Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία"

Transcript

1 Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Ορισμός RSA Παραγωγή κλειδιών 1 Εύρεση πρώτων p, q μεγάλου μήκους (> 1000 ψηφία) χρήση ελέγχου πρώτων αριθμών (πχ Miller-Rabin) 2 Υπολογισμός n = p q και φ(n) = (p 1) (q 1) 3 Επιλογή e U(Z n ) : gcd(e, φ(n)) = 1 4 Υπολογισμός d : e d 1 (mod φ(n)) χρήση Επεκτεταμένου Ευκλείδειου αλγόριθμου Δημόσιο κλειδί: e, n Ιδιωτικό κλειδί: d Κρυπτογράφηση enc(m) = m e mod n (m Z n ) Αποκρυπτογράφηση dec(c) = c d mod n Ιδιότητες του RSA Ορθότητα dec(m e mod n) (m e ) d m k φ(n)+1 m (mod n) Αποδεικνύεται εύκολα για m U(Z n ), αλλά ισχύει και για κάθε m Z n \ U(Z n ) (άσκηση) Και οι τρεις διαδικασίες (παραγωγή κλειδιών, κρυπτογράφηση, αποκρυπτογράφηση) υλοποιούνται αποδοτικά RSA και παραγοντοποίηση Αν κάποιος μπορει να βρει τα p και q μπορεί εύκολα να υπολογίσει το φ(n) και επομένως και το d: φ(n) Computation p Factoring(n) Η εύρεση του φ(n) οδηγεί σε παραγοντοποίηση (άρα είναι παρόμοιας δυσκολίας) λύνοντας ως προς p, q: Επομένως: n = p q φ(n) = (p 1) (q 1) φ(n) Computation p Factoring(n) Εύρεση μυστικού εκθέτη d παραγοντοποίηση του n Η εύρεση του ιδιωτικού κλειδιού d (εκθέτη αποκρυπτογράφησης) του RSA, οδηγεί στην παραγοντοποίηση του n με πολύ μεγάλη πιθανότητα Απόδειξη Αν γνωρίζουμε το d μπορούμε να σχεδιάσουμε τον παρακάτω πιθανοτικό αλγόριθμο: Υπολογίζουμε u = ed 1 Ισχύει φ(n) ed 1 a U(Z n ) : a u 1 (mod n) Χρησιμοποιούμε την ίδια ιδέα που είδαμε στην απόδειξη του Miller-Rabin: Γράφουμε u = t 2 s και παίρνουμε sequences b t, b 2t,, b 2it, b 2st (mod n), για διάφορες τυχαία επιλεγμένες τιμές του b Όπως και στο Miller-Rabin, αποδεικνύεται ότι τουλάχιστον τα μισά b U(Z n ) δίνουν factoring sequences Η σχέση των προβλημάτων ως τώρα φ(n) Computation p Factoring(n) rp FindSecrExp(e, n)

2 Επίθεση Κοινού Γινομένου Σενάριο: μια Έμπιστη Αρχή (Trusted Third Party) διανέμει το ίδιο γινόμενο n και διαφορετικά ζεύγη (e 1, d 1 ) και (e 2, d 2 ) σε δύο χρήστες Οι πρώτοι αριθμοί p, q είναι γνωστοί μόνο στην Έμπιστη Αρχή Τι πρόβλημα υπάρχει; (i) Ο χρήστης 1 μπορεί να υπολογίσει (e 1 d 1 1) και να παραγοντοποιήσει το n με τον πιθανοτικό αλγόριθμο (ii) Μπορεί επίσης να υπολογίσει έναν εκθέτη αποκρυπτογράφησης χωρίς παραγοντοποίηση του n ως εξής: Γνωρίζει ότι g 0 = e 1 d 1 1 = k φ(n), για κάποιο k N Από κατασκευή ισχύει gcd(e 2, φ(n)) = 1 Επομένως, διαιρώντας διαδοχικά το g 0 με τους κοινούς παράγοντές του με το e 2 βρίσκουμε a = g i = k φ(n), gcd(e 2, a) = 1 Το d 2 = (e 2) 1 (mod a) μπορεί να χρησιμοποιηθεί ως εκθέτης αποκρυπτογράφησης (γιατί;) Έστω c = m e mod n Μπορούμε από τα (c, e, n) να μάθουμε το τελευταίο bit του m; Ή το bit που μας λέει αν m > n 2 ; Θα δούμε ότι κάθε μία από τις δύο αυτές πληροφορίες είναι ισοδύναμη με το σπάσιμο του κρυπτοσυστήματος parity n,e (c) = loc n,e (c) = { 0, αν m είναι άρτιος 1, αν m είναι περιττός { 0, αν m n 2 1, αν m > n 2 όπου m το μοναδικό m Z n : m e mod n = c Σχετική έννοια: Semantic Security, το υπολογιστικό ανάλογο της Perfect Secrecy Ενδιαφέρει η ποσότητα πληροφορίας που μπορεί να διαρρεύσει σε εφικτό υπολογιστικό χρόνο Διαρροή της τιμής του συμβόλου Jacobi Έστω c = m e mod n Τότε: ( c n ) = ( me p ) ( me q ) = ( m p )e ( m q )e = ( m p ) ( m q ) = ( m n ) Αυτή η διαρροή δεν θεωρείται απειλητική για την ασφάλεια του RSA Αν μπορούμε να υπολογίσουμε οποιαδήποτε από τις συναρτήσεις loc ή parity (για όλες τις εισόδους) τότε μπορούμε να βρούμε το απλό κείμενο (σπάσιμο του RSA) Απόδειξη Στηρίζεται στην πολλαπλασιαστική ιδιότητα της κρυπτογράφησης RSA: enc n,e (m 1 ) enc n,e (m 2 ) = enc n,e (m 1 m 2 ) Παρατηρήστε ότι: loc n,e (c) = parity n,e (enc n,e (2 m)) = parity n,e (c enc n,e (2)) parity n,e (c) = loc n,e (enc n,e (m 2 1 (mod n))) = loc n,e (c enc n,e ( n+1 2 )) Επομένως οι δύο συναρτήσεις είναι ισοδύναμες υπολογιστικά (ως προς πολυωνυμικό χρόνο) Επίθεση μικρού εκθέτη Απόδειξη (συν) Μένει να εφαρμόσουμε δυαδική αναζήτηση, χρησιμοποιώντας την loc, για να βρούμε το m: loc n,e (enc(m)) = 0 x [0, n 2 ) loc n,e (enc(2m)) = 0 x [0, n 2 ) [ n 2, 3n 4 ) κοκ για log n βήματα Επομένως, αποδοτικός υπολογισμός της loc (ή της parity) οδηγεί σε αποκρυπτογράφηση Συμπέρασμα; Έστω τα δημόσια κλειδιά των Bob, Charlie και Diane p B = (n 1, 3), p C = (n 2, 3), p D = (n 3, 3), έχουν δηλαδή τον ίδιο μικρό εκθέτη Η Alice στέλνει σε όλους το ίδιο μήνυμα m Η Eve σχηματίζει το σύστημα c 1 = m 3 (mod n 1 ) c 2 = m 3 (mod n 2 ) c 3 = m 3 (mod n 3 ) Ερώτηση: τι δίνει το σύστημα αυτό με χρήση CRT; Απάντηση: την τιμή του m 3 στο Zn 1 n 2 n 3, δηλαδή το m 3 (γιατί;)

3 Συνιστώμενες παράμετροι του RSA Το κρυπτοσύστημα Rabin n 2048 (μέχρι το 2030 περίπου, μετά n 3072) p, q περίπου ίδιου μήκους p q > 2 n p 1, q 1 έχουν και μεγάλους πρώτους παράγοντες (αποφυγή κυκλικών επιθέσεων) < e Επιλέγεται πριν από τα p, q ed 1 (mod λ(n) = lcm(p 1, q 1)) 2 n 2 < d < lcm(p 1, q 1) Περισσότερα: NIST Ορισμός Δημόσιο κλειδί: n = pq, b < n Ιδιωτικό κλειδί: p, q enc(x) = (x (x + b)) mod n dec(y) = x b 2 mod n, x 2 y + b2 4 (mod n) Η αποκρυπτογράφηση συνίσταται ουσιαστικά στην εύρεση τετραγωνικών ριζών (mod n) του y = y + b2 4 : ±y (p+1)/4 (mod p), ±y (q+1)/4 (mod q), αν γνωρίζουμε p, q και p q 3 (mod 4) Σημαντικό: η αποκρυπτογράφηση χωρίς γνώση των p, q είναι ισοδύναμη με παραγοντοποίηση του n Διακριτός Λογάριθμος Το πρόβλημα του Διακριτού Λογαρίθμου στο Z p Ορισμός Έστω G μία πεπερασμένη κυκλική ομάδα τάξης n, α ένας γεννήτορας της G και β G Ο διακριτός λογάριθμος (discrete logarithm) του β στη βάση α, που συμβολίζεται log α β, είναι ο μοναδικός ακέραιος x Z n τέτοιος ώστε β = α x Παράδειγμα Για p = 97, η Z 97 είναι κυκλική ομάδα τάξης n = 96 Ένας γεννήτορας της Z 97 είναι ο α = 5 Αφού (mod 97), έχουμε ότι log 5 35 = 32 στο Z 97 Discrete Logarithm Problem (DLP) Δίνονται: ένας πρώτος αριθμός p, ένας γεννήτορας α του Z p και ένα στοιχείο β Z p Ζητείται: Να βρεθεί ακέραιος x, 0 x p 2, τέτοιος ώστε α x β (mod p) (1) Το πρόβλημα DLP (στο Z p) θεωρείται υπολογιστικά δύσκολο (υπό κάποιες προϋποθέσεις) Δεν γνωρίζουμε πολυωνυμικό αλγόριθμο που να το επιλύει Δυσκολία του DLP: ανεξάρτητη του γεννήτορα Η δυσκολία του DLP είναι ανεξάρτητη από την επιλογή του γεννήτορα α του Z p Απόδειξη Έστω α και γ δύο γεννήτορες του Z p, και β Z p Έστω x = log α β, y = log γ β και z = log α γ Τότε α x β γ y (α z ) y (mod p), δηλαδή x zy (mod p 1) Αλλά τότε y xz 1 (mod p 1), δηλαδή: log γ β (log α β)(log α γ) 1 (mod p 1) Αλγόριθμοι για το DLP Προφανής αλγόριθμος: Õ(p) Αλγόριθμος με προεπεξεργασία: υπολογίζουμε όλα τα ζεύγη (x, α x ) και ταξινομούμε ως προς δεύτερη συντεταγμένη Χρόνος και χώρος προεπεξεργασίας Õ(p), χρόνος απάντησης ερωτήματος Õ(1) Βελτιωμένη ιδέα: αλγόριθμος Shanks Επομένως αν μπορούμε να υπολογίσουμε τον διακριτό λογάριθμο σε μία βάση α τότε μπορούμε να τον υπολογίσουμε σε οποιαδήποτε βάση γ, όπου α,γ γεννήτορες του Z p

4 Αλγόριθμος Shanks Είσοδος: πρώτος p, α γεννήτορας του Z p, β Z p Έξοδος: x Z p : α x β (mod p) 1 m := p 1 2 Υπολόγισε α mj mod p, 0 j m 1 3 Ταξινόμησε τα m διατεταγμένα ζεύγη (j, α mj mod p) βάσει της δεύτερης συντεταγμένης (δηλαδή του α mj mod p), σε μια λίστα L 1 4 Υπολόγισε βα i mod p, 0 i m 1 5 Ταξινόμησε τα m διατεταγμένα ζεύγη (i, βα i mod p) βάσει της δεύτερης συντεταγμένης (δηλαδή του βα i mod p), σε μια λίστα L 2 Ορθότητα αλγορίθμου Shanks: α mj y βα i (mod p) α mj+i βpmodp Πολυπλοκότητα: Õ( p) σε χρόνο και Õ( p) σε χώρο 6 Αναζήτησε ζεύγος (j, y) L 1 τέτοιο ώστε (i, y) L 2 7 Επίστρεψε mj + i mod (p 1) Ανταλλαγή Κλειδιού Diffie-Hellman Πρωτόκολλο ανταλλαγής κλειδιού Diffie-Hellman 1 Επιλογή κοινού πρώτου p, και γεννήτορα α του Z p 2 Η Αλίκη επιλέγει έναν τυχαίο ακέραιο x που το γνωρίζει μόνο αυτή και στέλνει στον Βασίλη το μήνυμα: α x mod p 3 O Βασίλης επιλέγει έναν τυχαίο ακέραιο y που γνωρίζει μόνο αυτός και στέλνει στην Αλίκη το μήνυμα: α y mod p 4 Βασίλης: k = (α x ) y mod p Αλίκη: k = (α y ) x mod p Η ασφάλεια του πρωτοκόλλου αυτού φαίνεται να βασίζεται στην δυσκολία του DLP Αυτό δεν είναι απόλυτα ακριβές Στην πραγματικότητα, η ασφάλεια του πρωτοκόλλου Diffie-Hellman ταυτίζεται με την υπολογιστική δυσκολία του Προβλήματος Diffie-Hellman (DHP) Το Πρόβλημα Diffie-Hellman Diffie-Hellman Problem (DHP) Δίνονται: ένας πρώτος αριθμός p, ένας γεννήτορας α του Z p και τα στοιχεία α a mod p, α b mod p Z p Ζητείται: Να βρεθεί το α ab mod p Το DHP ανάγεται σε πολυωνυμικό χρόνο στο DLP: DHP p DLP Πράγματι, αν x = α a mod p και y = α b mod p, τότε a = log α x και b = log α y Επομένως, λύνοντας το DLP, μπορούμε να υπολογίσουμε τα a, b άρα και το α ab mod p Δεν γνωρίζουμε αν ισχύει και το αντίστροφο (DLP p DHP) Το Πρόβλημα Απόφασης Diffie-Hellman Η σχετική δυσκολία των DDHP, CDHP, DLP Decision Diffie-Hellman Problem (DDHP) Δίνονται: ένας πρώτος αριθμός p, ένας γεννήτορας α του Z p και δύο τριάδες α a, α b, α c, α a, α b, α ab (mod p) Ζητείται: Να βρεθεί (με πιθανότητα αρκετά μεγαλύτερη από 1/2) ποιά είναι η σωστή τριάδα, δηλαδή η α a, α b, α ab Για αποφυγή σύγχυσης, το κλασικό πρόβλημα DHP αναφέρεται συχνά και ως Computational Diffie-Hellman Problem (CDHP) Προφανώς ισχύει: DDHP p CDHP p DLP Cryptographic assumptions Για κάθε πρόβλημα ορίζεται και η αντίστοιχη υπόθεση υπολογιστικής δυσκολίας του: DDH, CDH, DL Η σειρά ισχύος των υποθέσεων: DDH CDH DL Σημαντική παρατήρηση: υπάρχουν κυκλικές ομάδες όπου το DDHP είναι εύκολο (υπό προϋποθέσεις), ενώ το CDHP θεωρείται δύσκολο Παράδειγμα: η ομάδα Z p (λόγω της δυνατότητας υπολογισμού του τελευταίου bit του διακριτού λογαρίθμου)

5 Το κρυπτοσύστημα ElGamal (Taher ElGamal, Crypto 84) Παραγωγή κλειδιών Η Alice διαλέγει ένα πρώτο p, όπου ο p 1 έχει τουλάχιστον ένα μεγάλο παράγοντα, ένα γεννήτορα g της Z p, και τυχαίο a Z p Δημόσιο κλειδί της Alice: p, g, g a mod p Ιδιωτικό κλειδί της Alice: a Κρυπτογράφηση 1 Ο Bob επιλέγει τυχαίο k {2, 3,, p 2} 2 Ο Bob υπολογίζει γ = g k mod p και δ = m(g a ) k mod p και στέλνει το ζευγάρι (γ, δ) στην Alice (1-to-2 message expansion) Αποκρυπτογράφηση 1 Η Alice πρώτα υπολογίζει: γ a g ak (mod p) και μετά αντιστρέφει σε (g ak ) 1 2 Τέλος υπολογίζει: (g ak ) 1 δ mod p (g ak ) 1 (m(g a ) k ) (g ak ) 1 m g ak m (mod p) Επανάληψη του k επίθεση KPA Παρατηρήσεις στο ElGamal Επειδή το k είναι τυχαίο η κρυπτογράφηση είναι πιθανοτική Ερώτηση: σε ποιο πρόβλημα στηρίζεται η ασφάλεια του ElGamal; Απάντηση: στο DHP (γιατί;) Και μάλιστα με ισοδυναμία!: CDHP p ElGamal-decrypt Έστω m 1, m 2 δύο απλά κείμενα και (γ, δ 1 ), (γ, δ 2 ) τα αντίστοιχα κρυπτοκείμενα (με χρήση του ίδιου k) Η Eve γνωρίζoντας τα γ, δ 1, δ 2, και m 1 (KPA), υπολογίζει το m 2 ως εξής: } { δ 1 m 1 g ak (mod p) δ 1 1 δ 2 m 2 g ak m 1 g ak (mod p) (mod p) δ 2 g ak m 2 (mod p) Οπότε m 2 δ 2 δ 1 1 m 1 (mod p)

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Κρυπτοσυστήματα Δημοσίου Κλειδιού Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία Κωνσταντινίδης Ορέστης Σ.Ε.Μ.Φ.Ε. Επιβλέπων καθηγητής: Άρης Παγουρτζής

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 25/11/2016 1 / 49 (ΕΜΠ - Κρυπτογραφία (2016-2017)) Το κρυπτοσύστημα RSA Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού

Διαβάστε περισσότερα

Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία

Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία Κεφάλαιο 4 Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία Στο κεφάλαιο αυτό θα περιγράψουμε βασικούς αλγόριθμους που σχετίζονται με έννοιες της Θεωρίας Αριθμών και έχουν άμεση εφαρμογή στην κρυπτογραφία.

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 1 Το Κρυπτοσύστηµα RSA Η ιδέα της κρυπτογραφίας δηµοσίου κλειδιού παρουσιάσθηκε για πρώτη φορά το 1976 από τους Dffe και Hellman Ένα χρόνο αργότερα, οι R L Rvest, A Shamr

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

Αριθμο-Θεωρητικά Προβλήματα Αναφοράς

Αριθμο-Θεωρητικά Προβλήματα Αναφοράς Κεφάλαιο Αριθμο-Θεωρητικά Προβλήματα Αναφοράς Πίνακας Περιεχομένων 3. Εισαγωγή και συνοπτική επισκόπηση... 3. Το πρόβλημα της παραγοντοποίησης ακεραίων... 3 3.3 Το πρόβλημα RSA... 4 3.4 Το πρόβλημα της

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Πρόσφατες κατευθύνσεις

Πρόσφατες κατευθύνσεις Η Παρούσα Κατάσταση σε θέµατα ΚΡΥΠΤΟΓΡΑΦΙΑΣ Κων/νος Χαλάτσης, Τµ. Π&Τ, ΕΚΠΑ Παρούσα κατάσταση - Προβλήµατα Cryptography (σχόλια για κρυπτοσυστήµατα) http://axion.physics.ubc.ca/crypt.html Snake Oil Warning

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 22/11/2016 1 / 45 (ΕΜΠ - Κρυπτογραφία (2016-2017))

Διαβάστε περισσότερα

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων

Κεφάλαιο. Ψηφιακές Υπογραφές. 11.1 Εισαγωγή. Πίνακας Περιεχομένων Κεφάλαιο Ψηφιακές Υπογραφές Πίνακας Περιεχομένων 11.1 Εισαγωγή..............................................1 11.2 Ένα πλαίσιο για μηχανισμούς ψηφιακών υπογραφών........... 2 11.3 RSA και σχετικά σχήματα

Διαβάστε περισσότερα

Το Πρόβλημα του Διακριτού Λογαρίθμου

Το Πρόβλημα του Διακριτού Λογαρίθμου ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Το Πρόβλημα του Διακριτού Λογαρίθμου Τριανταφύλλου Σταμάτιος Εξεταστική Επιτροπή Α. Παπαϊωάννου, Αναπληρωτής Καθηγητής ΕΜΠ (επιβλέπων)

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 2η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας:

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Chapter 12 Cryptography

Chapter 12 Cryptography Chapter 12 Cryptography Σακαβάλας Δημ ήτρης Δ ΠΜΣ Εφαρμοσμ ένες μαθημ ατικές επιστήμ ες Σχη μ ατική αναπαράσταση κρυπτοσυστή μ ατος Κλειδί κρυπτογράφησης : e Κλειδί αποκρυπτογράφησης : d (ιδιωτικό) Αλγόριθμ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΕΓΑΛΩΝ ΑΚΕΡΑΙΩΝ ΚΑΙ ΟΙ ΚΡΥΠΤΑΝΑΛΥΤΙΚΕΣ ΕΠΙΘΕΣΕΙΣ Διπλωματική Εργασία της Σακάρου

Διαβάστε περισσότερα

7. O κβαντικός αλγόριθμος του Shor

7. O κβαντικός αλγόριθμος του Shor 7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο

Διαβάστε περισσότερα

Υπολογισμός της δύναμης z=x b modn

Υπολογισμός της δύναμης z=x b modn Υπολογισμός της δύναμης z=x b modn 1.Γράφουμε τον εκθέτη b στο δυαδικό σύστημα αρίθμησης i b = b i όπου i= 0 bi {0,1} I==0,1,,l-1.Εφαρμόζουμε έπειτα τον εξής αλγόριθμο: z=1 for I=l-1 downto 0 do z=z modn

Διαβάστε περισσότερα

Κεφάλαιο 12. Προηγμένα Θέματα Κβαντική Κρυπτογραφία Κβαντικοί Υπολογισμοί

Κεφάλαιο 12. Προηγμένα Θέματα Κβαντική Κρυπτογραφία Κβαντικοί Υπολογισμοί Κεφάλαιο 12 Προηγμένα Θέματα Στην ενότητα αυτή θα αναφερθούμε σε σχήματα και πρωτόκολλα τα οποία είτε έχουν πολύ μεγάλη σημασία στις σύγχρονες κρυπτογραφικές εφαρμογές, είτε αναμένεται να διαδραματίσουν

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Τι είναι Κρυπτογραφία; Επιστήμη που μελετά τρόπους κωδικοποίησης μηνυμάτων. Με άλλα λόγια,

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Ασφάλεια ικτύων (Computer Security)

Ασφάλεια ικτύων (Computer Security) Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ Το πρόβλημα: Δεδομένα: δύο ακέραιοι a και b Ζητούμενο: ο μέγιστος ακέραιος που διαιρεί και τους δύο δοσμένους αριθμούς, γνωστός ως Μέγιστος Κοινός Διαιρέτης τους (Greatest

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ 1 Σύνοψη Πρόβλημα: θέλω να στείλω μήνυμα σε κάποιον δημόσια χωρίς να μπορούν να το καταλάβουν

Διαβάστε περισσότερα

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Δρ. Απόστολος Γκάμας Λέκτορας (407/80) gkamas@uop.gr Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου Διαφάνεια 1 1 Εισαγωγικά Βασικές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ ΕΠΑ.Λ. Άμφισσας Σχολικό Έτος : 2011-2012 Τάξη : Γ Τομέας : Πληροφορικής Μάθημα : ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ Διδάσκων : Χρήστος Ρέτσας Η-τάξη : tiny.cc/retsas-diktya2 ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ 8.3.4-8.3.6

Διαβάστε περισσότερα

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7.1. Εισαγωγή Το σημείο αναφοράς της ασφάλειας ενός κρυπτοσυστήματος είναι οι ειδικές ποσότητες πληροφορίας που ονομάζουμε κλειδιά. Σε ένα καλά σχεδιασμένο κρυπτοσύστημα, η ασφάλειά

Διαβάστε περισσότερα

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1 Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ

ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ Θέματα μελέτης Ορθότητα και απόδοση αλγορίθμων Παρουσίαση και ανάλυση αλγορίθμου για πρόσθεση Al Khwarizmi Αλγόριθμοι Το δεκαδικό σύστημα εφευρέθηκε στην Ινδία περίπου το

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Κρυπτογραφικά πρωτόκολλα και τεχνικές

Κρυπτογραφικά πρωτόκολλα και τεχνικές Κεφάλαιο 9 Κρυπτογραφικά πρωτόκολλα και τεχνικές Στην ενότητα αυτή θα εξετάσουμε πρακτικά θέματα που προκύπτουν από την χρήση των δομικών στοιχείων που περιγράψαμε στα προηγούμενα κεφάλαια. Επίσης θα αναφερθούμε

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Γιάννης Κ. Σταµατίου ΣΕΠ ΠΛΗ 10 Πάτρα, Ιουνιος 2003 Τι θα εξετάσουµε Πώς η κρυπτογραφία

Διαβάστε περισσότερα

Την αποδοχή του κειμένου από τον υπογράφοντα και την συμφωνία του με αυτό.

Την αποδοχή του κειμένου από τον υπογράφοντα και την συμφωνία του με αυτό. Κεφάλαιο 7 Ψηφιακές Υπογραφές 7.1 Εισαγωγή Στο κεφάλαιο αυτό θα ασχοληθούμε με τα Σχήματα Υπογραφών ή Σχήματα Ψηφιακών Υπογραφών (Digital Signature Schemes) όπως αλλιώς ονομάζονται. Θα μιλήσουμε για την

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 49 Ψηφιακές

Διαβάστε περισσότερα

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα