Μέθοδοι Σχεδίασης κίνησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι Σχεδίασης κίνησης"

Transcript

1 Μέθοδοι Σχεδίασης κίνησης Τασούδης Σταύρος Ο προγραμματισμός τροχιάς(trajectory planning) είναι η κίνηση από το σημείο Α προς το σημείο Β αποφεύγοντας τις συγκρούσεις με την πάροδο του χρόνου. Αυτό μπορεί να υπολογιστεί και στις discrete και συνεχείς μεθόδους. Ο προγραμματισμός τροχιάς είναι μια σημαντική περιοχή στη ρομποτική καθώς δίνει τρόπο στα αυτόνομα οχήματα. d p s d [ Π λ η κ τ ρ ο λ ο γ ή σ τ ε τ η δ ι ε ύ θ υ ν σ η τ η ς ε τ α ι ρ ε ί α ς ] [ Π λ η κ τ ρ ο λ ο γ ή σ τ ε τ ο ν α ρ ι θ μ ό τ η λ ε φ ώ ν ο υ ] [ Π λ η κ τ ρ ο λ ο γ ή σ τ ε τ ο ν α ρ ι θ μ ό φαξ] 1 3 / 1 /

2 Περιεχόμενα 1. Προγραμματισμός τροχιάς Εισαγωγή Η προσέγγιση αποσύνθεσης κυττάρων Ακριβής αποσύνθεση κυττάρων (exact cell decompotition ) Η κατά προσέγγιση αποσύνθεση κυττάρων (approximate cell decomposition) Η πιθανή προσέγγιση τομέων(the potential field approach) Η προσέγγιση Χαρτών διαδρομών(the roadmap approach) Problem Constraints Kινούμενα εμπόδια... 6 Βιβλιογραφία Προγραμματισμός τροχιάς 1.1 Εισαγωγή Ο προγραμματισμός τροχιάς(trajectory planning) είναι η κίνηση από το σημείο Α προς το σημείο Β αποφεύγοντας τις συγκρούσεις με την πάροδο του χρόνου. Αυτό μπορεί να υπολογιστεί και στις discrete και συνεχείς μεθόδους. Ο προγραμματισμός τροχιάς είναι μια σημαντική περιοχή στη ρομποτική καθώς δίνει τρόπο στα αυτόνομα οχήματα. Ο προγραμματισμός τροχιάς αναφέρεται μερικές φορές ως προγραμματισμός κινήσεων και λανθασμένα ως προγραμματισμός πορειών. Ο προγραμματισμός τροχιάς είναι ευδιάκριτος από τον προγραμματισμό πορειών δεδομένου ότι είναι μέχρι παραμετροποιημένος με το χρόνο. Ουσιαστικά ο προγραμματισμός τροχιάς καλύπτει τον προγραμματισμό πορειών εκτός από τον προγραμματισμό του πώς να κινηθεί βασισμένος στην ταχύτητα, το χρόνο, και στις κινηματικές. (Robotics/Navigation/Trajectory Planning) Ο βαθμός δυσκολίας του προγραμματισμού κινήσεων στα ρομπότ ποικίλλει πολύ ανάλογα με μερικούς παράγοντες: εάν όλες οι πληροφορίες σχετικά με τα εμπόδια (δηλ. μεγέθη, θέσεις, κινήσεις, κ.λπ.) είναι γνωστές πριν από τις κινήσεις ρομπότ και εάν αυτά τα εμπόδια κινούνται γύρω από ή παραμονή σε ισχύ καθώς το ρομπότ κινείται. Το απλούστερο σενάριο, και επομένως ερευνημένο και κατανοητό, είναι όταν έχουμε σταθερά εμπόδια με τελείως γνωστές διαστάσεις στο χώρο. Σε αυτή την περίπτωση, όλα τα εμπόδια καθορίζονται στις θέσεις τους, και όλες οι λεπτομέρειες για αυτά τα εμπόδια είναι γνωστές προτού να πραγματοποιηθεί ο προγραμματισμός πορειών. Το πρόβλημα για το ρομπότ, που είναι γνωστό ως βασικό πρόβλημα προγραμματισμού κινήσεων, μπορεί να οριστεί ανεπίσημα το να φτάσεις από μια αφετηρία και να 2

3 τελειώσεις σε ένα σημείο χωρίς σύγκρουση με οποιαδήποτε εμπόδια. Αυτό το πρόβλημα λύνεται συνήθως στα ακόλουθα δύο βήματ (Stanford.edu, ) α: Καθορισμός μιας γραφικής παράστασης για να αντιπροσωπευτεί μια γεωμετρική δομή του περιβάλλοντος. Εκτέλεση μιας αναζήτησης γραφικών παραστάσεων για να βρεθεί ένα συνδεδεμένο συστατικό μεταξύ του κόμβου που περιέχει το σημείο έναρξης και του κόμβου που περιέχει το σημείο προορισμού. Οι περισσότερες από τις υπάρχουσες μεθόδους για τον σχεδιασμό κίνησης ρομπότ βασίζονται στην έννοια του Χώρου Διαμορφώσεων και ταξινομούνται σε τρεις γενικές κατηγορίες (Ξιδιάς, 2008) : σε αυτές που βασίζονται Στην Κατάτμηση σε κελιά (Cell decomposition), Στα Τεχνητά Δυναμικά πεδία (Artificial Potential fields) Σε αυτές που βασίζονται στους Χάρτες διαδρομών (Roadmaps). 1.2 Η προσέγγιση αποσύνθεσης κυττάρων Η βασική ιδέα πίσω από αυτήν την μέθοδο είναι ότι ένα μονοπάτι μεταξύ της αρχικής διαμόρφωσης και της διαμόρφωσης του στόχου μπορεί να καθοριστεί με την υποδιαίρεση του ελεύθερου χώρου σε μικρότερες περιοχές αποκαλούμενες κύτταρα. Μετά από αυτήν την αποσύνθεση, μια γραφική παράσταση συνδετικότητας, κατασκευάζεται σύμφωνα με τις σχέσεις γειτνίασης μεταξύ των κυττάρων, όπου οι κόμβοι αντιπροσωπεύουν τα κύτταρα στον ελεύθερο χώρο, και οι συνδέσεις μεταξύ των κόμβων δείχνουν ότι τα αντίστοιχα κύτταρα είναι το ένα δίπλα στο άλλο Ακριβής αποσύνθεση κυττάρων (exact cell decompotition ) Το πρώτο βήμα σε αυτόν τον τύπο αποσύνθεσης κυττάρων είναι να αποσυντεθεί ο ελεύθερου χώρου, που είναι οριακός και εξωτερικά και εσωτερικά από τα πολύγωνα, στα τραπεζοειδή και τριγωνικά κύτταρα,απλά σχεδιάζοντας τα παράλληλα τμήματα γραμμών από κάθε vertex κάθε εσωτερικού πολυγώνου στο διάστημα διαμόρφωσης στο εξωτερικό όριο. Κατόπιν κάθε κύτταρο είναι αριθμημένο και αντιπροσωπευόμενο ως κόμβος στη γραφική παράσταση συνδετικότητας. 3

4 1.2.2 Η κατά προσέγγιση αποσύνθεση κυττάρων (approximate cell decomposition) Αυτή η προσέγγιση στην αποσύνθεση κυττάρων είναι διαφορετική επειδή χρησιμοποιεί μια επαναλαμβανόμενη μέθοδο για να συνεχίσει να διαιρεί τα κύτταρα έως ότου εμφανίστεί ένα από τα ακόλουθα σενάρια (Stanford.edu, ): Κάθε κύτταρο βρίσκεται είτε σε εντελώς ελεύθερο χώρο είτε εντελώς στην περιοχή C-εμποδίων Ένα αυθαίρετο αποτέλεσμα ορίου επιτυγχάνεται. Μόλις ένα κύτταρο εκπληρώσει ένα από αυτά τα κριτήρια, σταματά. Αυτή η μέθοδος καλείται επίσης «quadtree». 4

5 1.3 Η πιθανή προσέγγιση τομέων(the potential field approach) Η πιθανή μέθοδος τομέων περιλαμβάνει τη διαμόρφωση του ρομπότ ως μόριο που κινεί υπό την επήρεια ένός πιθανού τομέα που καθορίζεται από το σύνολο εμποδίων και του προορισμού στόχων. Αυτή η μέθοδος είναι συνήθως πολύ αποδοτική επειδή σε κάθε στιγμή η κίνηση του ρομπότ καθορίζεται από τον πιθανό τομέα στη θέση της. Κατά συνέπεια, οι μόνες υπολογισμένες πληροφορίες έχουν την άμεση σχετικότητα στην κίνηση του ρομπότ και καμία υπολογιστική δύναμη δεν σπαταλιέται. Είναι επίσης μια ισχυρή μέθοδος επειδή παράγεται εύκολα στις επεκτάσεις. Παραδείγματος χάριν, δεδομένου ότι οι πιθανοί τομείς είναι πρόσθετοι, η προσθήκη ενός νέου εμποδίου είναι εύκολη επειδή ο τομέας για εκείνο το εμπόδιο μπορεί να προστεθεί απλά στο παλαιό. 1.4 Η προσέγγιση Χαρτών διαδρομών(the roadmap approach) Αυτή η προσέγγιση εξαρτάται από τις έννοιες του διαστήματος διαμόρφωσης και της συνεχούς πορείας. Ένα σύνολο μονοδιάστατων καμπυλών, κάθε μια από τις οποίες συνδέει δύο κόμβους των διαφορετικών πολύγωνων εμποδίων, βρίσκεται στον ελεύθερο χώρο και αντιπροσωπεύει ένα roadmap R. Δηλαδή όλα τα τμήματα γραμμών που συνδέουν το vertex ενός εμποδίου με το vertex ενός άλλου χωρίς να εισέρχονται στο εσωτερικό οποιωνδήποτε πολυγωνκών εμποδίων και αν σύρονται. Αυτό το σύνολο πορειών καλείται roadmap. Υπάρχουν διάφοροι τύποι roadmaps, συμπεριλαμβανομένης της γραφικής παράστασης διαφάνειας(the visibility graph), του διαγράμματος Voronoi, των καθαρών διαδρομών (the freeway net), και των σκιαγραφιών(and the silhouette). 5

6 Probabilistic Roadmaps Planners Κατά την διάρκεια των τελευταίων ετών, η τυχαία δειγματοληψία του χώρου διαμορφώσεων του ρομπότ έχει αναδειχθεί ως ένα ισχυρό εργαλείο για το σχεδιασμό κίνησης ρομπότ σε χώρους διαμορφώσεων μεγάλης διάστασης. Αλγόριθμοι οι οποίοι βασίζονται στην τυχαία δειγματοληψία, π.χ., οι στοχαστικοί χάρτες διαδρομών (Probabilistic Roadmaps Planners), είναι αποδοτικοί και εύκολοι στην υλοποίηση.(διατριβή) 1.5 Problem Constraints Ωστόσο οι υποθέσεις που γίνονται παραπάνω αναιρούνται αν προσθέσουμε προεκτάσεις του προβλήματος όπως (Ξιδιάς, 2008): Να συμπεριληφθούν κινούμενα εμπόδια στο χώρο εργασίας του ρομπότ. Κινηματικοί Περιορισμοί Να θεωρήσουμε ότι το ρομπότ είναι αρθρωτό δηλαδή αποτελείται από περισσότερα ακαμπτα αντικειμένα τα οποία ενώνονται με αρθρώσεις. Μια ομάδα ρομπότ να εργάζεται στον ίδιο χώρο εργασίας Kινούμενα εμπόδια Δυναμικά περιβάλλοντα ( Dynamic Environments) Στα δυναμικά περιβάλλοντα, όπως ο πραγματικός κόσμος, πολλά πιθανά αντικείμενα σύγκρουσης δεν είναι στατικά. Αυτό καθιστά τον προγραμματισμό τροχιάς δυσκολότερο δεδομένου ότι ο χρόνος αλλάζει συνεχώς και τα αντικείμενα κινούνται. Ένα ρομπότ δεν μπορεί να κινηθεί απλά προς τα πίσω εγκαίρως δεδομένου ότι απλά πιθανώς να αποφύγει μια στάτική σύγκρουση. Επιπλέον πολλές επιλογές ειναι απολύτως αμετάκλητες εξαιτίας της έκτασης, όπως το να κινηθούν μακριά από εναν απότομο βράχο. 6

7 Κινηματικοί Περιορισμοί(Holonomicity) Το Holonomicity είναι η σχέση μεταξύ των ελέγξιμων βαθμών ελευθερίας του ρομπότ και των συνολικών βαθμών ελευθερίας του ρομπότ. Εάν ο αριθμός ελέγξιμων βαθμών ελευθερίας είναι μεγαλύτερος ή ίσος από το συνολικό βαθμοί ελευθερίας το ρομπότ λέγεται ότι είναι holonomic. Με τη χρησιμοποίηση ενός holonomic ρομπότ πολλές μετακινήσεις είναι πολύ ευκολότερο να γινουν και η επιστροφή σε μια θέση του παρελθόντος είναι πολύ ευκολότερη. (Robotics/Navigation/Trajectory Planning) Ένα αυτοκίνητο θα ήταν μη-holonomic, δεδομένου ότι δεν έχει κανέναν τρόπο να κινηθεί πλευρικά. Αυτό κάνει ορισμένες μετακινήσεις, όπως τη παράλληλη στάθμευση, δύσκολη. Ένα παράδειγμα ενός holonomic οχήματος θα ήταν χρησιμοποιώντας μηχανικές ρόδες, όπως το νέο Segway RMP Αρθρωτό ρομπότ Ένα αρθρωτό ρομπότ αποτελείται από διάφορα κινούμενα αντικείμενα τα οποία καλούνται σύνδεσμοι (links). Οι σύνδεσμοι ενώνονται μεταξύ τους με αρθρώσεις (joints). Κάθε άρθρωση περιορίζει τις σχετικές κινήσεις των δύο αντικειμένων που ενώνει Ομάδα ρομπότ Ο σχεδιασμός κίνησης για μια ομάδα ρομπότ διαφέρει από τον σχεδιασμό κίνησης ρομπότ που κινείται σε χώρο που περιέχει κινούμενα εμπόδια στο ότι οι κινήσεις των ρομπότ πρέπει να ορισθούν ενώ η κίνηση των εμποδίων είναι τυχαία. Βιβλιογραφία Robotics/Navigation/Trajectory Planning. (n.d.). Ανάκτηση από Wikibooks: Stanford.edu. ( ). Ανάκτηση από basic motion: Ξιδιάς, Η. (2008). Σχεδιασμός κίνησης ρομπότ σε περιβάλον εμποδίων. σ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ

ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ ΕΝΤΟΠΙΣΜΟΣ ΘΕΣΗΣ ΚΑΙ ΧΑΡΤΗΓΡΑΦΗΣΗ Δρ Γιώργος Α. Δημητρίου Ευφυή Κινούμενα Ρομπότ 139 Ρομποτικός Εντοπισμός Θέσης Δεδομένα Χάρτης του περιβάλλοντος Ακολουθία παρατηρήσεων Ζητούμενο Εκτίμηση της θέσης του

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n Υπολογιστική Γεωμετρία (σημειώσεις διαλέξεων ) Διδάσκων: Ι.Εμίρης Πέμπτη, 7 Απριλίου 2016 1 Ζητήματα πολυπλοκότητας 1. ΚΠ2 Τομή ημιεπιπέδων 2. ΚΠ3, ΚΠd n [d/2+1] (worst case) - Αλλά!! Αν έχουμε σημεία

Διαβάστε περισσότερα

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς

Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Σχεδιασμός Κίνησης σε Δισδιάστατα Περιβάλλοντα που Περιλαμβάνουν Εμπόδια Άγνωστης Τροχιάς Ηλίας Κ. Ξυδιάς, Φίλιππος Ν. Αζαριάδης Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου,

Διαβάστε περισσότερα

12. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΡΕΙΑΣ (PATH PLANNING)

12. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΡΕΙΑΣ (PATH PLANNING) . ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΡΕΙΑΣ (PATH PLANNING).0 Εισαγωγή και Επισκόπηση Το ροµπότ είναι µηχανική συσκευή πολλαπλών εφαρµογών - παραδείγµατος χάριν, ένας βραχίονας χειρισµού, ένα χέρι µε πολλές αρθρώσεις και

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι:

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι: ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Όταν

Διαβάστε περισσότερα

Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα

Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα 1. Ένας πεζοπόρος κινείται σε ευθύ δρόμο με σταθερό μέτρο ταχύτητας υ = 2m/s. Την χρονική στιγμή t o = 0 βρίσκεται στην θέση x αρχ = 10m. Α.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 00-, ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ : Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Σχεδιασμός Δρόμου Πλοήγηση (path-planning, navigation) Αυτόνομα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΕΘΝΟΜΑΡΤΥΡΑ ΚΥΠΡΙΑΝΟΥ(ΣΤΡΟΒΟΛΟΥ) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2010

ΛΥΚΕΙΟ ΕΘΝΟΜΑΡΤΥΡΑ ΚΥΠΡΙΑΝΟΥ(ΣΤΡΟΒΟΛΟΥ) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2010 ΛΥΚΕΙΟ ΕΘΝΟΜΑΡΤΥΡΑ ΚΥΠΡΙΑΝΟΥ(ΣΤΡΟΒΟΛΟΥ) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-10 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ:04/06/2010 Βαθμός.. Ολογράφως. Υπογραφή ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ 2010 Όνομα μαθητή/τριας...τμήμα...αριθμός...

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ 1: Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα εκτελεί ευθύγραμμη κίνηση κατά την οποία η ταχύτητά

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Ασκήσεις στην ευθύγραμμη ομαλή κίνηση

Ασκήσεις στην ευθύγραμμη ομαλή κίνηση Ασκήσεις στην ευθύγραμμη ομαλή κίνηση 1. Κινητό που εκτελεί ΕΟΚ περνά από τη θέση x 1 =12m τη χρονική στιγμή t 1 =9s και από τη θέση x 2 =2m τη χρονική στιγμή t 2 =14s. Να βρείτε: α) την κατεύθυνση προς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 009-0, ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ : Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Σχεδιασμός Δρόμου Πλοήγηση (path-planning, navigation)

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο. Φυσική Α Λυκείου: Διαγώνισμα Ποια από τις παρακάτω προτάσεις είναι σωστή;

Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο. Φυσική Α Λυκείου: Διαγώνισμα Ποια από τις παρακάτω προτάσεις είναι σωστή; Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο 1.1. Ποια από τις παρακάτω προτάσεις είναι σωστή; Μια κίνηση χαρακτηρίζεται ως ευθύγραμμη ομαλή όταν: α) Η τροχιά είναι ευθεία. β) Η ταχύτητα έχει σταθερό

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ 1 ΚΕΦΑΛΑΙΟ 1 Ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ- ΘΕΩΡΙΑ Μετατόπιση (Δx): Είναι η διαφορά μεταξύ της αρχικής και της τελικής θέσης ενός σώματος και έχει μονάδες τα μέτρα (m).

Διαβάστε περισσότερα

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ισορροπία - Γ Νόμος Newton 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S Ζεύγος σωμάτων που αλληλεπιδρούν Δράση - Αντίδραση 2) Να βρεθούν οι δυνάμεις που εξασκούνται

Διαβάστε περισσότερα

Ασκήσεις στις κινήσεις

Ασκήσεις στις κινήσεις Ασκήσεις στις κινήσεις 1. Αμαξοστοιχία κινείται με ταχύτητα 72km/h και διασχίζει σήραγγα μήκους 900m. Ο χρόνος που μεσολάβησε από τη στιγμή που το μπήκε η μηχανή μέχρι να βγει και το τελευταίο βαγόνι από

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0 ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω:

1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω: 1ο μέρος 1. Φτιάχνουμε την πίστα. Μια ενδεικτική πίστα φαίνεται παρακάτω: Εικόνα 1 Για να φτιάξουμε το τείχος επιλέγουμε καταρχήν την καρτέλα Γραφικά (κάτω δεξιά) και έπειτα το γεμάτο τετράγωνο από την

Διαβάστε περισσότερα

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence)

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) http://www.intelligence.tuc.gr Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Το εργαστήριο Ένα από τα 3 εργαστήρια του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. A.1 Μια διαφορά

Διαβάστε περισσότερα

Κριτήριο αξιολόγησης στην κινηματική.

Κριτήριο αξιολόγησης στην κινηματική. Κριτήριο αξιολόγησης στην κινηματική. ΘΕΜΑ Α (Για τις ερωτήσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση.) Α. Στην ευθύγραμμη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΤΡΟΧΙΑΣ ΓΙΑ ΤΟ ΣΧΕ ΙΑΣΜΟ ΚΙΝΗΣΗΣ ΡΟΜΠΟΤΙΚΗΣ ΜΟΝΑ ΑΣ

ΕΦΑΡΜΟΓΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΤΡΟΧΙΑΣ ΓΙΑ ΤΟ ΣΧΕ ΙΑΣΜΟ ΚΙΝΗΣΗΣ ΡΟΜΠΟΤΙΚΗΣ ΜΟΝΑ ΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΣΧΕ ΙΑΣΗΣ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΣΧΕ ΙΑΣΗ ΙΑ ΡΑΣΤΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ» ΕΦΑΡΜΟΓΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΤΡΟΧΙΑΣ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

Α.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις:

Α.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις: ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό 1 έως 3 καθεµιάς από τις παρακάτω ερωτήσεις και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα : Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα

Διαβάστε περισσότερα

Γενικά Σχόλια Αξιολόγησης Εργασιών Α εξαμήνου Β κύκλου Σπουδών ΠΜΣ ΣΤΕΜ

Γενικά Σχόλια Αξιολόγησης Εργασιών Α εξαμήνου Β κύκλου Σπουδών ΠΜΣ ΣΤΕΜ Γενικά Σχόλια Αξιολόγησης Εργασιών Α εξαμήνου Β κύκλου Σπουδών ΠΜΣ ΣΤΕΜ Σπουδαστή Καθηγητή Μάθημα Ειρήνη Τσόλη Λουκάς Πολ Μιχάλης Υπολογιστική Επιστήμη Παρακαλούμε αξιολογήστε την εργασία σύμφωνα με τα

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΛΕΜΕΣΟΣ Σχολική Χρονιά: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAIOY - ΙΟΥΝΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΛΕΜΕΣΟΣ Σχολική Χρονιά: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAIOY - ΙΟΥΝΙΟΥ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΛΕΜΕΣΟΣ Σχολική Χρονιά: 010-011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ MAIOY - ΙΟΥΝΙΟΥ Μάθημα: ΦΥΣΙΚΗ Τάξη: Α Ενιαίου Λυκείου Ημερομηνία: 01/06/011 Χρόνος: ΩΡΕΣ Ονοματεπώνυμο:.. Τμήμα: Οδηγίες:

Διαβάστε περισσότερα

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι: Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ φυσική κεφ. ΚΙΝΗΣΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου Διανυσματική μέση ταχύτητα: v = = ό ό ά Είναι διάνυσμα, δε χρησιμοποιείται στην καθημερινή γλώσσα. Μέση ταχύτητα: v = = ή ή ό ά Δεν είναι διάνυσμα,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Φύλλο εργασίας 6. Αποφυγή εμποδίων. Χωριστείτε σε ομάδες 2-3 ατόμων και απαντήστε στις ερωτήσεις του φύλλου εργασίας.

Φύλλο εργασίας 6. Αποφυγή εμποδίων. Χωριστείτε σε ομάδες 2-3 ατόμων και απαντήστε στις ερωτήσεις του φύλλου εργασίας. Φύλλο εργασίας 6 Αποφυγή εμποδίων Ο στόχος του φύλλου εργασίας είναι η κατασκευή και ο προγραμματισμός ρομπότ το οποίο θα διασχίζει ένα διάδρομο με πολλά εμπόδια, θα τα αποφεύγει και θα τερματίζει με ασφάλεια

Διαβάστε περισσότερα

ΠΛΑΤΩΝΑΣ Έργο ΓΓΕΤ 1SME2009

ΠΛΑΤΩΝΑΣ Έργο ΓΓΕΤ 1SME2009 ΠΛΑΤΩΝΑΣ Έργο ΓΓΕΤ 1SME2009 4o Συνέδριο InfoCom Green ICT 2012 ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΠΛΑΤΩΝΑΣ ΠΛΑΤφόρμα έξυπνου διαλογισμικού για συλλογή, ανάλυση, επεξεργασία δεδομένων από συστήματα πολλαπλών ετερογενών ΑισθητήρΩΝ

Διαβάστε περισσότερα

Breakdance Computer Game σε Scratch.

Breakdance Computer Game σε Scratch. Breakdance Computer Game σε Scratch. Ταστίογλου Μαριάννα 1, Τραντοπούλου Μαργαρίτα 2 1 Μαθήτρια Γ Τάξης, 2 ο Γυμνάσιο Ευόσμου atas94@otenet.gr 2 Μαθήτρια Γ Τάξης, 2 ο Γυμνάσιο Ευόσμου daizy@in.gr Δασκαλάκης

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων

Εισαγωγή στην επιστήμη των υπολογιστών. Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων Εισαγωγή στην επιστήμη των υπολογιστών Οργάνωση εδομένων Κεφάλαιο 11ο ομές εδομένων 1 ομή εδομένων Μια δομή δεδομένων (data structure) χρησιμοποιεί μια συλλογή από σχετικές μεταξύ τους μεταβλητές, οι οποίες

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων : ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας

Διαβάστε περισσότερα

1 / 6. Ασκήσεις Κινηματικής

1 / 6. Ασκήσεις Κινηματικής Ασκήσεις Κινηματικής 1. Ένα κινητό κινείται με σταθερή ταχύτητα 20 m/s πάνω σε μια ευθεία που έχει βαθμολογηθεί ως άξονας, ξεκινώντας από το χ ο = 400m. a) Να γραφεί η εξίσωση της θέσης χ=f(t). b) Πότε

Διαβάστε περισσότερα

7.9 ροµολόγηση. Ερωτήσεις

7.9 ροµολόγηση. Ερωτήσεις 7.9 ροµολόγηση Ερωτήσεις 1. Να δώσετε τον ορισµό της δροµολόγησης; 2. Από τι εξαρτάται η χρονική στιγµή στην οποία λαµβάνονται οι αποφάσεις δροµολόγησης; Να αναφέρετε ποια είναι αυτή στην περίπτωση των

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Ακαδημαϊκό Έτος: 2015-2016 / Εαρινό Εξάμηνο 1/30 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ Καθηγήτρια Φούντη Μαρία Γενικευμένη Εξίσωση Μεταφοράς

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΘΕΜΑ 1 Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

1. Επειδή η κίνηση του αυτοκινήτου είναι ομαλή, ισχύει:

1. Επειδή η κίνηση του αυτοκινήτου είναι ομαλή, ισχύει: Κεφάλαιο 1.1 1. Επειδή η κίνηση του αυτοκινήτου είναι ομαλή, ισχύει: s 120 υ = - ή - υ = t 4 m / s ή - v=30m/s.?n / Για τα αντίστοιχα διαγράμματα έχουμε: u(m/s)>. ψ.. s(m)> ι ί>:;.. 2. Το τρένο βρίσκεται

Διαβάστε περισσότερα

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΤΑΞΗ: Β ΗΜΕΡ.: 31/05/2011

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ ΤΑΞΗ: Β ΗΜΕΡ.: 31/05/2011 ΛΥΚΕΙΟ ΙΟΥ ΣΠΥΡΙΔΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙ 2010 2011 ΡΠΤΕΣ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΙΟΥ ΤΞΗ: ΗΜΕΡ.: 31/05/2011 ΜΘΗΜ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ ΔΙΡΚΕΙ: 2,5 ώρες Οδηγίες: α) Το εξεταστικό δοκίμιο αποτελείται από 2 μέρη, 8 σελίδες

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012 ΘΕΜΑ Α Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: 1. Κάθε βρόγχος που υλοποιείται με την εντολή Για μπορεί να

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. ΠΕΙΡΑΜΑ 5 Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. Σκοπός του πειράματος Σκοπός του πειράματος είvαι vα μελετηθούν τα βασικά φυσικά μεγέθη της μεταφορικής κίνησης σε μία διάσταση. Τα μεγέθη

Διαβάστε περισσότερα

Φυσική Α Λυκείου. Σημειώσεις από τη θεωρία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη)

Φυσική Α Λυκείου. Σημειώσεις από τη θεωρία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη) Φυσική Λυκείου Σημειώσεις από τη θερία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη) Εισαγγή στις φυσικές επιστήμες Οι φυσικές επιστήμες αποτελούν την προσπάθεια του ανθρώπου να περιγράψει και

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

1.1. Κινηματική Ομάδα Δ.

1.1. Κινηματική Ομάδα Δ. 1.1.41. Μια μπάλα κινείται. 1.1. Ομάδα Δ. Στο παραπάνω σχήμα φαίνεται μια μπάλα που κινείται ευθύγραμμα, κατά μήκος ενός χάρακα, ενώ στο διτο χρόνο. πλανό σχήμα δίνεται η γραφική παράσταση της θέσης της

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ IV. ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΡΑΡΤΗΜΑ IV Ασκήσεις για το Robolab

ΠΑΡΑΡΤΗΜΑ IV. ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΡΑΡΤΗΜΑ IV Ασκήσεις για το Robolab ΠΑΡΑΡΤΗΜΑ IV Παρακάτω παραθέτουμε μία σειρά ασκήσεων για το Robolab ομαδοποιημένων σε κατηγορίες : Επιμέλεια : Κυριακού Γεώργιος 1 Φύλλο Ασκήσεων (πρόκληση με κινητήρες) ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

Φυσική γενικής παιδείας

Φυσική γενικής παιδείας Προτεινόμενα Θέματα Α ΓΕΛ ΝΟΕΜΒΡΙΟΣ 015 Φυσική γενικής παιδείας ΘΕΜΑ Α Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. H αλγεβρική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 25 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 2011 Ώρα: 10:00-13:00 Οδηγίες: 1) Να απαντήσετε σε όλα τα θέματα. Το δοκίμιο αποτελείται από έξι (6) θέματα. 2) Να

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

Στο στάτη της μηχανής εφαρμόζεται ένα 3-φασικό σύστημα ρευμάτων το οποίο παράγει στο εσωτερικό της στρεφόμενο ομογενές μαγνητικό πεδίο

Στο στάτη της μηχανής εφαρμόζεται ένα 3-φασικό σύστημα ρευμάτων το οποίο παράγει στο εσωτερικό της στρεφόμενο ομογενές μαγνητικό πεδίο Στον ΣΚ 2 πόλων το μαγνητικό πεδίο του δρομέα BR παράγεται από το ρεύμα διέγερσης IF Στο στάτη της μηχανής εφαρμόζεται ένα 3-φασικό σύστημα ρευμάτων το οποίο παράγει στο εσωτερικό της στρεφόμενο ομογενές

Διαβάστε περισσότερα

22/2/2014 ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ. Επιστήμη Διοίκησης Επιχειρήσεων. Πότε εμφανίστηκε η ανάγκη της διοίκησης;

22/2/2014 ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ. Επιστήμη Διοίκησης Επιχειρήσεων. Πότε εμφανίστηκε η ανάγκη της διοίκησης; ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ Πότε εμφανίστηκε η ανάγκη της διοίκησης; Κεφάλαιο 2 ο Η επιστήμη της Διοίκησης των Επιχειρήσεων Όταν το άτομο δημιούργησε ομάδες. Για ποιο λόγο

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 5: Γραφήματα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ. ΕΝΟΤΗΤΑ 1η. ΚΕ Φ ΑΛ ΑΙ Ο 3 :Η έννοια της δ ύναμ ης

ΜΗΧΑΝΙΚΗ. ΕΝΟΤΗΤΑ 1η. ΚΕ Φ ΑΛ ΑΙ Ο 3 :Η έννοια της δ ύναμ ης Σκοπός 1 Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την δύναμη, μάζα και αδράνεια. Λέξεις κλειδιά Δύναμη, αδράνεια, μάζα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

P A B P(A) P(B) P(A. , όπου l 1

P A B P(A) P(B) P(A. , όπου l 1 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα