Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή"

Transcript

1 Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή 1

2 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική λογική είναι η συστηματική μελέτη των έγκυρων ισχυρισμών (valid arguments) με χρήση εννοιών από τα μαθηματικά. Ένας ισχυρισμός (argument) αποτελείται από συγκεκριμένες δηλώσεις (ή προτάσεις), τις υποθέσεις (premises), από τις οποίες παράγονται άλλες δηλώσεις, τα συμπεράσματα (conclusions). Συμβολική λογική: επιτρέπει τη μελέτη των ισχυρισμών ανεξάρτητα από το πεδίο στο οποίο αναφέρονται 2

3 Σύνταξη και Σημασιολογία Απαιτείται ο ορισμός της σύνταξης (syntax) και της σημασιολογίας (semantics). Η σύνταξη καθορίζει τις επιτρεπτές ακολουθίες συμβόλων. Η σημασιολογία καθορίζει τις μεταξύ τους σχέσεις. Η ερμηνεία Αντιστοιχεί τα σύμβολα της γλώσσας στις οντότητες του κόσμου που αναπαρίστανται. Επιτρέπει την απόδοση λογικών τιμών στις προτάσεις της γλώσσας (αληθείς ή ψευδείς). 3

4 Προτασιακή Λογική Στην προτασιακή λογική, κάθε γεγονός του πραγματικού κόσμου αναπαρίσταται με μια λογική πρόταση η πρόταση χαρακτηρίζεται είτε ως αληθής (true T), ή ως ψευδής (false F). Οι λογικές προτάσεις λέγονται άτομα (atoms) και αναπαριστώνται με λατινικούς χαρακτήρες. Συνδυάζονται με τη χρήση λογικών συμβόλων ή συνδετικών (connectives). Τρία σημεία στίξης Παρενθέσεις ( και ) Κόμμα, Ορθά δομημένοι τύποι (well formed formulae) 4

5 Παράδειγμα 1 η πρόταση: «επιδιώκω την ειρήνη» 2 η πρόταση: «αποφεύγω τον πόλεμο» 3 η πρόταση: «εάν επιδιώκω την ειρήνη, τότε αποφεύγω τον πόλεμο» P: «επιδιώκω την ειρήνη» Q: «αποφεύγω τον πόλεμο» 3 η πρόταση: P Q 5

6 Σημασιολογία της Προτασιακής Λογικής Αντιστοιχεί μια τιμή αληθείας (αληθές T ή ψευδές F) σε έναν τύπο, βασισμένη σε μια ερμηνεία της γλώσσας. Μια ερμηνεία (interpretation) αντιστοιχεί τιμές αληθείας στα άτομα επεκτείνει σε σύνθετους τύπους με χρήση ενός πίνακα αληθείας (truth table) Έστω η ερμηνεία Ι = {Ι{P}=T, I(Q)=T} Σύμφωνα με την παραπάνω ερμηνεία και τον πίνακα αληθείας ο τύπος P Q είναι αληθής (ικανοποιείται από την ερμηνεία, η ερμηνεία είναι μοντέλο του τύπου). 6

7 Ενδιαφέρουσες Περιπτώσεις Τύπων Ταυτολογία (tautology): τύπος αληθής κάτω από οποιαδήποτε ερμηνεία π.χ. P P Αν ο τύπος F είναι ταυτολογία, γράφεται F Αντίφαση (contradiction): ψευδής κάτω από οποιαδήποτε ερμηνεία P P Ένας τύπος P συνεπάγεται λογικά (implication) από τον τύπο Q αν κάθε μοντέλο του Q είναι επίσης και μοντέλο του P. Συμβολίζεται ως Q P Δύο τύποι P και Q ονομάζονται ισοδύναμοι (equivalent) εάν οι πίνακες αληθείας τους είναι ίδιοι κάτω από οποιαδήποτε ερμηνεία. Συμβολίζεται ως P Q Οι παραπάνω ορισμοί επεκτείνονται και σε σύνολα τύπων. 7

8 Σημαντική διαφορά Διαφορά μεταξύ λογικής ισοδυναμίας ( ) και συνδετικού ισοδυναμίας ( ) Η λογική ισοδυναμία αφορά τη σημασιολογία των υπό εξέταση προτάσεων. Το συνδετικό της ισοδυναμίας αποτελεί μέρος της σύνταξης της γλώσσας Το ίδιο ισχύει για τη λογική συνεπαγωγή ( ) και το συνδετικό συνεπαγωγής ( ) Παράδειγμα: P: «επιδιώκω την ειρήνη» Q: «αποφεύγω τον πόλεμο» P Q: «εάν επιδιώκω την ειρήνη, τότε αποφεύγω τον πόλεμο» Έστω η ερμηνεία Ι = {Ι{P}=T, I(Q)=T}. Τότε ο τελευταίος τύπος είναι αληθής. Αντίθετα, η δήλωση P Q P Q, δηλώνει ότι κάθε ερμηνεία που ικανοποιεί τον τύπο P Q, ικανοποιεί επίσης και τον τύπο P Q. 8

9 Λογικές Ισοδυναμίες Υπάρχει μια σειρά ισοδυναμιών που χρησιμοποιούνται για τη μετατροπή μιας πρότασης σε μια ισοδύναμή της. Οι ισοδυναμίες είναι αληθείς κάτω από οποιαδήποτε ερμηνεία. 9

10 Κανονικές μορφές Κανονικές μορφές: μορφές των τύπων της λογικής που ακολουθούν μια συγκεκριμένη δομή και στις οποίες δεν εμφανίζονται καθόλου κάποια συνδετικά. Κάθε τύπος μπορεί να μετατραπεί σε μια κανονική μορφή χρησιμοποιώντας τις λογικές ισοδυναμίες την κατάλληλη ομαδοποίηση των ατόμων μέσω επιμερισμού Οι κανονικές μορφές είναι χρήσιμες για την εύρεση της λογικής τιμής μιας πολύπλοκης έκφρασης την εξαγωγή νέας γνώσης 10

11 Διαζευκτική και Συζευκτική Μορφή Διαζευκτική μορφή: διαζεύξεις λεκτικών και συζεύξεων Συζευκτική μορφή: συζεύσεις λεκτικών και διαζεύξεων 11

12 Παράδειγμα κανονικής μορφής Σε συμβολική μορφή: P (P Q) Σε κανονική διαζευκτική μορφή: (P P) (P Q) Καθίσταται ευκολότερο να βρεθεί η λογική τιμή του παραπάνω τύπου. Ψευδής για την ερμηνεία Ι = {Ι{P}=T, I(Q)=F} Αληθής για την ερμηνεία Ι = {Ι{P}=T, I(Q)=T} 12

13 Μηχανισμός Εξαγωγής Συμπερασμάτων Δεδομένου ενός συνόλου S καλά σχηματισμένων τύπων, η εξαγωγή συμπερασμάτων αφορά: είτε τη δημιουργία όλων των τύπων που λογικά συνεπάγονται από το S είτε το να διαπιστωθεί αν ένας τύπος P συνεπάγεται λογικά από το S. Υλοποίηση: Πίνακες αληθείας Λογική απόδειξη 13

14 Πίνακες Αληθείας Οι πίνακες αληθείας υπολογίζουν τη λογική τιμή ενός τύπου. Ένας πίνακας αληθείας αποτελείται από 2 Ν γραμμές όπου Ν είναι το πλήθος των ατόμων που περιέχονται στον τύπο. Αποτελεί την απλούστερη μέθοδο εξαγωγής συμπερασμάτων, αλλά οι πίνακες αληθείας που προκύπτουν συνήθως είναι απαγορευτικά μεγάλοι 14

15 Λογική Απόδειξη Μια απόδειξη (proof) είναι μια σειρά από βήματα Κάθε βήμα είναι η εφαρμογή ενός κανόνα συμπερασμού (inference rule). Απώτερος σκοπός είναι η παραγωγή της αποδεικτέας πρότασης ή η κατάληξη σε άτοπο. Το γεγονός ότι ένας τύπος P μπορεί να αποδειχθεί από ένα αρχικό σύνολο τύπων S βάσει ενός συνόλου κανόνων συμπερασμού Δ συμβολίζεται ως S Δ P. Η χρήση των κανόνων συμπερασμού εξασφαλίζει την ορθότητα των συμπερασμάτων. 15

16 Κανόνες Συμπερασμού Οι κανόνες συμπερασμού εφαρμόζονται στο αρχικό σύνολο προτάσεων μέχρι να παραχθεί η προς απόδειξη πρόταση. Οι κανόνες συμπερασμού γράφονται συνήθως σαν «κλάσματα», π.χ. ο κανόνας απαλοιφής σύζευξης» 16

17 Modus Ponens «Τρόπος του θέτειν»: εάν είναι γνωστή η αλήθεια των προτάσεων P και P Q μπορούμε να συνάγουμε ότι η πρόταση Q είναι αληθής. Παράδειγμα: P: «Ο Νίκος είναι προγραμματιστής» P Q: Εάν «Ο Νίκος είναι προγραμματιστής», τότε «Ο Νίκος έχει υπολογιστή». Συμπέρασμα: Q: «Ο Νίκος έχει υπολογιστή» 17

18 Διαδικασία Απόδειξης Μια διαδικασία απόδειξης (proof procedure) αποτελείται από: ένα σύνολο κανόνων συμπερασμού Δ έναν αλγόριθμο εφαρμογής τους Μια αποδεικτική διαδικασία ονομάζεται ορθή (sound) όταν όλα τα συμπεράσματα που εξάγονται αποτελούν και λογικές συνεπαγωγές του αρχικού συνόλου των τύπων. Μια αποδεικτική διαδικασία ονομάζεται πλήρης (complete) όταν για κάθε τύπο P ο οποίος λογικά συνεπάγεται από ένα σύνολο τύπων S, μπορεί να κατασκευάσει μια απόδειξη. 18

19 Αυτοματοποίηση της Διαδικασίας Απόδειξης Αυτό που ενδιαφέρει την ΤΝ είναι η αυτοματοποίηση της εξαγωγής συμπερασμάτων από μία βάση γνώσης εκφρασμένη στη γλώσσα της λογικής. Η εύρεση απόδειξης μπορεί να θεωρηθεί ως πρόβλημα αναζήτησης όπου: Οι καταστάσεις αποτελούνται από τις προτάσεις που θεωρούνται αληθείς (είτε από αρχική γνώση είτε ως παραγόμενα συμπεράσματα) Οι κανόνες συμπερασμού αποτελούν τους τελεστές μετάβασης από μία κατάσταση στην επόμενη. Η αυτοματοποίηση πρέπει να είναι ορθή, πλήρης αλλά και αποδοτική (efficient). 19

20 Αρχή της Ανάλυσης Μια διαδικασία ικανή για την αυτοματοποίηση της εξαγωγής συμπερασμάτων βασίζεται στην αρχή της ανάλυσης (resolution). P και P: συμπληρωματικά ζεύγη (complimentary pairs) R Q: αναλυθέν (resolvent) Οι προτάσεις θα πρέπει να είναι εκφρασμένες σαν ένα σύνολο διαζεύξεων. Πρόταση (clause): κάθε διάζευξη αποτελείται από άτομα ή αρνήσεις ατόμων Απαιτείται η μετατροπή όλων των προτάσεων στην συζευκτική μορφή της λογικής Επιτυγχάνεται με τη χρήση ισοδυναμιών 20

21 Έστω οι προτάσεις: Παράδειγμα Ανάλυσης (1/3) Σε συμβολική μορφή: Με απαλοιφή του συνδετικού της συνεπαγωγής: 21

22 Παράδειγμα Ανάλυσης (2/3) Συνήθως χρησιμοποιείται σύνολο προτάσεων χωρίς το συνδετικό σύζευξης: Εφαρμογή της αρχής της ανάλυσης για τις προτάσεις (1) και (2): Εφαρμογή της αρχής της ανάλυσης για τις προτάσεις (3) και (4): 22

23 Παράδειγμα Ανάλυσης (3/3) 23

24 Ορθότητα και Πληρότητα της Ανάλυσης Μια διαδικασία που βασίζεται μόνο στην αρχή της ανάλυσης είναι ορθή. Ο κανόνας της ανάλυσης σε συνδυασμό με την «εις άτοπον απαγωγή» (refutation ή proof by contradiction) είναι πλήρης. Για να αποδειχθεί μια πρόταση αληθής: Εισάγεται η άρνησή της Επιχειρείται η κατάληξη σε άτοπο με την εφαρμογή της ανάλυσης Το άτοπο εκφράζεται με την κενή πρόταση που συμβολίζεται ως εξάγεται ως και Ο κανόνας της ανάλυσης δεν μπορεί να εξάγει με απευθείας απόδειξη όλους τους δυνατούς τύπους που λογικά συνεπάγονται από την αρχική γνώση. 24

25 Προτασιακή Λογική - Σχόλια Απαιτείται μόνο ένας κανόνας συμπερασμού για την ορθή απόδειξη οποιασδήποτε πρότασης. Πλεονεκτήματα: Απλότητα στη σύνταξη Μπορεί να καταλήξει πάντα σε συμπέρασμα (καταληκτική decidable) Μειονεκτήματα: Έλλειψη γενικότητας Υπονοεί ότι ο κόσμος αποτελείται μόνο από γεγονότα τα οποία είναι αληθή ή ψευδή Καμία δυνατότητα διαχωρισμού και προσπέλασης των οντοτήτων του κόσμου. «οι τίγρεις είναι σαρκοβόρα» και «ο τζίμης είναι τίγρης» Δεν υπάρχει διαχωρισμός μεταξύ αντικειμένων (τίγρεις) και ιδιοτήτων (σαρκοβόρα) Δεν υπάρχει δυνατότητα προσπέλασης αυτών για δημιουργία νέας γνώσης (π.χ. «ο τζίμης είναι σαρκοβόρο») 25

26 Κατηγορηματική Λογική Επέκταση της Προτασιακής Λογικής Ο κόσμος περιγράφεται σαν σύνολο αντικειμένων, ιδιοτήτων και σχέσεων Αντιμετωπίζεται το πρόβλημα της μη προσπελασιμότητας των στοιχείων των γεγονότων της προτασιακής λογικής. «ο τζίμης είναι τίγρης» : τίγρης(τζίμης) Ύπαρξη μεταβλητών, αυξάνεται η εκφραστική ικανότητα. Εισάγονται: Όροι (terms) Κατηγορήματα (predicates) Ποσοδείκτες (quantifiers) 26

27 Αλφάβητο Κατηγορηματικής Λογικής Σταθερές: a, b, c, a_1, κτλ. Συναρτησιακά σύμβολα: f, g, father-of, κτλ. Τάξη (arity), ορίσματα (arguments). Μεταβλητές: Χ, Υ, Man, κτλ. Σύμβολα κατηγορημάτων p, q, color, κτλ. Συνδετικά: όμοια με της προτασιακής λογικής Ποσοδείκτες: Υπαρξιακός ποσοδείκτης (existential quantifier): Καθολικός ποσοδείκτης (universal quantifier): Σύμβολα στίξης: ( ), Σύμβολα αληθείας: t (αληθές), f (ψευδές). 27

28 Όροι και Ατομικοί Τύποι Ένας όρος (term) μπορεί να είναι: μια σταθερά μια μεταβλητή ένας συναρτησιακός όρος της μορφής f(t 1, t 2,, t n ) όπου f είναι ένα συναρτησιακό σύμβολο τάξης n και τα ορίσματα t 1, t 2,, t n είναι επίσης όροι. father_of(nick), father_of(father_of(nick)) works(john, profession(teacher)) Ένας ατομικός τύπος (atomic formula) έχει τη μορφή p(a 1, a 2,, a n ) όπου το p είναι ένα κατηγόρημα τάξης n και τα a 1, a 2,, a n ορίσματα. Κάθε όρισμα είναι ένας όρος. 28

29 Ορθά Δομημένοι Τύποι Η σύνδεση προτάσεων για τη δημιουργία ορθά δομημένων τύπων γίνεται με τη χρήση συνδετικών και ποσοδεικτών. Χ whale(x) mammal(x) Για την επεξήγηση του τύπου και την απόδοση λογικής τιμής απαιτείται ο ορισμός της σημασιολογίας. 29

30 Σημασιολογία Κατηγορηματικής Λογικής Αφηρημένος κόσμος (abstract world) ή πεδίο ορισμού (domain). Αποτελείται από αντικείμενα και σχέσεις (η ιδιότητα θεωρείται μοναδιαία σχέση) Μια ερμηνεία αντιστοιχεί τους όρους και ατομικούς τύπους της λογικής στα αντικείμενα και σχέσεις του κόσμου. Η απεικόνιση των όρων σε αντικείμενα ονομάζεται ανάθεση όρων (term assignment). Οι σταθερές αντιστοιχούνται στα αντικείμενα του κόσμου. Οι συναρτησιακοί όροι αναφέρονται σε αντικείμενα, στα οποία δεν δίνουμε ένα συγκεκριμένο όνομα αλλά χρησιμοποιούμε μια περίφραση για να αναφερθούμε σε αυτά. Ένας ατομικός τύπος απεικονίζει μια σχέση ανάμεσα σε μια διατεταγμένη πλειάδα (tuple) αντικειμένων. Μπορεί να είναι αληθής ή ψευδής. 30

31 Μεταβλητές και Ποσοτικοποίηση Στην κατηγορηματική λογική πρώτης τάξης (first-order predicate logic), οι μεταβλητές αναφέρονται μόνο σε αντικείμενα και όχι σε συναρτησιακά σύμβολα ή κατηγορήματα. άνθρωπος(χ) θνητός(χ) άνθρωπος(χ) μαθηματικός(χ) Η αποσαφήνιση της σημασίας των παραπάνω εκφράσεων απαιτεί χρήση ποσοδεικτών. Υπαρξιακός ποσοδείκτης ( Χ)(φ(Χ)): υπάρχει Χ, τέτοιο ώστε ο τύπος φ(χ) να είναι αληθής Καθολικός ποσοδείκτης ( Χ)(φ(Χ)): για κάθε Χ, ο φ(χ) είναι αληθής ( X)(άνθρωπος(Χ) θνητός(χ)) ( X)(άνθρωπος(Χ) μαθηματικός(χ)) 31

32 Αντικατάσταση και Ενοποίηση Η αντικατάσταση (substitution) αφορά την αντικατάσταση των μεταβλητών από κάποιους όρους. Παριστάνεται ως {X i /t i }, όπου X i η μεταβλητή και t i ο όρος. Παράδειγμα: η αντικατάσταση {X/φάλαινα} στον τύπο είναι(χ, θηλαστικό) θα δώσει τον τύπο είναι(φάλαινα, θηλαστικό). Ενοποίηση (unification) είναι η διαδικασία κατά την οποία δύο εκφράσεις γίνονται συντακτικά όμοιες με τη χρήση αντικαταστάσεων Παράδειγμα: οι εκφράσεις είναι(λιοντάρι, θηλαστικό, Χ) και είναι(λιοντάρι, Υ, σαρκοβόρο), ενοποιούνται με την αντικατάσταση θ={χ/σαρκοβόρο, Υ/θηλαστικό}. 33

33 Ενοποιητής Για δύο εκφράσεις φ 1 και φ 2, ο ενοποιητής (unifier) τους είναι μια αντικατάσταση θ τέτοια ώστε η έκφραση φ 1 θ να είναι συντακτικά όμοια με την φ 2 θ (ενοποιήσιμες εκφράσεις). Ο γενικότερος ενοποιητής (most general unifier mgu) είναι εκείνος που ενοποιεί τις εκφράσεις με τις λιγότερες δυνατές αντικαταστάσεις. Αλγόριθμος (κανόνες) εύρεσης γενικότερου ενοποιητή: 1. Δύο σταθερές ενοποιούνται αν και μόνο αν είναι ίδιες. 2. Μια μεταβλητή ενοποιείται με οποιονδήποτε όρο, εισάγοντας μια νέα αντικατάσταση στον γενικότερο ενοποιητή. 3. Δύο συναρτησιακοί όροι ενοποιούνται αν έχουν το ίδιο συναρτησιακό σύμβολο και αν το κάθε όρισμα του πρώτου μπορεί να ενοποιηθεί με το αντίστοιχο σε θέση όρισμα του δευτέρου. 4. Δύο ατομικοί τύποι ενοποιούνται αν έχουν το ίδιο κατηγόρημα, την ίδια τάξη (αριθμό ορισμάτων) και αν κάθε όρισμα του πρώτου μπορεί να ενοποιηθεί με το αντίστοιχο σε θέση όρισμα του δεύτερου. 34

34 Αλγόριθμος εύρεσης mgu - Σχόλια Αναδρομικός αλγόριθμος Αποδοτικός Μη ορθός Περιπτώσεις όπου η προς ενοποίηση μεταβλητή εμφανίζεται στον ίδιο τον όρο με τον οποίον θα ενοποιηθεί Χ=profession(X) Τότε Χ=profession(profession(profession( ))). Το πρόβλημα αναφέρεται σαν έλεγχος εμφάνισης (occurs check) και η λύση του απαιτεί αλγορίθμους με μεγάλο υπολογιστικό κόστος. 35

35 Παράδειγμα Αναπαράστασης Γνώσης Γνώση για τα χαρακτηριστικά διαφόρων ειδών ζώων: Κάθε ζώο το οποίο έχει τρίχωμα ή παράγει γάλα είναι θηλαστικό. Χ (έχει(χ,τρίχωμα) παράγει(χ,γάλα)) είναι(χ,θηλαστικό) Κάθε ζώο που έχει φτερά και γεννάει αυγά είναι πουλί. Χ (έχει(χ,φτερά) γεννάει(χ,αυγά)) είναι(χ,πουλί) Κάθε πουλί το οποίο δεν πετά και κολυμπά είναι πιγκουίνος. Χ (είναι(χ,πουλί) ( πετά(χ)) κολυμπά(χ) είναι(χ, πιγκουίνος) 38

36 Από την προτασιακή λογική Ισοδυναμίες (1/2) 39

37 Σχετικές με τους ποσοδείκτες Ισοδυναμίες (2/2) 40

38 Προσημασμένη Συζευκτική Κανονική Μορφή Εφόσον υπάρχουν τύποι που είναι ανόμοιοι συντακτικά αλλά λογικά ισοδύναμοι, η αναγωγή τους σε μια περιορισμένη κανονική μορφή είναι χρήσιμη για συγκρίσεις μεταξύ τους αποδεικτικές διαδικασίες. Προσημασμένη συζευκτική κανονική μορφή (prenex conjunctive normal form) Τα βασικά δομικά στοιχεία είναι: Λεκτικά (literals): ατομικός τύπος ή άρνηση ατομικού τύπου Προτάσεις (clauses): πεπερασμένη διάζευξη κανενός ή περισσοτέρων λεκτικών Κενή πρόταση: διάζευξη μηδέν λεκτικών στοιχείων Ένας τύπος (formula) αποτελείται από μία σύζευξη προτάσεων προσημασμένη από ποσοδείκτες. 41

39 Αναγωγή σε κανονική μορφή Οποιοσδήποτε τύπος της κατηγορηματικής λογικής μπορεί να αναχθεί σε ένα ισοδύναμο τύπο της προσημασμένης συζευκτικής κανονικής μορφής Η διαδικασία περιλαμβάνει τα ακόλουθα βήματα: 1. Απαλοιφή συνδετικών ισοδυναμίας και συνεπαγωγής (6, 7) 2. Μετονομασία των μεταβλητών έτσι ώστε δύο μεταβλητές που ποσοτικοποιούνται από διαφορετικούς ποσοδείκτες να μην έχουν το ίδιο όνομα (14, 15) 3. Μετατροπή των τύπων έτσι ώστε το συνδετικό της άρνησης να εφαρμόζεται μόνο σε ατομικούς τύπους (1, 2, 3, 8, 9) 4. Μεταφορά των ποσοδεικτών με αναδρομική εφαρμογή των Εφαρμογή των ισοδυναμιών επιμεριμού ως προς τη σύζευξη και διάζευξη έτσι ώστε ο τελικός τύπος να αποτελείται από συζεύξεις προτάσεων (4, 5) 42

40 Παράδειγμα αναγωγής Απαλοιφή του συνδετικού της ισοδυναμίας (6) Επειδή η μεταβλητή Υ εμφανίζεται ποσοτικοποιημένη από δύο διαφορετικούς ποσοδείκτες, η δεύτερη εμφάνιση μετονομάζεται σε Z. Εφαρμογή των ισοδυναμιών DeMorgan και 9 (άρνηση μόνο σε τύπους). Εφαρμογή των ισοδυναμιών 10 και 12 (ομαδοποίηση των λεκτικών). 43

41 Μορφή Kowalski Όλες οι προτάσεις εκφράζονται σαν λογικές ισοδυναμίες της μορφής q 1, q 2,, q n r 1, r 2,, r m Οι ατομικοί τύποι r i είναι σε διάζευξη ενώ οι q j σε σύζευξη Τα r i αποτελούν τα συμπεράσματα της πρότασης, ενώ τα q j τις προϋποθέσεις της. Δεν περιέχονται αρνήσεις ατομικών τύπων. Περισσότερο αναγνώσιμη μορφή 47

42 Παράδειγμα μετατροπής σε μορφή Kowalski Έστω η πρόταση Συγκέντρωση όλων των ατομικών τύπων σε άρνηση στο αριστερό μέρος της πρότασης, με εφαρμογή της ισοδυναμίας Εφαρμογή του νόμου DeMorgan Εφαρμογή της ισοδυναμίας Αντικατάσταση των συμβόλων της σύζευξης και της διάζευξης με το σύμβολο,. 48

43 Παράδειγμα μορφής Kowalski 49

44 Περιπτώσεις προτάσεων Kowalski q 1, q 2,, q n r 1, r 2,, r m Αν m>0 και n>0, τότε η πρόταση ερμηνεύεται σαν «ισχύει r 1 ή r 2 ή ή r n εάν q 1 και q 2 και και q n» (κανόνας) Προτάσεις Horn (Horn clauses): επιτρέπεται μόνο ένας ατομικός τύπος στο συμπέρασμα Αν m=0, τότε οι υποθέσεις καταλήγουν σε αναληθές συμπέρασμα (στόχος, ερώτηση) An n=0, τότε αναπαριστάται μια πρόταση χωρίς υπόθεση (γεγονότα) Αν m=n=0, τότε αναπαρίσταται μια πρόταση πάντα αναληθής και συμβολίζεται με την κενή πρόταση 50

45 Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. 51

46 Η αρχή της ανάλυσης στη κατηγορηματική λογική Η αρχή της ανάλυσης (resolution principle) είναι ο μοναδικός κανόνας που απαιτείται για την εξαγωγή όλων των σωστών συμπερασμάτων σε μια αποδεικτική διαδικασία που χρησιμοποιεί τη μέθοδο της «εις άτοπο απαγωγής» (refutation). Η διαδικασία απόδειξης είναι ορθή και πλήρης Στην απλή περίπτωση περιλαμβάνει προτάσεις οι οποίες περιέχουν το πολύ δύο λεκτικά. Τα λεκτικά q και q ονομάζονται συμπληρωματικά ζεύγη. Οι αντικαταστάσεις μεταβλητών που προκύπτουν εφαρμόζονται στο αναλυθέν. 53

47 Διαδικασία απόδειξης Η διαδικασία απόδειξης περιλαμβάνει Εισαγωγή της άρνησης της προς απόδειξη πρότασης στο αρχικό σύνολο προτάσεων Εφαρμογή του κανόνα της ανάλυσης μέχρι το σύστημα να εξάγει την κενή πρόταση (άτοπο) Για παράδειγμα, έστω ότι θέλουμε να διερευνήσουμε αν το έμβολο μιας μηχανής χρειάζεται αντικατάσταση. Εισάγεται η άρνηση της πρότασης αντικατάσταση(έμβολο) και εφαρμόζεται διαδοχικά ο κανόνας της ανάλυσης 54

48 Εφαρμογή ανάλυσης 55

49 Ανάλυση για Kowalski Εναλλακτική διατύπωση του κανόνα της ανάλυσης για τη μορφή Kowalski Η διαδικασία είναι περισσότερο κατανοητή. Το προηγούμενο παράδειγμα γράφεται Η άρνηση της προς απόδειξη πρότασης σε μορφή Kowalski αναπαρίσταται ως αντικατάσταση(έμβολο) 56

50 Εφαρμογή ανάλυσης (Kowalski) 57

51 Εναλλακτική εφαρμογή ανάλυσης (Kowalski)! Οι αποδείξεις δεν είναι μοναδικές 58

52 Η απόδειξη ως πρόβλημα αναζήτησης Η εύρεση απόδειξης μπορεί να αντιμετωπιστεί σαν ένα πρόβλημα αναζήτησης με μοναδικό τελεστή μετάβασης τον κανόνα της ανάλυσης. Αναζήτηση κατά πλάτος (breadth-first) Παράγει τις συντομότερες αποδείξεις Μεγάλη αύξηση αριθμού κόμβων Εμφανίζεται συνδυαστική έκρηξη που αντιμετωπίζεται με τεχνικές όπως η γραμμική ανάλυση Η αρχή της ανάλυσης είναι η βάση για τη δημιουργία του λογικού προγραμματισμού: Prolog Χρησιμοποιούνται προτάσεις Horn και SLD-ανάλυση 59

53 Κατηγορηματική Λογική - Σχόλια Πλεονεκτήματα: Αντιστοιχία με φυσική γλώσσα Ικανοποιητική έκφραση ποσοτικοποίησης Ικανότητα να συλλάβει τη γενικότητα Μειονεκτήματα: Αδυναμία έκφρασης ασάφειας (οι προτάσεις είναι μόνο αληθείς ή ψευδείς) Αθροιστικότητα των αποτελεσμάτων (τα συμπεράσματα προστίθενται χωρίς δυνατότητα αναθεώρησης) 60

54 Ενδεικτική Βιβλιογραφία Ενότητες 9.1 και 9.2 του βιβλίου «Τεχνητή Νοημοσύνη», Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας και Η. Σακελλαρίου. 61

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική

Διαβάστε περισσότερα

9.1 Προτασιακή Λογική

9.1 Προτασιακή Λογική ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο

Διαβάστε περισσότερα

Μηχανισμός Εξαγωγής Συμπερασμάτων

Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί

Διαβάστε περισσότερα

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Κατηγορηματική Λογική

Κατηγορηματική Λογική Κατηγορηματική Λογική Επέκταση της προτασιακής λογικής. Ο κόσμος περιγράφεται σαν ένα σύνολο αντικειμένων, ιδιοτήτων και σχέσεων. Αντιμετωπίζει το πρόβλημα της μη προσπελασιμότητας των στοιχείων των γεγονότων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

1 Κεφάλαιο 9 Λογική 1

1 Κεφάλαιο 9 Λογική 1 1 Κεφάλαιο 9 Λογική 1 Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η μαθηματική λογική (mathematical logic) είναι η συστηματική μελέτη των έγκυρων ισχυρισμών (valid arguments).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Η λογική είναι μια γλώσσα αναπαράστασης γνώσης (knowledge representation) Κατηγορηματίκή λογική

Η λογική είναι μια γλώσσα αναπαράστασης γνώσης (knowledge representation) Κατηγορηματίκή λογική Λογική Η λογική είναι μια γλώσσα αναπαράστασης γνώσης (knowledge representation) Ύπαρξη διαφόρων λογικών: Προτασιακή λογική Κατηγορηματίκή λογική Λογική πρώτης τάξεως (Propositional logic) (Predicate logic)

Διαβάστε περισσότερα

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 11 ης διάλεξης

Ασκήσεις μελέτης της 11 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΕΠΛ 434: Λογικός Προγραμματισμός

ΕΠΛ 434: Λογικός Προγραμματισμός ΕΠΛ 434: Λογικός Προγραμματισμός και Τεχνητή Νοημοσύνη Επισκ. Λέκτορας Λοΐζος Μιχαήλ Τμήμα Πληροφορικής ρ Πανεπιστήμιο Κύπρου (Χειμερινό Εξάμηνο 2008 2009) Προγράμματα στην Prolog Αλγόριθμος = Λογική +

Διαβάστε περισσότερα

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Αναπαράσταση γνώσης και συλλογιστική

Αναπαράσταση γνώσης και συλλογιστική εφάλαιο 1 Αναπαράσταση γνώσης και συλλογιστική 1.1 Tυπική αναπαράσταση γνώσης ι φορμαλισμοί τυπικής αναπαράστασης γνώσης και συλλογιστικής χαρακτηρίζονται από τρία βασικά στοιχεία: τη σύνταξη (syntax),

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο.

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. Όταν γράφουμε

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

Εξελιγµένες Τεχνικές Σχεδιασµού

Εξελιγµένες Τεχνικές Σχεδιασµού Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές Αναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος Μειονεκτήµατα προτασιακής λογικής

Διαβάστε περισσότερα

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο Λογική Πρώτης Τάξης Γιώργος Κορφιάτης Εθνικό Μετσόβιο Πολυτεχνείο Νοέµβριος 2008 Σύνταξη Ορισµός (Σύνταξη της λογικής πρώτης τάξης) Λεξιλόγιο Σ = (Φ, Π, r) Συναρτήσεις f Φ Σχέσεις R Π r( ) η πληθικότητα

Διαβάστε περισσότερα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

ΕΠΛ 412 Λογική στην Πληροφορική 4-1

ΕΠΛ 412 Λογική στην Πληροφορική 4-1 Επίλυση Resolution Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Προτασιακό Λογισμό στον Κατηγορηματικό Λογισμό ΕΠΛ 412 Λογική στην Πληροφορική 4-1 Το όνειρο του

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Γνώση γλώσσας από τη σκοπιά Του συντακτικού (syntax) Περιγραφή με γραμματικές

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Κεφάλαιο 8 Σημασιολογία λογικών προγραμμάτων

Κεφάλαιο 8 Σημασιολογία λογικών προγραμμάτων Κεφάλαιο 8 Σημασιολογία λογικών προγραμμάτων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η μοντελοθεωρητική σημασιολογία του λογικού προγραμματισμού, δηλαδή αυτή που βασίζεται σε ερμηνείες και μοντέλα, με τελικό

Διαβάστε περισσότερα

. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.

. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι. Boolean Logic Ορισµός: Προτασιακοί τύποι είναι οι εκφράσεις που ορίζονται επαγωγικά ως εξής: (i) Τα σύµβολα προτάσεων είναι προτασιακοί τύποι. (ii) Αν φ και ψ είναι προτασιακοί τύποι τότε οι ( φ ψ ),(

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α :

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΓΝΩΣΗ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ. ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΓΝΩΣΗ 1. ΣΩΣΤO τo (b): NAI ΕΞΗΓΗΣΗ: ΤΕΣΤ 7 / ΑΣΚΗΣΗ 1.

ΕΡΩΤΗΜΑΤΑ σε ΓΝΩΣΗ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ. ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΓΝΩΣΗ 1. ΣΩΣΤO τo (b): NAI ΕΞΗΓΗΣΗ: ΤΕΣΤ 7 / ΑΣΚΗΣΗ 1. ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΓΝΩΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΓΝΩΣΗ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ 1 Η πρόταση «εν είναι όλα τα άλογα τετράποδα» είναι ισοδύναµη µε την πρόταση. a.

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής .. και Aσαφείς Λογικές Περιγραφής Άγγελος Χαραλαμπίδης Στασινός Κωνσταντόπουλος ΕΚΕΦΕ «Δημόκριτος» {acharal,konstant}@iit.demokritos.gr .. Σκελετός Ομιλίας Εισαγωγή .. Ορισμός Προβλήματος Γενικότερο πλαίσιο

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Κατηγορηµατική Λογική

Κατηγορηµατική Λογική Προβλήµατα της Προτασιακής Λογικής Γιατί δεν µας αρκεί η Προτασιακή Λογική; Εστω ότι ισχύουν τα P και Q: P : «Ο Σωκράτης είναι άνθρωπος» Q : «Κάθε άνθρωπος είναι ϑνητός» R : «Ο Σωκράτης είναι ϑνητός» Μπορούµε

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 11η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 11η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 11η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017 HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα

Διαβάστε περισσότερα

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση βάση μοντέλου είναι κατάλληλη για συστήματα επικοινωνούντων διεργασιών (π.χ. κατανεμημένα συστήματα) όπου το βασικό πρόβλημα είναι ο έλεγχος αλλά γενικά δεν

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 12η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗΛΟΓΙΚΗ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ

ΜΑΘΗΜΑΤΙΚΗΛΟΓΙΚΗ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ ΕΡΜΗΝΕΙΕΣ ΕΚΦΡΑΣΕΩΝ ΣΤΗΝ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ ΙΣΧΥΣ ΚΑΙ ΑΣΥΝΕΠΕΙΑ ΣΤΗΝ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ ΣΤΗΝ ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ ΛΟΓΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΠΡΟΤΑΣΙΑΚΗΣ ΛΟΓΙΚΗΣ ΜΕΣΩ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Περιγραφικές Λογικές. Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό. Γ. Στάμου

Περιγραφικές Λογικές. Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό. Γ. Στάμου Περιγραφικές Λογικές Αναπαράσταση γνώσης στο Σημασιολογικό Ιστό Γ. Στάμου Τυπικές γλώσσες και αναπαράσταση γνώσης Υπάρχει τυπικός (formal) (μαθηματικός) τρόπος για την καταγραφή της ανθρώπινης γνώσης;

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ

ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ Έστω L, η γλώσσα της αριθµητικής και Ν η στάνταρτ ερµηνεία της. Για µια πρόταση της L αντί να λέµε 'αληθής' στην στάνταρτ ερµηνεία θα λέµε για συντοµία ότι η πρόταση είναι ορθή.

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα