ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n."

Transcript

1 ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ β 4 Ιανουαρίου 005 Τα ϑέµατα,, και 4 είναι υποχρεωτικά. Από τα ϑέµατα 5 και 6 ϑα επίλέξετε ϑέµα. ηλαδή ϑα γράψετε ΜΟΝΟ 5 ϑέµατα. ΘΕΜΑ o = ϐ.) α) Να αποδειχθεί ότι η δυναµοσειρά : + + ) συγκλίνει απόλυτα για <, αποδείξτε ότι τότε + l ) + ) + + ) = Αποδείξτε ότι η σειρά δεν συγκλίνει για >. Εξετάστε την σύγκλιση της σειράς για = και =. Θέτουµε Εχουµε ότι a = + + ) = + + a + a = και a + + a = Εποµένως χρησιµοποιώντας το κριτήριο των λόγων κριτήριο d Alembert) έχουµε ότι για < η σειρά συγκλίνει απόλυτα, για > η σειρά δεν συγκλίνει. Ειδικά για < έχουµε : + + ) = + + = = + m + m= m m + + ) = l ) + Για = η σειρά γίνεται : και δεν συγκλίνει. Για = η σειρά γίνεται : m= m m ) = l ) + + ) = + ) + a ), a > 0 και είναι ϕθίνουσα a = 0 l ) = l ) + ) +

2 οπότε έχουµε µια κυµαινόµενη εναλλάσσουσα σειρά) και οι συντελεστές είναι µια ϕθίνουσα µηδενική ακολουθία, άρα η σειρά συγκλίνει. Εναλλακτική λύση : Για = Τα µερικά αθροίσµατα της σειράς γράφονται : N S N = ) + + ) = N ) + ) + S = ) + S = + ) + + ) = + S = S + ) 4 = 4 S 4 = S + ) = ) S N = S N + ) N N + N+ a = S N N 5 = + ) N N+ = ϐ) Να µελετηθεί η σύγκλιση της ακολουθίας a =! Εχουµε a + a για + )! = + ) +! = + ) = + ) e < οπότε η ακολουθία συγκλίνει στο µηδέν η άσκηση είναι το λυµένο παράδειγµα σελ. 5 του ϐιβλίου Κυβεντίδη) Εναλλακτικός τρόπος λύσης: a =! 4 ) = = {{ ϕορές {{ ϕορές 0 = a 0 ΘΕΜΑ o = ϐ.) α) Να µελετηθεί και να σχεδιασθεί η συνάρτηση f) = για 0. Η συνάρτηση γράφεται f) = e l ) l 0+ = 0+ και από τους κανόνες de l Hospital έχουµε : Επίσης l f ) = d d e l l 0+ = ) = e l ) = ) = 0+ f) = 0 = 0 f) = d d ) ) l = l Οπότε για = e η παράγωγος µηδενίζεται, για 0 < < e η παράγωγος είναι ϑετική για > e η παράγωγος είναι αρνητική, άρα η συνάρτηση έχει τοπικό µέγιστο για = e

3 ϐ) Να ϐρεθεί ο µεγαλύτερος από τους αριθµούς,,, 4 4, 5 5,...,,... χωρίς να χρησιµοποιηθεί υπολογιστής για οποιονδήποτε υπολογισµό. Επειδή η συνάρτηση f) = e l έχει τοπικό µέγιστο για = e =.7 και f) =, οπότε τα σηµεία που είναι πιο κοντά στο = e είναι το = και =. Αλλά = < = γιατί = ) 6 ) 6 < = Εναλλακτικά : Επειδή f) = = 4 4 = f4) εποµένως το µέγιστο από το ϑεώρηµα του Rolle ϐρίσκεται στο ανοικτό διάστηµα, 4) εποµένως το, 4) και f) > f) = f4) άρα το f) = είναι ο µεγαλύτερος αριθµός) γ) Να αποδειχθεί ότι η σειρά συγκλίνει. ) cosπ) = Από την µελέτη της συνάρτησης f) = ξέρουµε ότι η ακολουθία a = / είναι µια ϕθίνουσα µηδενική ακολουθία για. Επίσης cosπ) = ) εποµένως έχουµε µια κυµαινουµένη εναλλάσσουσα) ακολουθία που συγκλίνει. δ) Να αποδειχθεί ότι η συνάρτηση f) = + είναι συνάρτηση Lipschitz για R και να αποδειχθεί ότι είναι οµοιόµορφα συνεχής. y f) fy) = y = + y y y y y < y + y + y οπότε η συνάρτηση f) είναι µια συνάρτηση Lipschitz για R και είναι εποµένως οµοιόµορφα συνεχής στο R γιατί ɛ > 0 δɛ) = ɛ : y < δ f) fy) < ɛ ΘΕΜΑ o ϐ.) Υπολογίστε την τιµή της ης και της 4ης παραγώγου για = 0 της συνάρτησης f) = cosh) cosh

4 Η συνάρτηση f) γράφεται : f) = e +e e +e = e ) + e ) e + e = e + e = cosh) = + ) )! Το ανάπτυγµα Mac Lauri της συνάρτησης f) γράφεται : f) = f0) + m= f m) 0) m! m = + )! οπότε για m =περιττός ϑα έχουµε f m) 0) = 0 δηλαδή f ) 0) = 0 Για να ϐρούµε την 4η παράγωγο της f) ϑα πρέπει να συγκρίνουµε στις δυό σειρές την 4η δύναµη του, δηλαδή στην µια να πάρουµε τον όρο για m = 4 και στην άλλη τον όρο για = = = 4 οπότε ϑα έχουµε : f 4) 0) 4! = 4 4!. Εποµένως ϐρίσκουµε ότι f 4) 0) = 5 ΘΕΜΑ 4 o ϐ.) α) Αποδείξτε ότι η συνάρτηση f) = p είναι κυρτή για p > και > 0. Αν f ) > 0 τότε η συνάρτηση είναι κυρτή. Στην περίπτωσή µας έχουµε f ) = pp ) p > 0 για p > και > 0. ϐ) Αποδείξτε ότι + + ) Η συνάρτηση f) = 9 είναι κυρτή εποµένως για κάθε λ [0, ] οπότε + + λ + λ)y) 9 λ 9 + λ)y 9 ) 9 + = + ) 9 λ= + ) λ= Σηµ: Αυτή η ιδιότητα είναι µερική περίπτωση της γενικής πρότασης : ) f) κυρτή f f ) + f ) + + f ) + 9

5 ΘΕΜΑ 5 o ϐ.) Ι) Η συνάρτηση f) είναι συνεχής στο διάστηµα [a, b]. Εχει συνεχή πρώτη παράγωγο f ) και ορίζεται η δεύτερη παράγωγος f ) για κάθε a, b). Αν η συνάρτηση f) έχει τρείς ϱίζες : f ) = f ) = f ) = 0, a < < < < b Να αποδειχθεί ότι υπάρχει ένα ξ a, b) όπου µηδενίζεται η δεύτερη παράγωγος f ξ) = 0. Ισχύει το αντίστροφο ; Η συνάρτηση f) είναι συνεχής στο διάστηµα [, ] και έχει πρώτη παράγωγο στο, ), επίσης f ) = f ) άρα Θεώρηµα Rolle = υπάρχει ξ, ) τέτοιο ώστε f ξ ) = 0. Η συνάρτηση f) είναι συνεχής στο διάστηµα [, ] και έχει πρώτη παράγωγο στο, ), επίσης f ) = f ) άρα Θεώρηµα Rolle = υπάρχει ξ, ) τέτοιο ώστε f ξ ) = 0. Η συνάρτηση f ) είναι συνεχής στο διάστηµα [ξ, ξ ] και έχει παράγωγο f )στο ξ, ξ ), επίσης f ξ ) = f ξ ) άρα Θεώρηµα Rolle = υπάρχει ξ ξ, ξ ) τέτοιο ώστε f ξ) = 0. Το αντίστροφο δεν είναι αληθές, υπάρχει συνάρτηση µε f ξ) = 0 που δεν έχει τρείς ϱίζες πχ f) = και ξ = 0. ΙΙ) Αν A και B είναι ϕραγµένα σύνολα να αποδείξετε ότι sup A + B) = sup A + sup B Εστω z A + B αυτό σηµαίνει ότι z = + y µε A και y B. Αρα z A + B = z = + y sup A + sup B = supa + B) sup A + sup B Θα αποκλείσουµε την περίπτωση supa + B) < sup A + sup B. Υποθέτουµε ότι supa + B) < sup A + sup B = supa + B) sup A < sup B αυτό σηµαίνει ότι υπάρχει ένα v B τέτοιο ώστε supa + B) sup A < v Σηµ: αν δεν υπήρχε τέτοιο v τότε ϑα είχαµε supa + B) sup A άνω όριο του B δηλαδή supa + B) sup A sup B που είναι αντίθετο από την υπόθεση που κάναµε). Τότε όµως supa + B) v < sup A, δηλαδή υπάρχει u A τέτοιο ώστε supa + B) v < u δηλαδή supa + B) < u + v, αυτό όµως σηµαίνει ότι υπάρχει στοιχείο στο u + v A + B που είναι µεγαλύτερο από το supa + B) πράγµα άτοπο. Εποµένως η υπόθεσή µας δεν είναι αληθής και τότε αναγκαστικά sup A + B) = sup A + sup B. ΘΕΜΑ 6 o ϐ.) Ι) Εστω α 0 ένας πραγµατικός αριθµός. Υποθέτουµε ότι η συνάρτηση f) είναι συνεχής για κάθε R και ότι έχει τις ακόλουθες ιδότητες : f) = α, f + y) = f) + fy) για κάθε και y. Αποδείξτε τα εξής :

6 α) f) = f) για κάθε N Για = αληθεύει προφανώς η πρόταση. Αν είναι αληθινή για κάποιο τότε : f + )) = f + ) = f) + f) = f) + f) = + )f) ϐ) f/m) = α/m για κάθε m N fm m ) = f) = α = mf m ) = f/m) = α/m γ) fρ) = αρ για κάθε ρ ϑετικό ϱητό αριθµό ρ = m = fρ) = f/m) = α m = ρα δ) f0) = 0 και f ) = f) f) = f+0) = f)+f0) = f0) = 0 0 = f0) = f ) = f)+f ) = f ) = f) ε) Αποδείξτε ότι f) = α για κάθε ϑετικό ή αρνητικό πραγµατικό αριθµό. Αν R και > 0 τότε υπάρχει µια ακολουθία Q και > 0 τέτοια ώστε. Επειδή η συνάρτηση είναι συνεχής ϑα έχουµε : Ανάλογη απόδειξη ισχύει όταν < 0 = f ) f) = α f) = f) = α ΙΙ) Αν A και B είναι ϕραγµένα σύνολα να αποδείξετε ότι if A + B) = if A + if B Εστω z A + B αυτό σηµαίνει ότι z = + y µε A και y B. Αρα z A + B = z = + y if A + if B = ifa + B) if A + if B Θα αποκλείσουµε την περίπτωση ifa + B) > if A + if B. Υποθέτουµε ότι ifa + B) > if A + if B = ifa + B) if A > if B αυτό σηµαίνει ότι υπάρχει ένα v B τέτοιο ώστε ifa + B) if A > v Σηµ: αν δεν υπήρχε τέτοιο v τότε ϑα είχαµε ifa + B) if A κάτω όριο του B δηλαδή ifa + B) if A if B που είναι αντίθετο από την υπόθεση που κάναµε). Τότε όµως ifa + B) v > if A, δηλαδή υπάρχει u A τέτοιο ώστε ifa+b) v > u δηλαδή ifa+b) > u + v, αυτό όµως σηµαίνει ότι υπάρχει στοιχείο στο u+v A+B που είναι µικρότερο από το ifa + B) πράγµα άτοπο. Εποµένως η υπόθεσή µας δεν είναι αληθής και τότε αναγκαστικά if A + B) = if A + if B.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +

Διαβάστε περισσότερα

= f(x) για κάθε x R.

= f(x) για κάθε x R. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 4: Συνέχεια και όρια συναρτήσεων Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α)

Διαβάστε περισσότερα

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής. f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά.

n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α) Κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010 Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι

Διαβάστε περισσότερα

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου

Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Μονοτονία Ακολουθίας Φραγµένη Ακολουθία Υπακολουθίες Σύγκλιση - Απόκλιση Ακολουθιών N = {1, 2,

Διαβάστε περισσότερα

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B. Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων

Διαβάστε περισσότερα

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές. Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες Σειρές Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 9 εκδόσεις Καλό

Διαβάστε περισσότερα

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση

ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή

Διαβάστε περισσότερα

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2]. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riem Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.

Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές. Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες, Σειρές, Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 7 εκδόσεις Καλό

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 12 Ιανουαρίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Ιανουαρίου 009 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 009. Πριν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Ι ΣΕΙΡΕΣ Διδάσκουσα : Δρ Μαρία Αδάμ Λυμένες ασκήσεις ) Να μελετηθούν ως προς τη σύγκλισή

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4.

n sin 1 n. 2 n n+1 6 n. = 1. = 1 2, = 13 4. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Εξετάστε ως προς τη σύγκλιση τη σειρά si. Λύση: Παρατηρούμε ότι si 0 άρα η σειρά δεν συγκλίνει. Συγκεκριμένα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. v. Σε αυτή την περίπτωση το lim v

ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ. v. Σε αυτή την περίπτωση το lim v ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Η ακολουθία { α ν } λέγεται αθροίσιμη αν η ακολουθία {S ν } συγκλίνει, όπου S 2 3.... Σε αυτή την περίπτωση το lim S συμβολίζεται με και λέγεται το άθροισμα της ακολουθίας {

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΣΕΙΡΕΣ:. Να γράψετε τους πρώτους πέντε όρους της κάθε ακολουθίας: (β) (γ), Απαντήσεις: {/, /, 7/8, 5/6, /} (β) {, /5, /,5/, /7} (γ) {, /,, /,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Κεφάλαιο 1. Θεωρία Ζήτησης

Κεφάλαιο 1. Θεωρία Ζήτησης Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ, 28--3 Μ. Παπαδημητράκης. ΚΡΙΤΗΡΙΟ ΑΠΟΛΥΤΗΣ ΣΥΓΚΛΙΣΗΣ. Αν η σειρά + = x συγκλίνει απολύτως, τότε συγκλίνει και + x x. = = Δεν θα παρουσιάσω την απόδειξη. Διαβάστε την στο βιβλίο.

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη

Για την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 8 Ιουνίου 005 Από τα κάτωι Θέµατα καλείσε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Χώροι L p - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Χώροι L p - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Χώροι L p - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n. http://elear.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις 6ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o α. Θεωρία: Θεώρηµα σελ. 7 σχολικού βιβλίου β. Θεωρία: Η απάντηση βρίσκεται στη σελ. 7 του σχολικού βιβλίου γ. α-σ β-σ γ-σ δ-λ ε-λ ΘΕΜΑ o α. Είναι: w z iz + ( α + βi i( α βi + α + βi αi

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό.

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α. Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ο Α Σχολικό βιβλίο σελ Β σελ Β σελ Γ α Λ β Σ γ Λ δ Λ ε Σ ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ + w z = w z w = + w z zw = + w w w + zw = z w( + z) = z z z

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1 ΘΕΩΡΙΑ ΜΑΘΗΜΑ 4.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1. Ορισµός Έστω συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Θα λέµε ότι η στρέφει

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο. Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Οµάδα Α 1. Αν η f : (a, b) R είναι παραγωγίσιµη, τότε η f είναι µετρήσιµη. Υπόδειξη. Θεωρούµε την ακολουθία f : (a, b) R µε f (x) = [f(x + 1/) f(x)]. Εφόσον, η f είναι

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

... ονοµάζεται ακολουθία µερικών αθροισµάτων. Το όριό της, καθώς το n τείνει στο άπειρο, n n n 1

... ονοµάζεται ακολουθία µερικών αθροισµάτων. Το όριό της, καθώς το n τείνει στο άπειρο, n n n 1 ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Στην ενότητα αυτή παρουσιάζουµε τα βασικότερα στοιχεία που είναι απαραίτητα για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους Έτσι, δίνονται συστηµατικά οι

Διαβάστε περισσότερα

ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ

ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ ΧΡΗΣΙΜΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΟΡΙΩΝ Όταν lim f ( ) =l, εννοούµε ότι οι τιµές f () βρίσκονται όσο θέλουµε κοντά στο l, για τα τα οποία βρίσκονται αρκούντως κοντά στο. f () y f() y f() y 9 f ( ) =l f () l f() l

Διαβάστε περισσότερα

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 008-009: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο ΜΑΘΗΜΑ 9.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ο R Θεωρία Σχόλια - Ασκήσεις ΘΕΩΡΙΑ. Ορισµός f ( ) ο σηµαίνει ότι οι τιµές f ( ) της συνάρτησης f γίνονται µεγαλύτερες από κάθε θετικό αριθµό Μ, καθώς.. Ορισµός f ( )

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα KΕΦΑΛΑΙΟ 3 Πλεγµένες συναρτήσεις- Ανάπτυγµα Talor-Aκρότατα 3 Πλεγµένες συναρτήσεις Σε πολλές περιπτώσεις συναντούµε µία (ή και περισσότερες) εξισώσεις µεταξύ διαφόρων µεταβλητών πχ της µορφής e + συν (

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΙΟΥΝΙΟΥ 4 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σελ. 5 σχολικού βιβλίου. Α. Θεωρία σελ. 73 σχολικού βιβλίου. Α3. Θεωρία σελ. 5 σχολικού βιβλίου. Α4. α) Λ, β) Σ, γ) Σ,

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a 7 Έστω Το θεώρηµα του Tylor στη µια µεταβλητή Ι ανοικτό διάστηµα Ι και : Ι φορές διαφορίσιµη συνάρτηση στο Ι, (. Γράφουµε, ( = + +... + +,, Ι, όπου!, είναι το υπόλοιπο Tylor ( κέντρου και τάξης και ( Ρ

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Παρουσίαση 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Παρουσίαση α Στους µιγαδικούς δεν υφίστανται ανισοτικές σχέσεις Το σύνολο C διατηρεί ισοτικά όλες τις ιδιότητες του R εν υφίστανται ανισοτικές σχέσεις, υφίστανται µόνο στο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στο μάθημα Ανάλυση Ι & Εφαρμογές 26 Φεβρουαρίου 25 Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Όσοι έχουν πάρει προβιβάσιμο βαθμό στην Πρόοδο (πάνω

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές.

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές. 5 Σειρές Taylor και Lauret Ολοκληρωτικά υπόλοιπα και εφαρµογές Σειρές Taylor και Lauret Θεωρούµε µια δυναµοσειρά ( ) a a µε κέντρο δοθέν σηµείο Υπενθυµίζουµε ότι για µια τέτοια δυναµοσειρά υπάρχει πάντα

Διαβάστε περισσότερα