είαι οι είοοι του επόεου επιπέου όπως περιγράφτηε παραπάω ξειώτας από το επίπεο ειόου αι προχωρώτας προοευτιά έχρι το επίπεο εξόου orard propagaon. Επαίευη back-error propagaon Έτω Ι το πλήθος ευγώ από πίαες ειόου αι τω ατίτοιχω επιθυητώ πιάω εξόου ε γωτές τιές, το ύολο επαίευης S ορίεται ως S{x, /x, εύγος ε x πίαα τήλης ειόου αι το ατίτοιχο επιθυητό πίαα τήλης εξόου,,,i }. Α ο είτης αριθεί τους ευρώες του επιπέου εξόου Ζ,,, Ζ αι ο πίαας εξόου του είαι z z,...,,..., ] [ x, ορίουε ία υάρτηη ύφωα ε τη χέη: N Z Ζ v Z z Ζ Τ για υγεριέο εύγος Η χέη είαι έα άθροια τετραγωιώ φαλάτω εταξύ της παραγόεης εξόου Z του ότα η είοος είαι x αι της επιθυητής εξόου. Μπορούε α ορίουε τώρα τη υάρτηη ότους Κ. που θα έχει αεξάρτητες εταβλητές όλα τα επαίευης S ύφωα ε τη χέη Κ, S I για το υγεριέο ύολο Ατιετωπίοτας τη εύρεη ελάχιτης τιής της Κ ως πρόβληα βελτιτοποίηης opmzaon οι τιή τω επααληπτιά ύφωα ε χέη πορού α ετιηθού Ααγώριη προτύπω-ευρωιά ίτυα 4- Τήα Πληροφοριής & Επιοιωιώ

4 ΑΤΕΙ Σερρώ ρ Κ ρ I Σύφωα ε το αόα παραγώγιης της αλυίας Ο όρος για όλα τα για άθε αι > είαι Αποέει τώρα ο υπολογιός του πρώτου όρου του γιοέου, το οποίο οοάουε 4.6. Θα υπολογίουε πρώτα το για έα ευρώα του επιπέου εξόου Ζ, Ζ αι είτη αρίθηης τω ευρώω,, Ζ Ζ Ζ ' ε 4.6. ' Ααγώριη προτύπω-ευρωιά ίτυα 4- Τήα Πληροφοριής & Επιοιωιώ

5 ΑΤΕΙ Σερρώ Για τα ρυφά επίπεα <<Ζ ο υπολογιός του είαι περιπλοότερος, επειή ε είαι εοέη η τιή της εξόου, άθε ευρώα. Ο υπολογιός ε άθε ρυφό επίπεο θα βαιθεί τις τιές ιόρθωης του εποέου του, αρχίοτας από το επίπεο που προηγείται του επιπέου εξόου αι οεύοτας ιαοχιά προς τα πίω back-error propagaon. Συγεριέα α έα ρυφό επίπεο, το επόεό του θα είαι το. Έτω αόη έας ετρητής αρίθηης τω ευρώω του επιπέου αι έας ετρητής αρίθηης τω ευρώω του επιπέου. Η υάρτηη εξαρτάται από τα αι άθε εξαρτάται από το του -οτού ευρώα του επιπέου. Σύφωα ε το αόα της αλυιωτής παραγώγιης,...,,..., ' ' Τελιά από τις χέεις υάγεται ότι x, - ρ όπου ίεται από τη χέη ' ότα ο ευρώας βρίεται το επίπεο εξόου αι από τη ' Ααγώριη προτύπω-ευρωιά ίτυα 4- Τήα Πληροφοριής & Επιοιωιώ 3

6 ΑΤΕΙ Σερρώ ότα ο ευρώας βρίεται ε ρυφό επίπεο ξειώτας από το τελευταίο αι υποχωρώτας προοευτιά έχρι το πρώτο επίπεο back-error propagaon. Το Back error propagaon είαι ίως το πλέο χρηιοποιούεο αι έχει εφαροθεί ε πληθώρα εφαρογώ από ιαφορετιές επιτηοιές περιοχές. Στα ρυφά επίπεά του προιορίοται ουιατιά αυτόατα τα αποτελεατιά χαρατηριτιά για τη ταξιόηη. Το πλήθος τω λάεω πορεί α είαι το ίιο ε αυτό τω αυάτω ειόου του υόλου επαίευης αι έτι το α προεγγίει έα εταχηατιό τω αυάτω ειόου τα αύατα εξόου. Το ηατιότερο ειοέτηα του back propagaon είαι χρόος ολολήρωης της επαίευης του ή χρόος ύγλιης, όπως αλλιώς λέγεται. Είαι υατό α χρειαθού εατοτάες χιλιάες επααλήψεις έως ότου υγλίει αόη αι για χετιά απλές εφαρογές. Σε άποιες εφαρογές χρειάθηα εριές έρες για τη ύγλιη του υτήατος. Ο εγλωβιός της ιαιαίας ύγλιης ε τοπιά ελάχιτα της υάρτηης ότους είαι έα επιπρόθετο πρόβληα που θα ααλύουε ε αόλουθη παράγραφο. Ααγώριη προτύπω-ευρωιά ίτυα 4-4 Τήα Πληροφοριής & Επιοιωιώ

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις

3. Βασικά µαθηµατικά µεγέθη, συµβολισµοί και σχέσεις ρ.χ. Στρουθόπουλος, e-mail: stch@teise.g ΑΤΕΙ Σερρώ 3. Βαικά µαθηµατικά µεγέθη, υµβολιµοί και χέεις 3.. Πίακας τήλης Α το πλήθος τω προτύπω, το πλήθος τω χαρακτηριτικώ που µετράµε ε κάθε πρότυπο και Τ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΙΙ» Μ. Κούτρας Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΙΙ» Μ. Κούτρας Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΙΙ» Μ Κούτρας Μ Μπούτικας Σηειώεις παραδόεω «Στατιτική ΙΙ» Μ Κούτρας Μ Μπούτικας Σηειώεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: «ΜΕΤΡΟΛΟΓΙΑ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: «ΜΕΤΡΟΛΟΓΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: «ΜΕΤΡΟΛΟΓΙΑ» ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΑΤΙΣΤΙΚΟΙ ΕΛΕΓΧΟΙ ΓΙΑ ΤΗΝ ΑΞΙΟΠΙΣΤΙΑ ΤΩΝ ΟΡΓΑΝΩΝ.-.

Διαβάστε περισσότερα

10. Στατιστικές συναρτήσεις και δειγματοληπτικές κατανομές

10. Στατιστικές συναρτήσεις και δειγματοληπτικές κατανομές Στατιτικές Συαρτήεις και Δειγματοληπτικές Καταομές 0 Στατιτικές υαρτήεις και δειγματοληπτικές καταομές Στο ειαγωγικό κεφάλαιο του Β Μέρους (8 ο Κεφάλαιο εξηγήαμε ότι τη Στατιτική «όλα αρχίζου από τα δεδομέα»

Διαβάστε περισσότερα

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής Έχουε δει ότι ένα βαικό ειονέκτηα του αριθητικού έου είναι ότι είναι ευαίθητος ε ακραίες παρατηρήεις. Θηκόγραα (bo-plot) Γραφική παρουίαη των έτρων θέης ιας εταβλητής Ένας ιοταθιένος (p %) αριθητικός έος

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά. ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.

Διαβάστε περισσότερα

ειγματοληπτικές κατανομές

ειγματοληπτικές κατανομές ειγματοληπτικές καταομές Σκοπός της τατιτικής υμπεραματολογίας: η εξαγωγή ατικειμεικώ υμπεραμάτω για έα πληθυμό από περιοριμέο αριθμό δεδομέω (δείγμα). Με τη περιγραφική τατιτική υχά μπορούμε α βγάλουμε

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Β.2.6. Γεωµετρικός µέσος.

Β.2.6. Γεωµετρικός µέσος. 6 Β..6. Γεωετρικός έος. α) Τα δεδοέα δίοται ααλυτικά Οριός Β.. Έτω ότι τα δεδοέα είαι δοέα ααλυτικά ( τιές που ατιτοιχού τα άτοα του πληθυού): i, i,,,..., Οοάζουε Γεωετρικό έο τω δεδοέω i, τη -οτή ρίζα

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Δρ Χαράλαμπος Π Στρουθόπουλος Καθηγητής ΣΕΡΡΕΣ, ΜΑΡΤΙΟΣ

Διαβάστε περισσότερα

4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ

4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ 174 47 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ Το ζήτημα της διαιρετότητας τω αεραίω είαι υρίαρχο θέμα στη Θεωρία τω Αριθμώ Μια έοια που βοηθάει στη μελέτη αι επίλυση προβλημάτω διαιρετότητας είαι η έοια τω ισοϋπόλοιπω αριθμώ

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ. 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ο ΕΞΑΜΗΝΟ ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ Ι Ι ΑΣΚΩΝ ΣΤΕΛΙΟΣ ΖΗΜΕΡΑΣ Σάος 3 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ...3. ΣΤΑΤΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΟΣ ΑΝΑΛΥΤΗΣ...3.

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ 1 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΘΕΩΡΙΑ 1. Κλάσµα : Είαι το µαθηµατιό σύµβολο το οποίο δηλώει σε πόσα ίσα µέρη χωρίσαµε το όλο αι πόσα µέρη πήραµε Κλάσµα : πόσα µέρη πήραµε σε πόσα ίσα µέρη χωρίσαµε : αριθµητής

Διαβάστε περισσότερα

Λύσεις Ασκήσεων για το μάθημα Στατιστική ΙΙ Έλεγχος Υποθέσεων ( , )

Λύσεις Ασκήσεων για το μάθημα Στατιστική ΙΙ Έλεγχος Υποθέσεων ( , ) Λύεις Ακήεω για το άηα Στατιτική ΙΙ Έλεγος Υποέεω -, - Μ Κούτρας ΜΜπούτικας Λύεις Ακήεω Κεφαλαίου Παρ 6 Άκηη Έτω έα τυαίο δείγα εγέους από ια καταοή ε υάρτηη πυκότητας f ;, < < Για το έλεγο της υπόεης

Διαβάστε περισσότερα

Σωστό - Λάθος Επαναληπτικές

Σωστό - Λάθος Επαναληπτικές ΘΕΩΡΙΑ ΣΤΑΤΙΣΤΙΚΗ ΟΛΩΝ ΤΩΝ ΕΤΩΝ ημιτελές(veron 6-4-206) ΠΡΟΣΟΧΗ! Επισημαίω ότι οι λύσεις ούτε πλήρεις είαι ούτε έχου διπλοελεγχθεί τουλάχιστο μέχρι τώρα.ετσι ο ααγώστης πρέπει α έχει υπόψη του ότι μπορεί

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5

Διαβάστε περισσότερα

14PROC

14PROC ΤΠΟΙΤΘΤΝΗΝΟΙΚΟΝΟΜΙΚΟΤ ΣΜΗΜΑΝΠΡΟΜΗΘΙΩΝ ΠΛΗΡ.μΑ.ΝΠΑΡΜΑΞΙΗ ΣΗΛ.μΝ2132028514 FAX: 210 5551515 ΠΡΟΚΗΡΤΞΗΝΠΡΟΧΙΡΟΤΝΙΑΓΩΝΙΜΟΤΝΓΙΑΝΣΗΝΝΠΡΟΜΗΘΙΑΝ ΠΙΜΩΝΝ ΑΣΟΜΙΚΑΝΤΚΤΑΜΝΩΝΝ(CPV: 33141116-6) ΠΡΟΫΠΟΛΟΓΙΜΟμ13.601,14

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 10ς (Ξ, Ο,) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 10ς

Διαβάστε περισσότερα

ΣΥ ΒΑΣΗ Α ΟΧΗΣ Υ Η ΕΣΙΩ 14SYMV

ΣΥ ΒΑΣΗ Α ΟΧΗΣ Υ Η ΕΣΙΩ 14SYMV ΣΥ ΒΑΣΗ Α ΟΧΗΣ Υ Η ΕΣΙΩ Αθή α, σή α 1 β ίο 2014, έ α έ α, α ύ αφ ός ς α ά ς ιοι ι ής Α ής ία «ι ο ή ο ίας αι έ ο αι ί....», ο ύ ι σ Αθή α, Α α ώ 17 αι α ία α ο ο ά ο,.. 104 38, αι οσ ί αι ό ι α α ό ο ό

Διαβάστε περισσότερα

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..

Διαβάστε περισσότερα

15SYMV

15SYMV Α Η ια ο έ ο «ύ βο ος οσ ή ι ς ιφ ια ού ιασ ού ια οι ι ή σ ά σ ο ά σ ιφέ ια ι ής α ο ίας» (Κω ι ός : 2012 00880179, Κω ι ός Ο...: 390445 : «ύ βο οι χ ι ής οσ ή ι ης ιφέ ιας Κ ι ής Μα ο ίας» οέ ο 5:«ύ βο

Διαβάστε περισσότερα

1 ΟΡΕ ΤΙΑ Α 1 3 3 ΤΡΙΓ Ο Ι ΑΙΑ 1 1 ΑΓΓΑΙΟ. Page 1 of 28

1 ΟΡΕ ΤΙΑ Α 1 3 3 ΤΡΙΓ Ο Ι ΑΙΑ 1 1 ΑΓΓΑΙΟ. Page 1 of 28 Ι Ο Α ΡΑ Α ΡΑ Α Ο ΑΤΟ. Ε ΡΟ Ο ΙΟ ΑΡΑ Ε ΤΙΟ ΡΟ Ο ΤΑ Η 1 ΡΑ Α 2 5 1 Ο ΑΤΟ 1 2 2 Α AM Α ΙΟ 1 1 1 ΑΤ Ε ΡΟ Ο ΙΟ 1 2 1 ΑΡΑ Ε ΤΙΟ 1 1 2 Ι Η ΟΡΟ 1 1 1 ΡΟ Ο ΤΑ Η 1 2 2 ΙΤΑΓΡ 1 1 9 15 Ε ΡΟ Α Ε Α ΡΟ Ο Η Ο ΙΟ Ι ΟΤΕΙ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ακαδ. Έτος ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ. Λέκτορας. Τηλ:

ΣΤΑΤΙΣΤΙΚΗ. Ακαδ. Έτος ιδάσκων: Βασίλης ΚΟΥΤΡΑΣ. Λέκτορας. Τηλ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 05-06 ιδάκω: Βαίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο είγµα Ο ηµατικότερος

Διαβάστε περισσότερα

Ο Ι ΙΑ ο Ο Ο ης Α Α Ι ΑΙΩ ΙΧΑ Α Α «αι ο ο ία και η ιο γική ιχει η α ικό η α»

Ο Ι ΙΑ ο Ο Ο ης Α Α Ι ΑΙΩ ΙΧΑ Α Α «αι ο ο ία και η ιο γική ιχει η α ικό η α» Ο Ι ΙΑ ο Ο Ο ης Α Α Ι ΑΙΩ ΙΧΑ Α Α σ ο Α Α Ο Η Η Ο Α Η Ω Α Α Η Η Η Η Ω Η Α Ο Ο Η Η Α Ω Α Ω 29.09.2014 «αι ο ο ία και η ιο γική ιχει η α ικό η α» Ό ς ί, οι ο ο ία ο αίο ιάσ α έ ι ά ι σοβα ά βή α α σ αθ ο

Διαβάστε περισσότερα

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ

V. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α. ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ V ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ Α ΑΝΑΛΟΓΙΣΤΙΚΗ ΠΑΡΟΥΣΑ ΑΞΙΑ Όπως γνωρίζοε, η παρούσα αξία ενός ποσού C πο θα αταβληθεί τη ελλοντιή χρονιή C στιγή είναι ίση ε ( ) i, όπο i το "επιτόιο αποτίησης"

Διαβάστε περισσότερα

3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ

3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΘΕΩΡΙΑ. Οµασία: Έα πλύγω µε κρυφές θα τ λέµε -γω µε εξαίρεση τ πλύγω µε τέσσερις κρυφές πυ θα τ λέµε τετράπλευρ. 2. Καικό πλύγω: Έα πλύγω λέγεται καικό ότα όλες ι πλευρές τυ είαι

Διαβάστε περισσότερα

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Παγόσμιο χωριό γώσης 0 ο ΜΑΘΗΜΑ ΕΝΟΤΗΤΑ 2.3. ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Σοπός: Στη εότητα αυτή παρουσιάζοται τα μέτρα θέσης αι τα μέτρα διασποράς. Ο ορισμός τους αι διάφοροι μέθοδοι υπολογισμού. Γίεται

Διαβάστε περισσότερα

15SYMV Λεωφόρος Εθνικής Αντιστάσεως, Νέα Ιωνία

15SYMV Λεωφόρος Εθνικής Αντιστάσεως, Νέα Ιωνία Α Α Α Η Α Ω 15SYMV002528982 2015-01-16 Λεωφόρος Εθνικής Αντιστάσεως, Νέα Ιωνία Α Η α οχής η σιώ σ ίασης catering σ ο αίσιο ι έ ιας ω άσ ω ισ ο οίησης Α χι ής α α ι ής α ά ισης α οφοί ω... ης ιό ο έα ία

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 2ς (Α,α (αααώ-)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 2ς (Α,α (αααώ-)) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

Λύσεις Ασκήσεων για το μάθημα Στατιστική ΙΙ Έλεγχος Υποθέσεων ( )

Λύσεις Ασκήσεων για το μάθημα Στατιστική ΙΙ Έλεγχος Υποθέσεων ( ) Λύεις Ακήεω για το άηα Στατιτική ΙΙ Έεγος Υποέεω - Πειραιάς, Ιαουάριος, Μ Κούτρας ΜΜπούτικας Λύεις Ακήεω Κεφααίου Παρ 6 Άκηη Έτω έα τυαίο δείγα εγέους από ια καταοή ε υάρτηη πυκότητας f ;, < < Για το έεγο

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίνος Ιωάννου, Στέφανος Γεροντόπουλος, Σταυρούλα Γκιτάκου ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 19/03/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρίος Ιωάου, Στέφαος Γεροτόπουλος, Σταυρούλα Γκιτάκου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 α γράψετε στο

Διαβάστε περισσότερα

T.: -3332553/4 Fax: 210-3332559 e-mail: press@minfin.gr

T.: -3332553/4 Fax: 210-3332559 e-mail: press@minfin.gr Ο Α Α Ο ΙΟ ΟΙ Ο Ο Ι Ω Α ΙΟ Ο ί ς -7 Αθή α T.: -3332553/4 Fax: 210-3332559 e-mail: press@minfin.gr ί, β ίο 2014 ίο ύ ο ί α έ ι ίσ ι ή οι ο ο ία α έ α ούς θ ούς α ά ς, βασισ έ σ αύ σ ς σ ι ής οι ο ο ι ής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΕΙΣΑΓΩΓΙΚΑ Η καταοή πιθαότητας η έση τιή και η διασπορά ιας τυχαίας εταβλητής εξετάσθηκα στο Κεφάλαιο Στο κεφάλαιο αυτό ελετώται διεξοδικά οι σηατικότερες διακριτές

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 8ς (Λ, - Μ, (-ήα)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 8ς (Λ,

Διαβάστε περισσότερα

15SYMV

15SYMV Ο ΡΑ Α ΧΟ Α Ω Ο Ρ Ω INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.01.14 11:44:19 EET Reason: Location: Athens ΑΔΑ: 71ΞΠ46ΨΧ0Α-905 Α ΑΡ Α Ο Α Ο Ω Α Α ια η

Διαβάστε περισσότερα

Α Α Α Α Α Α Α Α Α Α Α Ο

Α Α Α Α Α Α Α Α Α Α Α Ο 3ω η Α Α Α Α Α Α Α Α Α Α Α Α Α Ο 9/5/2014 Ο Α Α Α ιο οιώ ας α α α ά ω α αθέ α α οσ αθήσ α α α ήσ σ α ω ή α α ο α ο ο θού : Ο Α Ο Α Α «Π ι ὸ Τὲ ὑ ὑ ῖ ὑ ὶ ὰ Τ Τ ὶ ὺ Τ» (DK 14.7) Α «ὴ ὑ ὶ ὺ Τ ὑ Τ Τ ὑ Τῆ ῖ

Διαβάστε περισσότερα

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών)

3. Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Ανάπτυγμα Taylor (για συναρτήσεις δυό μεταβλητών) Μια «πολύπλοη» συνάρτηση f, δυό μεταβλητών, μπορεί να προσεγγιστεί (στην γειτονιά ενός σημείου (,y)) από μια πολυωνιμιή συνάρτηση με την βοήθεια του αναπτύγματος

Διαβάστε περισσότερα

Ε α ο Σ στ α Κο ω ς Ασφά ε ας- Ε Σ στ α Κο ω ς Ασφά σ ς φά αιο Α Α ές αι ό α α ο ιαίο σ ή α ος οι ι ής Ασφά ιας... 3 Ά θ ο ιώ ις α ές ο ιαίο σ ή α ος οι ι ής Ασφά ιας... 3 Ά θ ο θ ι ό βού ιο οι ι ής Ασφά

Διαβάστε περισσότερα

ιάβασ A[i] ιάβασ key done α θής

ιάβασ A[i] ιάβασ key done α θής ιώσ ις ια Α ( ό ι αι ια ο ίσ ο ι ό ο ια ήθ α ό ο ο ίο αι ίας ο έ β ιο 5, α ά α ο ο οι έ ο ώσ α ο ί α οθ ί σ ο ς αθ ές) Α Α Α Μ α ο ή Α XΗ Α Α Η Η Ι _Ο Ο σ Ο Ο... Ο _ Α Α Η Η αι α ισ όφως 1. Ό ι

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006

Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/12/2006 Τήα Επιστήης και Τεχολογίας Υλικώ Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηα ασκήσεω //006 Μελέτη οοδιάστατου στοιχειακού στερεού ε δύο τροχιακά αά άτοο ε χρήση υβριδικώ ατοικώ τροχιακώ Θεωρούε δύο τροχιακά

Διαβάστε περισσότερα

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΔΕΙΚΤΕΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΔΙΑΔΙΚΑΣΙΩΝ ΣΤΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΑΡΑΓΩΓΗ

ΔΕΙΚΤΕΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΔΙΑΔΙΚΑΣΙΩΝ ΣΤΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΑΡΑΓΩΓΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διατηατικό Πρόγραα Μεταπτυχιακών Σπουδών «Μαθηατικά των Υπολογιτών και των Αποφάεων» ΔΕΙΚΤΕΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΔΙΑΔΙΚΑΣΙΩΝ ΣΤΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΑΡΑΓΩΓΗ Μεταβαλλόενες διαπορά έη τιή Μεταβαλλόενη

Διαβάστε περισσότερα

ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ. α ούσι, 09 /06/2015 90911 / email. t08dea1@minedu.gov.gr 210-3442190, 2194,2577, 210-3442929,2928.

ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ. α ούσι, 09 /06/2015 90911 / email. t08dea1@minedu.gov.gr 210-3442190, 2194,2577, 210-3442929,2928. INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.06.09 15:43:51 EEST Reason: Location: Athens ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ Η Η Η Ο Α Α Ο Ο Ο Ο, Α Α Α Η Α Ω Η Η Ο Ω..

Διαβάστε περισσότερα

εξυπηρετείται εισέλθει στο σύστηµα, ο πελάτης που εξυπηρετείται

εξυπηρετείται εισέλθει στο σύστηµα, ο πελάτης που εξυπηρετείται ΕΝΑ ΠΡΟΤΥΠΟ ΟΥΡΑΣ ΜΕ ΠΡΟΤΕΡΑΙΟΤΗΤΑ Υποθέσεις: Υπάρχουν s θέσεις εξυπηρέτησης Υπάρχουν Ν κατηγορίες προτεραιοτήτων (η κατηγορία έχει τη εγαύτερη προτεραιότητα και η κατηγορία Ν τη ικρότερη) Για κάθε κατηγορία

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 4ς (Δ, Ε, (-αί)) ΣΥΓΓΡΑΦΕΙΣ

Διαβάστε περισσότερα

14SYMV

14SYMV Ο ΡΑ Α ΧΟ Α Ω Ο Ρ Ω INFORMATICS DEVELOPMEN T AGENCY 14SYMV002435751 2014-11-28 Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2014.11.28 12:52:37 EET Reason: Location: Athens ΑΔΑ: ΒΧΑΩ46ΨΧ0Α-ΓΞΤ

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 7ς (Κ, (έα-)) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 7ς (Κ, (έα-))

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

Εκτίµηση άγνωστων κατανοµών πιθανότητας

Εκτίµηση άγνωστων κατανοµών πιθανότητας KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Εκτίηση άγνωστων κατανοών πιθανότητας ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 coas Tsaatsous Εισαγωγή Παραετρικές έθοδοι Μη παραετρικές

Διαβάστε περισσότερα

15SYMV

15SYMV η η ο ατ α Νο ττ ο η ο α ου αγ η Ταχ. Δ/ ση: ωφ. ω / ου α α α ή 18 Ταχ. α : 166 73, Βο α ο α: 28-1-2015 A. Π ωτ.: 3258 Α Α Η : 5.416.68..Α. 23% : 1.245.84 Ο Ο : 6.662.52 Ω Η Ο Α : «Ο Η Α Ω Α Ο Η Α Α Ο

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς.

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4ο Ε Α α ο σίο Α' ίο 4-2015 ρε νη ική ρ ασία Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4η Ο ά α 1ο Τ τ ά η ο Y ο ώτη α: ι ές α ές άσ ησης ια ο ς φήβο ς. Γενικές αρχές άσκησης: Εί η Άσ ησης Ια ι ός

Διαβάστε περισσότερα

0..1 ΒΑΣΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΝΝΟΙΕΣ

0..1 ΒΑΣΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΝΝΟΙΕΣ Εισαγωγικό Κεφάλαιο: Ρητοί Αριθµοί ΜΑΘΗΜΑ 0 Υποεότητα 1: Βασικές Επααληπτικές Έοιες (Επααλήψεις-Συµπληρώσεις) Θεµατικές Εότητες: 1. Ρητοί αριθµοί-βασικές επααληπτικές έοιες.. Πρόσθεση ρητώ αριθµώ. 3. Άθροισµα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

η. : 2513 503435 e-mail: aspakkavalas@gmail.com

η. : 2513 503435 e-mail: aspakkavalas@gmail.com Α Α Α Η Α Η αβά α, 0 / 01 / 2014 «Α Η Α Α Α Η. Α Α Α» Α.. : 52 θ ι ής Α ίσ ασης,.. η. : 2513 503435 e-mail: aspakkavalas@gmail.com 2 η Α Α Α Η Η Η Η Η Α Η Α Α Η Η Α Η «ο ι ό σ έ ιο άσης ια η βιώσι η α

Διαβάστε περισσότερα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή 49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη

Διαβάστε περισσότερα

Key Action 2 Σ α ηγι ές Σ ά εις Σχο ι ής σης η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / /

Key Action 2 Σ α ηγι ές Σ ά εις Σχο ι ής σης η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / / Key Action 2: αι ο ο ία αι ασία ια α α α ή α ώ α ι ώ Σ α ηγι ές Σ ο έας Σχο ι ής η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / / 5 ά εις σης KA2: Strategic Partnerships ο έας ο ι ής Τι ί αι: Α

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

1. [0,+ , >0, ) 2. , >0, x ( )

1.  [0,+   ,      >0,   ) 2. ,    >0,  x   ( ) Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας

Διαβάστε περισσότερα

(c f (x)) = c f (x), για κάθε x R

(c f (x)) = c f (x), για κάθε x R ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Α η συάρτηση f είαι

Διαβάστε περισσότερα

11. Σημειακή Εκτίμηση & Εκτίμηση με Διάστημα

11. Σημειακή Εκτίμηση & Εκτίμηση με Διάστημα Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Εμπιτούης Σημειακή Εκτίμηη & Εκτίμηη με Διάτημα Αρκετά τρόφιμα περιέχου το ιχοτοιχείο ελήιο το οποίο, ότα προλαμβάεται ε μικρές ποότητες ημερηίως, έχει ευεργετική

Διαβάστε περισσότερα

Μι ο α ι ές ια ά ις ό α 3: ί ς αι ια ά ις φ ι ώ αύ ος Κο ο ί ς Πο ι ή Η ο ό Μ α ι ώ αι ο ο ιάς ο ο ισ ώ ο οί ό ας ιό ς φ ι ώ αι ά σ ο ς σ α ασ ή ήσι ι ο α ι ώ ι ύ 2 Π ι ό α ό ας Μα ι ά ι ά ιό ς φ ι ώ ια

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΧΑΡΑΛΑΜΠΟΥ Α ΧΑΡΑΛΑΜΠΙ Η ΚΑΘΗΓΗΤΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ ΑΘΗΝΑ 3 ΚΕΦΑΛΑΙΟ Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΕΙΣΑΓΩΓΙΚΑ H Θεωρία τω Πιθαοτήτω έχει ως

Διαβάστε περισσότερα

13PROC Α /

13PROC Α / Α Α Α / : Α: 13PROC001709766 2013-11-11 Α Α.. 20135639/04 11 2013 Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α 1 Α Α : Α: α αο ή & ίο 80 18534, ι αιάς.: 210 2104142239 Fax: 210 4142469 Email: procurements@unipi.gr

Διαβάστε περισσότερα

Η ούσια εκ των οτέ ων ιαφά ια.

Η ούσια εκ των οτέ ων ιαφά ια. ΟΠΟ Η ΙΑΒΟ Η Α ιο ό σ ς α ο σ α ι ό ας ια ά ς Ο ίας / / ια ις ια ι ασί ς οσφ ής σ ο ο έα ς σύ α ς οσί σ βάσ Η σ ή σ ί * ί ο ι ή. α ό η α ερω ηθέν ων * Α αφέ α ο ά ος έ ος σας: * Π οσ ιο ίσ ι ιό ά σας:

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε

Διαβάστε περισσότερα

1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ Στ πράτω σχήμτ έχουμε τις γρφιές πρστάσεις τριώ συρτήσεω, g, h σε έ διάστημ της μορφής, 8 l a C g C g h γ C h Πρτηρούμε ότι θώς το υξάετι περιόριστ με

Διαβάστε περισσότερα

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση

Διαβάστε περισσότερα

αναφέρετε τις θεµελιώδεις υποθέσεις της ειδικής θεωρίας της σχετικότητας προσδιορίσετε πώς µετασχηµατίζεται ένας τανυστής 2ης τάξης

αναφέρετε τις θεµελιώδεις υποθέσεις της ειδικής θεωρίας της σχετικότητας προσδιορίσετε πώς µετασχηµατίζεται ένας τανυστής 2ης τάξης Σηειώσεις Ηλεκτροαγητισός και Σχετικότητα, Λ. Περιβολαρόπουλος Σκοπός ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΚΑΙ ΣΧΕΤΙΚΟΤΗΤΑ Λ. Περιβολαρόπουλος Σκοπός του κεφαλαίου είαι ια σύτοη αασκόπηση της ειδικής θεωρίας

Διαβάστε περισσότερα

14SYMV

14SYMV Α Η Α Η Η ΙΩ ο ο ι ό έ α ο ς α ι ής Α ι ής σή α 07/09/2013 α ύ ά θι σ βα ο έ ώ : 14SYMV002269652 2014-09-03 Aφ ός ο ή ο α ι ής, ο ο οίος ύ ι σ ο αύ ιο, ο ός ο ο ιώ α. 1.. 19500, ό ς οσ ί αι ό ι α ια ο

Διαβάστε περισσότερα

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΧΝ, ΠΟΛΙΣΙΜΟΤ ΚΑΙ ΑΘΛΗΣΙΜΟΤ Ι.Σ.Τ.Δ. «ΓΙΟΦΑΝΣΟ» Αή Δί Ηίο Γήο Μί Μά Ιί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 1ο (Α, Β,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 1ο (Α, Β,) ΤΓΓΡΑΦΔΙ Αή Δί,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις

Διαβάστε περισσότερα

! # %&& () ( ) +,! # ) ) &...

! # %&& () ( ) +,! # ) ) &... ! # %&& () ( ) +,! # ) ) &... ! # %& (! ) /01 2#,,( 0 3 1 456 7!! +, # (! () 83, 9: 1, ;;1 ? 2 + /. )).Α.7% %&&!!!.)# )& Β&Χ:Χ& 1& ). ! +!)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))>

Διαβάστε περισσότερα

Σημειακή εκτίμηση και εκτίμηση με διάστημα

Σημειακή εκτίμηση και εκτίμηση με διάστημα Σημειακή εκτίμηη και εκτίμηη με διάτημα Εκτιμήτριες υαρτήεις και μέθοδοι εκτίμηης Σημειακή εκτίμηη Ιδιότητες τω εκτιμητριώ 3 Εκτίμηη με διάτημα Διάτημα εμπιτούης για τη μέη τιμή εός πληθυμού Ο πληθυμός

Διαβάστε περισσότερα

Η Η Α Α Α Η Ω Α Η Α Α Η Α Α Α Η Ω Α Ω Ο Ο Ο Α Ο Α Ο Η Α. ά ς α α ι α ί ς ασι ά ι αιώ α α ια Α θ ώ ο ς ά ι σο α ασ α ι ός ά ς ο σ ί α ό ο α όσ ιο ο α ισ ό ίας αι ιέ α 5 βασι ές α ές οι ο οί ς έ ο έ ς σ

Διαβάστε περισσότερα

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance)

Ενότητα 7: Ανάλυση ιασποράς µε έναν παράγοντα (One way Analysis of Variance) Ενότητα 7: Ανάλυση ιασποράς ε έναν παράγοντα Oe wy yss of Vrce Σε αυτή την ενότητα θα εξετάσουε ένα ειδικό πρόβληα γραικής παλινδρόησης το ο- ποίο εφανίζεται αρκετά συχνά στις εφαρογές. Συγκεκριένα θέλουε

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

22,875 17,944. 25.7 Central line associated bloodstream infection 18,432 1,257

22,875 17,944. 25.7 Central line associated bloodstream infection 18,432 1,257 Α Α Η Α Ο CHECKLIST Α Η Ω Η Ο Α Ω GRAMΩ Α Ο Ο Ω Α Ο Ο Ο Ο Ο * αά ος α ί ος., *, ο ια ί ι ς οι ώ, αά ο Έ α, α ίβ ας α α ιώ ς.. α ιίας, α ιία, ή α οη ε ι ής..ι., Αθή α, ή α Πα ε βάεω ε Χώ ο ς Πα η.π., Πά

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΜΕ ΟΛΟΚΛΗΡΩΜΑΤΑ ΣΧΟΛΙΑ : Είαι γωστό ότι για µια συεχή συάρτηση σε έα διάστηµα, το ολοκλήρωµα F ορίζει έα πραγµατικό αριθµό όπου o είαι έα οποιοδήποτε σηµείο του και α έα αυθαίρετο

Διαβάστε περισσότερα

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου

ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων

Στατιστικός έλεγχος υποθέσεων Στατιτικός έλεγχος υποθέεω. Βαικές έοιες. Στατιτικός έλεγχος υποθέεω για τη μέη τιμή εός πληθυμού.. Ο πληθυμός είαι καοικός.. Το μέγεθος του δείγματος είαι μεγάλο.3 Πιθαότητα φάλματος τύπου ΙΙ και ιχύς

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίας Δής Μαία Μά Ιία Αύα Εαέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 5ς (Ε, (ά) Ι,) Εαέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 5ς (Ε, (ά)

Διαβάστε περισσότερα

34 34 1.641 357 1.373

34 34 1.641 357 1.373 Α -- Ο Η Α Α-Η Η Α -- Α Α 5 Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α Α..... Ο Α 599 Α & Α Α Α Α Α Α Α Α Α 21 21 1.495 343 1.351 601 Α & Α Α / Α Α Α Α 24 24 1.418 313 1.053 661 Α Α Α Α Α Α Α Α Α

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας

Ο δεύτερος νόµος του Νεύτωνα για σύστηµα µεταβλητής µάζας Ο δεύτερος νόος του Νεύτωνα για σύστηα εταβλητής άζας Όταν εξετάζουε ένα υλικό σύστηα εταβλητής άζας, δηλαδή ένα σύστη α που ανταλλάσσει άζα ε το περιβάλλον του, τότε πρέπει να είαστε πολύ προσεκτικοί

Διαβάστε περισσότερα

ο. 3199/2003 αι ο Π.. 51/2007

ο. 3199/2003 αι ο Π.. 51/2007 ι ής ισ ο ίας), σ α ι ά ο ία αι α ιό ο ς α ά ιο ισ έ ς έ ι σή α οσ ασι ό ας α ές. Α ό άς ύ α σ ς αι α οιώσ σ οι ί ς φ σι ής ο ο ιάς, ο ά ο όβ α ί αι ύ α σ ο ιού αι ο α ασ ι ού ό ο, ώ αισθ ι ά οι οι ο ο

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(), όπου θετιός αέραιος. Α (i) Ρ αληθής αι (ii) Ρ() Ρ( + 1) για άθε, τότε Ρ() αληθής για άθε.. Αισότητα Bernoulli (1 +α

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα