Εισαγωγή στη στατιστική ανάλυση δεδοµένων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στη στατιστική ανάλυση δεδοµένων"

Transcript

1 Εισαγωγή στη στατιστική ανάλυση δεδοµένων Α. Η στατιστική περιγραφή της µέτρησης φυσικών µεγεθών. Ο στοχαστικός χαρακτήρας της µέτρησης Στη διαδικασία µέτρησης ενός φυσικού µεγέθους η πραγµατική του τιµή είναι άγνωστη. Μόνο µετά από εκτέλεση µεγάλου αριθµού µετρήσεων και µε την προϋπόθεση ότι η κατάσταση του αντίστοιχου συστήµατος παραµένει κατά προσέγγιση ίδια περιµένουµε η µέση τιµή των µετρήσεων να συγκλίνει στη πραγµατική τιµή του παρατηρούµενου µεγέθους. Αυτή η µορφή άγνοιας που είναι θεµελιώδης αρχή για τη Πειραµατική Φυσική έχει τις ρίζες της στην έλλειψη πληροφορίας ενός παρατηρητή για το σύστηµα που µελετά και πηγάζει από δυο κυρίως παράγοντες: Το υπό µελέτη σύστηµα είναι κατά κανόνα ανοικτό, δηλ. αλληλεπιδρά, έστω και πολύ ασθενικά, µε το περιβάλλον του (η µετρητική συσκευή αποτελεί µέρος του περιβάλλοντος). Μια πλήρης γνώση αυτής της αλληλεπίδρασης είναι αδύνατη καθώς απαιτεί τη διαχείριση απείρου πλήθους βαθµών ελευθερίας που αντιστοιχούν στο περιβάλλον. Οι αλληλεπιδράσεις µεταξύ των βαθµών ελευθερίας που απαρτίζουν το σύστηµα είναι συνήθως µη αρµονικές και έχουν σαν αποτέλεσµα την εξαιρετικά ευαίσθητη εξάρτηση της χρονικής εξέλιξής του από τις αρχικές συνθήκες. Η πλήρης γνώση των αρχικών συνθηκών είναι επίσης πρακτικά αδύνατη καθώς απαιτεί τη διαχείριση απείρου πλήθους αριθµητικών ψηφίων. Έτσι η έλλειψη πληροφορίας, που εµφανίζεται σαν απροσπέλαστη αδυναµία του παρατηρητή, εισάγει την έννοια του τυχαίου στη διαδικασία της µέτρησης φυσικών µεγεθών και επιδέχεται µαθηµατική περιγραφή µε τη χρήση στατιστικών µεθόδων. Οι δύο παράγοντες που προαναφέρθηκαν αφορούν την εµφάνιση στοχαστικής συµπεριφοράς κυρίως σε κλασικά µακροσκοπικά συστήµατα. Θα µπορούσε κανείς να ισχυριστεί ότι στο µικρόκοσµο οι δύο παράγοντες που αναφέρθηκαν πιο πάνω είναι δυνατόν να τεθούν υπό έλεγχο και εποµένως δεν έχουν επίπτωση στη διαδικασία µέτρησης. Όµως στα µικροσκοπικά συστήµατα η εµφάνιση στοχαστικών χαρακτηριστικών έχει ακόµη πιο θεµελιώδη προέλευση καθώς επάγεται από τη

2 πιθανοκρατική περιγραφή που επιβάλλει η κβαντική τους υπόσταση. Έτσι, σύµφωνα µε τη κβαντική θεωρία τα περισσότερα φυσικά φαινόµενα έχουν στοχαστικό χαρακτήρα. Ένα τυπικό παράδειγµα είναι η διάσπαση ραδιενεργών πυρήνων. Τα ραδιενεργά υλικά διασπώνται σε χρόνους που εµφανίζονται ως τυχαίοι. Για κάθε ραδιενεργή ουσία όµως υπάρχει καθορισµένη πιθανότητα κάποιος πυρήνας να διασπασθεί σε δεδοµένο χρονικό διάστηµα. Αυτή η πιθανότητα προσδιορίζεται στα πλαίσια της Κβαντικής Μηχανικής και εξαρτάται µόνο από το είδος του πυρήνα δηλαδή είναι η ίδια για όλους τους πυρήνες αυτού του είδους. εν υπάρχει τρόπος να προβλέψει κανείς το χρόνο στον οποίο θα διασπαστεί ένας ραδιενεργός πυρήνας καθώς η διαδικασία αυτή είναι καθαρά στοχαστική, Όταν όµως διασπασθεί ένα µεγάλο πλήθος από όµοιους πυρήνες τότε µπορεί να καθορισθεί µε ακρίβεια ένας µέσος ρυθµός διάσπασης που χαρακτηρίζει µονοσήµαντα το είδος τους. Αν επιλέξει κανείς να µετρήσει το ρυθµό διάσπασης παρατηρώντας τον αριθµό διασπάσεων σε προκαθορισµένο µικρό χρονικό διάστηµα εύρους t αυτός θα παρουσιάζει διακυµάνσεις γύρω από τη µέση τιµή. Η πειραµατική µελέτη των πυρηνικών διασπάσεων µιας ραδιενεργού πηγής εστιάζεται στη στατιστική περιγραφή των διακυµάνσεων αυτών. Για να εξοικειωθεί µε τη µεθοδολογία που απαιτείται για µελέτη τέτοιου τύπου ο ασκούµενος φοιτητής, καλείται στην άσκηση 5 να προσδιορίσει την κατανοµή του αριθµού διασπάσεων µιας ραδιενεργού πηγής όπως την καταγράφει ένας ανιχνευτής Geiger-Mueller.. Τρόπος περιγραφής και πειραµατικής µελέτης στοχαστικών διακυµάνσεων Όπως προαναφέραµε λοιπόν συχνά στην εργαστηριακή µελέτη φυσικών µεγεθών και διαδικασιών µε στοχαστικά χαρακτηριστικά το ζητούµενο είναι ο προσδιορισµός κατάλληλα ορισµένων κατανοµών. Έστω Α ένα παρατηρήσιµο µέγεθος (π.χ. ο αριθµός διασπάσεων που καταγράφει ένας ανιχνευτής παρουσία µιας ραδιενεργού πηγής) που σε µια µέτρηση µπορεί να πάρει κάποιο φάσµα τιµών. Οι τιµές αυτές ονοµάζονται ενδεχόµενα και σε µια πειραµατική µελέτη αυτό που µπορεί να προσδιορίσει κανείς είναι η συχνότητα εµφάνισης κάθε ενδεχοµένου. Αν θεωρήσουµε για απλότητα ότι το φυσικό µέγεθος Α παίρνει διακριτό και πεπερασµένο πλήθος τιµών: α, α,, α M και ότι κατά την εκτέλεση ενός πειράµατος µέτρησης του Α βρίσκουµε το ενδεχόµενο i (i=,,...,m), δηλ. την τιµή α i, O i φορές, τότε αν το σύνολο των µετρήσεων µας είναι Ν η πιθανότητα εµφάνισης της τιµής α i εκτιµάται

3 από το πηλίκο O i που τείνει στην ακριβή τιµή της πιθανότητας p i για. Αν η φυσική διαδικασία που µελετάµε στο πείραµα είναι στοχαστική τότε µια θεωρητική πρόβλεψη θα πρέπει να προκαθορίζει την τιµή των πιθανοτήτων αυτών. Αυτή τη πληροφορία θα µπορούσε π.χ. να παρέχει ένας υπολογισµός από πρώτες αρχές στα πλαίσια της Κβαντικής Μηχανικής. Εναλλακτικά, µπορεί κανείς, βασιζόµενος στις προσεγγίσεις των πιθανοτήτων p i µέσω των µετρήσεων, να διατυπώσει ένα απλό µαθηµατικό πρότυπο για να αναπαράγει τις τιµές αυτές µε ανεκτή ακρίβεια. Σε οποιαδήποτε περίπτωση, ο πειραµατικός φυσικός, κάνοντας την υπόθεση ότι το µαθηµατικό αυτό πρότυπο (ή το αποτέλεσµα του κβαντικού υπολογισµού) ισχύει, καλείται να ελέγξει αν η υπόθεση αυτή είναι αποδεκτή ή όχι συγκρίνοντας µε τις µετρήσεις του. Επειδή όµως οι µετρήσεις έχουν στατιστικές διακυµάνσεις αλλά και συστηµατικά σφάλµατα η αποδοχή ή όχι της υπόθεσης του δεν είναι απόλυτη αλλά γίνεται µε κάποιο επίπεδο εµπιστοσύνης. Εποµένως έρχεται αντιµέτωπος µε τον ορισµό εννοιών που αρχικά εµφανίζονται να έχουν υποκειµενικό χαρακτήρα όπως π.χ. ικανοποιητική ακρίβεια ή επίπεδο εµπιστοσύνης. Για τον αυστηρό προσδιορισµό των εννοιών αυτών έχουν αναπτυχθεί τα κατάλληλα µεθοδολογικά εργαλεία που περιγράφονται στην επόµενη ενότητα. 3. Το κριτήριο χ και η µέθοδος προσαρµογής Το κύριο στατιστικό εργαλείο για τον πειραµατικό έλεγχο µιας θεωρητικής πρόβλεψης/υπόθεσης είναι το κριτήριο χ. Οι ακόλουθες σκέψεις µας βοηθούν να κατανοήσουµε τον ορισµό του. Ας υποθέσουµε αρχικά ότι µε βάση µια θεωρητική υπόθεση µπορούµε να υπολογίσουµε τις αναµενόµενες συχνότητες e, e,, e M κάποιων πιθανών ενδεχοµένων Ε, Ε,, Ε M. Εάν τις συχνότητες αυτές προσπαθήσουµε να τις προσδιορίσουµε πειραµατικά, οι τιµές O, O,, O M που θα προκύψουν (µε αντίστοιχα σφάλµατα δο i ), συνήθως διαφέρουν απ' αυτές που περιµέναµε. Έτσι µας ενδιαφέρει να κρίνουµε εάν η διαφορά αυτή είναι σηµαντική. Για να γίνει αυτό θεωρούµε ως µέτρο της διαφοράς ανάµεσα στη θεωρία και το πείραµα την τυχαία µεταβλητή χ k= M ( Ok ek ) = () e k όπου Μ είναι το σύνολο των διαφορετικών ενδεχοµένων. Προφανώς θα ισχύει:

4 M ek = Ok = ολ k= k όπου ολ είναι το άθροισµα των συχνοτήτων, δηλαδή ο συνολικός αριθµός των µετρήσεων. Η µεταβλητή (), όταν είναι Ν ολ >> Ο k, κατανοµή χ µε ν βαθµούς ελευθερίας: e k >>, ακολουθεί την λεγόµενη fv ( χ ) ( ) Γ( v / ) ( v/) χ / = χ e v/ () Οι βαθµοί ελευθερίας της κατανοµής είναι όσοι και οι ανεξάρτητοι όροι του αθροίσµατος (): M (+k) όπου k είναι το πλήθος των παραµέτρων (αν υπάρχουν) της θεωρητικής κατανοµής που προσδιορίζονται πειραµατικά. To κριτήριο χ, το κριτήριο, δηλαδή, µε βάση το οποίο θα αποφασίσουµε εάν είναι σηµαντική η διαφορά ανάµεσα στη θεωρία και το πείραµα, τίθεται ως εξής: Εάν, πραγµατοποιώντας το πείραµα, υπολογίσουµε τιµή της χ µεγαλύτερη από κάποια κρίσιµη τιµή (έστω χ p ) τότε απορρίπτουµε την υπόθεσή µας (στην αντίθετη περίπτωση η υπόθεση δεν απορρίπτεται). Η πιθανότητα να υπερβούµε αυτήν την κρίσιµη τιµή: χ ( χ ) p v χ p ( ) 0 v Pɶ > = dt f t pɶ (3) ορίζει και την πιθανότητα να κάνουµε λάθος απορρίπτοντας την υπόθεσή µας ή, ισοδύναµα, αντιπροσωπεύει το σφάλµα που δεχόµαστε να κάνουµε προκειµένου να την απορρίψουµε. Λέγεται επίπεδο σηµαντικότητας ενώ το επίπεδο εµπιστοσύνης εκφράζει την εµπιστοσύνη που έχουµε στην απόρριψη που κάνουµε. Αν θεωρήσουµε ότι O e e (στατιστικό σφάλµα στην ιδανική περίπτωση k k k άπειρων µετρήσεων) τότε είναι προφανές ότι χ M και το χ ανά βαθµό ελευθερίας θα είναι χ / dof. Από το κατωτέρω διάγραµµα προκύπτει σε αυτή τη περίπτωση ότι το επίπεδο εµπιστοσύνης απόρριψης είναι 50%. Αυτό είναι ένα πολύ συνηθισµένο σενάριο για τη τιµή του χ. Για να απορρίψει ένας πειραµατικός µια θεωρητική υπόθεση θα πρέπει το αντίστοιχο επίπεδο εµπιστοσύνης απόρριψης να είναι µεγαλύτερο ή ίσο από 95%. Να σηµειωθεί ότι τόσο οι πολύ µεγάλες όσο

5 και οι πολύ µικρές τιµές του χ έχουν µικρή πιθανότητα εµφάνισης γι αυτό και το κριτήριο είναι καλό να εφαρµόζεται αµφίπλευρα. Το κριτήριο χ µπορεί να χρησιµοποιηθεί και για την εκτίµηση παραµέτρων προσαρµογής. Ο ορισµός () σε αυτή τη περίπτωση δεν είναι ο καταλληλότερος και είναι δόκιµο να γραφεί ως: όπου χ M Ok ek = k= δ Ok δ Ok είναι τα σφάλµατα στη µέτρηση των (4) O k. Στην περίπτωση της προσαρµογής οι παράµετροι που καθορίζουν τις θεωρητικές συχνότητες e k δεν υπολογίζονται από τις πειραµατικές µετρήσεις αλλά προσδιορίζονται έτσι ώστε για δεδοµένα O k και δo k να ελαχιστοποιείται το άθροισµα (4).

6 Παρατήρηση: Άλλη µια χρήση του κριτηρίου χ είναι ο έλεγχος (δηλ. προσδιορισµός συστηµατικού σφάλµατος) µετρητικών συσκευών. Έστω ότι µια θεωρητική υπόθεση έχει ήδη ελεγχθεί πειραµατικά από µια σειρά πειραµάτων µεγάλης ακρίβειας έτσι ώστε να θεωρείται ότι ισχύει µε σχεδόν µηδενικό επίπεδο εµπιστοσύνης απόρριψης. Φαντασθείτε τώρα ότι εκτελείτε στο εργαστήριο σας ένα πείραµα ελέγχου αυτής της θεωρητικής υπόθεσης χρησιµοποιώντας το κριτήριο χ. Είναι φανερό ότι η εύρεση µεγάλης τιµής του χ θα πρέπει να αναχθεί σε δυσλειτουργία της µετρητικής συσκευής αν φυσικά έχει κανείς εξασφαλίσει τη σωστή εκτέλεση του πειράµατος και την φυσιολογική κατάσταση της ραδιενεργού πηγής. Β. Η προσοµοίωση στοχαστικών διαδικασιών. Η µέθοδος προσοµοίωσης Monte-Carlo Η πρόοδος της επιστήµης της πληροφορίας και η τεχνολογική της εξέλιξη µέσω της δηµιουργίας υπολογιστικών διατάξεων άνοιξε το δρόµο για ένα εναλλακτικό τρόπο ελέγχου µιας θεωρητικής υπόθεσης µέσω της λεγοµένης διαδικασίας προσοµοίωσης. Στη διαδικασία αυτή δηµιουργείται αλγόριθµος που περιέχει όλες τις θεωρητικές παραδοχές που αφορούν τη µελέτη ιδιοτήτων ενός πολύπλοκου φυσικού συστήµατος. Εφαρµόζεται όταν η µελέτη αυτή δεν επιδέχεται αναλυτικό ή αριθµητικό χειρισµό λόγω έλλειψης πληροφορίας και εποµένως ύπαρξης στοχαστικών χαρακτηριστικών (όπως αναφέραµε στην εισαγωγή). Με τον αλγόριθµο προσοµοίωσης γίνεται ο υπολογισµός ενός σχετικά µεγάλου αριθµού περιπτώσεων που αφορούν διαφορετικές υλοποιήσεις των στοχαστικών χαρακτηριστικών, από τις οποίες, µε στατιστικές µεθόδους, εξάγονται οι ζητούµενες πληροφορίες για τις ιδιότητες του συστήµατος. Στην εποχή µας η µέθοδος προσοµοίωσης είναι το βασικό εργαλείο κάθε ερευνητή. Κυριαρχούν δύο κατηγορίες αλγορίθµων προσοµοίωσης: (i) η µοριακή δυναµική που ενδείκνυται για τη µελέτη προβληµάτων που αφορούν τη δυναµική δηλ. τη χρονική εξέλιξη µετρήσιµων ιδιοτήτων ενός πολύπλοκου συστήµατος και (ii) η µέθοδος Monte Carlo που εφαρµόζεται για τη µελέτη στατιστικών ιδιοτήτων

7 πολύπλοκων συστηµάτων. Στη παρούσα άσκηση θα εξοικειωθούµε µε τη µέθοδο Monte Carlo. Η µέθοδος Monte Carlo αναπτύχθηκε από τους von euman, Ulam και Metropolis στο τέλος του Β Παγκοσµίου Πολέµου για τη µελέτη της διάχυσης νετρονίων σε ύλη που µπορεί να υποστεί σχάση []. Το όνοµα Monte Carlo προέρχεται από το ότι αυτή η µέθοδος χρησιµοποιεί τυχαίους αριθµούς, όµοιους µε αυτούς που προκύπτουν στη διάρκεια ενός παιχνιδιού ρουλέτας. Για µια αξιόπιστη περιγραφή των χαρακτηριστικών ενός φυσικού συστήµατος χρειάζεται µεγάλο πλήθος (τυπικά ~0 0 ) από τυχαίους αριθµούς και η παραγωγή τους µε φυσικές διαδικασίες είναι χρονοβόρα και ακριβή. Έτσι επιστρατεύονται οι ηλεκτρονικοί υπολογιστές για αυτό το σκοπό. Όµως σε ένα ηλεκτρονικό υπολογιστή η παραγωγή των τυχαίων αριθµών θα γίνει µέσω ενός αλγορίθµου και εποµένως οι παραγόµενοι αριθµοί δεν µπορεί να είναι πραγµατικά τυχαίοι. Ο σωστός όρος για τον χαρακτηρισµό αυτών των αριθµών είναι ο όρος: ψευδοτυχαίοι αριθµοί. Καθώς όµως στις προσοµοιώσεις χρησιµοποιούνται σχεδόν αποκλειστικά τέτοιου τύπου αριθµοί έχει επικρατήσει η ονοµασία τυχαίοι και για τους αριθµούς που παράγονται µέσω κατάλληλων αλγορίθµων. Εκτενέστερη συζήτηση για τον τρόπο υλοποίησης τυχαίων αριθµών σε ένα σύγχρονο ψηφιακό υπολογιστικό σύστηµα καθώς και παρουσίαση κάποιων ποιοτικών χαρακτηριστικών τους γίνεται στο Παράρτηµα Α. Ο ακριβής αλγόριθµος εφαρµογής της µεθόδου Monte Carlo σε προσοµοίωση πολύπλοκων φυσικών διαδικασιών εξαρτάται από το υπό µελέτη πρόβληµα [].. Η Monte-Carlo (ή στοχαστική) ολοκλήρωση Συχνά στη µελέτη πολύπλοκων συστηµάτων δεν αρκεί η προσοµοίωση µιας κατανοµής αλλά χρειάζεται και ο ακριβής υπολογισµός µέσων τιµών. Έτσι στην ουσία πρέπει κανείς να επινοήσει µεθόδους αριθµητικής ολοκλήρωσης, εν γένει σε πολυδιάστατους χώρους, µε χρήση τυχαίων αριθµών. Ο τρόπος αυτός υπολογισµού ολοκληρωµάτων καλείται στοχαστική ολοκλήρωση και στη συνέχεια δίνουµε µια πολύ συνοπτική περιγραφή της. Ας θεωρήσουµε για απλότητα το ολοκλήρωµα:,

8 µίας συνάρτησης στο διάστηµα [0,]. Εάν το x θεωρηθεί τυχαία µεταβλητή που ακολουθεί την οµοιόµορφη κατανοµή τότε το ολοκλήρωµα είναι απλά η µέση τιµή της συνάρτησης της τυχαίας µεταβλητής:. Εποµένως είναι δυνατόν να γίνει στατιστικός υπολογισµός της µέσης τιµής, άρα και του ολοκληρώµατος. Για αυτό το σκοπό λαµβάνεται ένα δείγµα στοιχείων της τυχαίας µεταβλητής, οπότε η στατιστική εκτίµηση του ολοκληρώµατος δίνεται από την έκφραση: k f ( x) = f ( x ) = n f ( x ) (5) i j j i= j= Όπου (µε k j= n j = ) η συχνότητα εµφάνισης της κάθε τιµής της στοχαστικής µεταβλητής x. Επειδή τα στοιχεία του δείγµατος πρέπει να είναι τυχαία, ανεξάρτητα µεταξύ τους και ισοπίθανα, το δείγµα αποτελείται από τυχαίους αριθµούς οι οποίοι ακολουθούν την οµοιόµορφη κατανοµή. Με βάση τον νόµο των µεγάλων αριθµών πράγµατι, όταν. Επί πλέον εάν θεωρήσουµε την ως τυχαία µεταβλητή, σύµφωνα µε το κεντρικό οριακό θεώρηµα (βλέπε Παράρτηµα Β) αυτή ακολουθεί κανονική κατανοµή µε µέση τιµή την µέση τιµή της συνάρτησης,, και διασπορά, όπου η διασπορά της συνάρτησης. Επίσης από το ίδιο θεώρηµα συνάγεται ότι (6) Από την ανωτέρω σχέση προκύπτει και το σφάλµα του υπολογισµού του ολοκληρώµατος. Ας σηµειωθεί ότι το σφάλµα αυτό είναι στατιστικό. Τα πολλαπλάσια της διασποράς δεν αποτελούν άνω η κάτω φράγµα του ολοκληρώµατος αλλά χρησιµοποιούνται για τον καθορισµό της πιθανότητας να απέχει η στατιστική εκτίµηση από την πραγµατική τιµή το αντίστοιχο πολλαπλάσιο της διασποράς. Για παράδειγµα εάν, η τιµή του ολοκληρώµατος είναι. ηλαδή η στατιστική εκτίµηση απέχει από την πραγµατική τιµή λιγότερο από, µε πιθανότητα.

9 Βέβαια ο υπολογισµός της διασποράς της συνάρτησης είναι το ίδιο δύσκολος µε τον υπολογισµό του ολοκληρώµατος. Για τον λόγο χρησιµοποιείται η Monte Carlo εκτίµηση της διασποράς: οπότε το σφάλµα καθορίζεται από την έκφραση: ε = s /. (7) Παράδειγµα : Το ολοκλήρωµα I= 0 µπορεί να προσεγγιστεί από την τιµή f ( x)dx I = i= f ( x ) i µε τις τιµές x i να ακολουθούν οµοιόµορφη κατανοµή στο διάστηµα [0, ). Το ολοκλήρωµα π.χ.: x I e dx = 0 το οποίο δεν επιδέχεται εύκολο αναλυτικό υπολογισµό µπορεί να προσεγγιστεί από το άθροισµα: xi e όπου τα x i είναι τυχαίοι αριθµοί οµοιόµορφα κατανεµηµένοι i= στο [0,). Μπορείτε να το επιβεβαιώσετε αυτό χρησιµοποιώντας τους 0 αριθµούς: , , 0.604, 0.896, , 0.897, 0.550, , 0.69, Η ακριβής τιµή του ολοκληρώµατος είναι Ι= Παράδειγµα : Το ολοκλήρωµα: I = f ( x) dx µπορεί να υπολογιστεί µε παρόµοιο τρόπο αρκεί να κάνει κανείς τον γραµµικό µετασχηµατισµό: ab b a x= a+ ( b a) t (8α)

10 οπότε θα γίνει: Iab = ( b a) f ( a+ ( b a) t) dt (8β) 0 και το t θα είναι τυχαία µεταβλητή οµοιόµορφα κατανεµηµένη στο [0,). Παράδειγµα 3: Το πλεονέκτηµα της στοχαστικής ολοκλήρωσης είναι ότι γενικεύεται µε πολύ απλό τρόπο σε πολυδιάστατους χώρους. Αρκεί να ορίσει κανείς τυχαία σηµεία που κατανέµονται οµοιόµορφα σε ένα µοναδιαίο υπερκύβο της αντίστοιχης διάστασης. Έτσι για παράδειγµα το πολυδιάστατο ολοκλήρωµα της µορφής: = µπορεί να εκτιµηθεί από το άθροισµα: I dx dx... dx f ( x, x,..., x ) n ( i) ( i) ( i) S = f ( r, r,..., rn ) i = n όπου τα r ( m=,,.., και j =,,..., n ) είναι τυχαίοι αριθµοί οµοιόµορφα ( m ) j κατανεµηµένοι στο [0,). Με άλλα λόγια ο υπολογισµός του ολοκληρώµατος γίνεται χρησιµοποιώντας n-άδες τυχαίων αριθµών µε οµοιόµορφη κατανοµή στον υπερκύβο n διαστάσεων µε πλευρά και πρώτη κορυφή στο (0,0,...,0). Είναι σχετικά απλό να δείξει κανείς ότι το σφάλµα του υπολογισµού αυτού είναι ανάλογο του ανεξάρτητα της διάστασης n του ολοκληρώµατος. Εν γένει σε ένα πολλαπλό ολοκλήρωµα, αν γίνουν αναλυτικά µερικές ολοκληρώσεις, αυτό θα έχει σαν αποτέλεσµα την αύξηση της ακρίβειας της προσέγγισης. Σε άλλες περιπτώσεις, ιδιαίτερα αν το διάστηµα [a, b] δεν είναι φραγµένο, άλλοι µετασχηµατισµοί είναι πιο κατάλληλοι για τη µετατροπή σε ένα ολοκλήρωµα της µορφής (8β).

11 Παράρτηµα Α Παράδειγµα αλγορίθµου γέννησης τυχαίων αριθµών: Η επαναληπτική σχέση: x = px + ν+ ν q Mod Γ () παρέχει µε κατάλληλη εκλογή των p, q, Γ τυχαίους αριθµούς µε οµοιόµορφη κατανοµή στο διάστηµα [0, Γ-]. Με διαίρεση δια του Γ τα x ν δίνουν τυχαίους αριθµούς µε οµοιόµορφη κατανοµή στο διάστηµα [0, ). Οι τιµές των παραµέτρων p, q και Γ επιλέγονται έτσι ώστε να εξασφαλίσει κανείς ότι τα διαδοχικά x ν βρίσκονται στο [0, Γ-], δεν είναι συσχετισµένα µεταξύ τους και δεν ακολουθούν κάποια περιοδική δοµή. Εµπειρικά µια καλή επιλογή είναι η ακόλουθη: p ακέραιος τέτοιος ώστε p Mod 8 = 5 και Γ < p<γ Γ. q περιττός ακέραιος τέτοιος ώστε q/γ=0.. Γ = m- όπου m ο µέγιστος αριθµός bits µιας λέξης που αποθηκεύεται στη µνήµη του επεξεργαστή. Για Intel 386 και κάτω m=6 ενώ για Intel 486 και πάνω m=3. Συνήθως στις προσοµοιώσεις χρησιµοποιεί κανείς ψευδοτυχαίους αριθµούς οµοιόµορφα κατανεµηµένους στο [0,). Θα συζητήσουµε λίγο αργότερα για το πως µπορεί κανείς από µια ακολουθία τέτοιων αριθµών να παράγει ένα σύνολο ψευδοτυχαίων αριθµών που περιγράφονται από άλλη κατανοµή. Φυσικά υπάρχουν πολλοί αλγόριθµοι που µπορούν να παράγουν ψευδοτυχαίους οµοιόµορφα κατανεµηµένους στο [0,). Για να αποφανθεί κανείς ποιος από αυτούς τους αλγόριθµους είναι καλύτερος χρειάζονται κάποια τεστ δηλ. κριτήρια ελέγχου της ποιότητάς τους. Το απλούστερο ίσως από αυτά τα τεστ είναι να επιχειρήσει κανείς µε τους ψευδοτυχαίους αριθµούς που παράγονται από µια γεννήτρια να γεµίσει ένα απλό κυβικό πλέγµα µε L 3 κορυφές. Για το σκοπό αυτό πρέπει να υπολογιστεί το ποσοστό κατάληψης του πλέγµατος. Ορίζουµε λοιπόν σε κάθε κορυφή τον αριθµό n(k, k, k 3 ) µε k i =,,..., L και i=,, 3 που έχει αρχικά µηδενική τιµή (n=0) για όλες τις

12 κορυφές του πλέγµατος. Χρησιµοποιώντας τρεις ψευδοτυχαίους x, x, x 3 οµοιόµορφα κατανεµηµένους στο [0,) υπολογίζουµε τις συντεταγµένες της κορυφής του πλέγµατος που θα καταληφθεί, από τις σχέσεις: k i = + x i L µε k i =,,..., L και i=,, 3. Επαναλαµβάνουµε τη διαδικασία t L 3 φορές µε t της τάξης του 0 και καταµετρούµε τον αριθµό των κορυφών µε µη µηδενική τιµή του n(k, k, k 3 ). Θεωρητικά περιµένουµε ο αριθµός των άδειων κορυφών να µειώνεται µε εκθετικό τρόπο ~ exp(-t). Έτσι ένας καλός αλγόριθµος θα πρέπει να µην αφήνει άδειες κορυφές για L=0. Αν εφαρµόσει κανείς τον αλγόριθµο που προτάθηκε προηγουµένως για L=0 και t = 0 θα βρει ότι οι άδειες κορυφές είναι περίπου 000 (από σύνολο 8000) κάτι που υποδεικνύει ότι σ αυτόν τον αλγόριθµο υπάρχουν συσχετίσεις και χρειάζεται περαιτέρω βελτίωση. Ας δούµε στη συνέχεια πως µπορεί να παράγει κανείς τυχαίους αριθµούς που ακολουθούν µια αυθαίρετη κατανοµή p(x). Θα παρουσιάσουµε δύο µεθόδους που είναι και οι πλέον διαδεδοµένες. Μέθοδοι παραγωγής τυχαίων αριθµών µε κατανοµή p(x), x στο [a,b) x (i) Μέθοδος αντιστροφής: αν είναι δυνατόν να υπολογιστεί το ολοκλήρωµα F( x) p( z) dz = a αναλυτικά τότε αποδεικνύεται εύκολα ότι η µεταβλητή x= F ( ξ ) ακολουθεί την p(x) υπό την προϋπόθεση ότι η ξ ακολουθεί την οµοιόµορφη κατανοµή στο [0,). (ii) Μέθοδος απόρριψης: έστω w η µέγιστη τιµή της p(x) στο [a,b).επιλέγουµε δύο τυχαίους αριθµούς r και r οµοιόµορφα κατανεµηµένους στο [0,). Μετασχηµατίζουµε τον r σύµφωνα µε τη σχέση: x = a + (b-a) r έτσι ώστε ο τυχαίος αριθµός x να είναι οµοιόµορφα κατανεµηµένος p( x) στο [a,b). Υπολογίζουµε κατόπιν τον λόγο p(x)/w. Αν ισχύει r < τότε η τιµή x γίνεται w αποδεκτή ενώ στην αντίθετη περίπτωση απορρίπτεται. Το σύνολο των αποδεκτών τιµών του x σε ένα µεγάλο πλήθος επαναλήψεων της διαδικασίας αυτής, ακολουθεί την κατανοµή p(x).

13 Παράρτηµα Β Έστω Ν τυχαίες µεταβλητές Χ, Χ,, Χ Ν που περιγράφονται όλες από την ίδια κατανοµή. Για την κατανοµή αυτή υποθέτουµε µόνο ότι χαρακτηρίζεται από πεπερασµένη µέση τιµή µ και διασπορά σ. Το κεντρικό οριακό θεώρηµα αφορά την κατανοµή του αθροίσµατος αυτών των Ν µεταβλητών και αποτελεί το δεύτερο θεµελιώδες θεώρηµα της θεωρίας πιθανοτήτων (µετά από το θεώρηµα των µεγάλων αριθµών). Πιο συγκεκριµένα προβλέπει ότι το άθροισµα S = X iορίζει µια νέα i= στοχαστική µεταβλητή Z S µ = η οποία στο όριο ακολουθεί τη σ καθιερωµένη κανονική κατανοµή (0,) δηλαδή µια κατανοµή Gauss µε µέση τιµή 0 και διασπορά. Σύµφωνα µε το θεώρηµα αυτό λοιπόν το άθροισµα S θα ακολουθεί προσεγγιστικά και αυτό µια κατανοµή Gauss µε µέση τιµή µ και διασπορά σ. Μια γενίκευση του κεντρικού οριακού θεωρήµατος που διατυπώθηκε από τον Lyapunov προβλέπει ότι ακόµη και αν κάθε µεταβλητή X i στο άθροισµα ακολουθεί διαφορετική κατανοµή µε µέση τιµή µ i και διασπορά σ i τότε η κανονικοποιηµένη µεταβλητή Z S m = όπου s = i και i= m µ s = στο όριο σ i i= ακολουθεί και αυτή τη καθιερωµένη κανονική κατανοµή (0,)! Βιβλιογραφία [] J. Von eumann, and S. Ulam, Random ergodic theorems, Bull. Am. Math. Soc. 5, 660 (945);. Metropolis, and S. Ulam, The Monte Carlo Method, J. Am. Stat. Ass. 44, 335 (949); J. Von eumann, Various techniques used in connection with random digits, US at. Bur. Stand. Appl. Math. Ser., 36 (95). [] M. E. J. ewman, and G. T. Barkema, Monte Carlo methods in Statistical Physics, Cambridge University Press, 999.

14 Στατιστική µελέτη ραδιενεργών διασπάσεων και εφαρµογή της µεθόδου προσοµοίωσης Monte Carlo Σκοπός της άσκησης: Μελέτη των στατιστικών διακυµάνσεων του ρυθµού διάσπασης µιας σταθερής ραδιενεργού πηγής και εξοικείωση µε τη µέθοδο προσοµοίωσης Monte Carlo.. Εισαγωγή Η παρούσα άσκηση έχει σαν αντικείµενο αρχικά τη πειραµατική καταγραφή των διακυµάνσεων του ρυθµού διάσπασης µιας ραδιενεργού πηγής και στη συνέχεια τη στατιστική τους µελέτη.. Θεωρητικό υπόβαθρο. Ραδιενεργές διασπάσεις Έστω ότι η πιθανότητα διάσπασης ενός ραδιενεργού πυρήνα συγκεκριµένου είδους σε χρονικό διάστηµα t είναι γνωστή και ίση µε λ t όπου λ είναι ο µέσος ρυθµός διάσπασης που χαρακτηρίζει αυτό το είδος των πυρήνων και καλείται σταθερά διάσπασης. Αντίστοιχα η πιθανότητα να µην διασπαστεί ένας πυρήνας στο διάστηµα t θα είναι -λ t. Αν θεωρήσουµε ότι σε µια συλλογή από Ν πυρήνες κάθε πυρήνας διασπάται ανεξάρτητα από τους άλλους τότε περιµένει κανείς η πιθανότητα να έχουν διασπασθεί n πυρήνες στο διάστηµα t να δίνεται από την διωνυµική κατανοµή:! P( n, t) ( t) ( t) ( n)! n! λ λ = n n () Όταν και λ t µε λ t =σταθερό η κατανοµή αυτή τείνει στη κατανοµή Poisson: n µ µ P( n, t) = e () n! όπου µ=λ Ν t είναι ο µέσος αριθµός διασπάσεων στο διάστηµα t. Όταν επιπλέον ισχύει µ η κατανοµή αυτή τείνει στη κανονική (Gaussian):

15 ( n µ ) P( n, t) = e σ (3) πσ µε διασπορά σ = µ. Ας θεωρήσουµε τώρα τη µεταβολή του πληθυσµού των ραδιενεργών πυρήνων στο χρονικό διάστηµα [t, t + t]. Έστω (t) το πλήθος των αδιάσπαστων πυρήνων τη χρονική στιγµή t. Ο αριθµός των αδιάσπαστων πυρήνων τη χρονική στιγµή t + t θα δίνεται από τη σχέση: (t + t)=(t)-µ όπου, όπως προαναφέραµε, µ=λν(t) t είναι ο µέσος αριθµός πυρήνων που διασπάστηκαν στο διάστηµα [t, t + t]. Θα ισχύει λοιπόν: ( t+ t) ( t) t = λ( t) (4) και παίρνοντας το όριο t 0καταλήγουµε στη σχέση: d = λ (5) dt όπου λν είναι η ενεργότητα της πηγής. Η (5) αποτελεί µια συνήθη διαφορική εξίσωση για το Ν(t) µε λύση την: ( t) = (0) e λt (6) Συνήθως αντί της σταθεράς διάσπασης λ χρησιµοποιείται ο χρόνος ηµιζωής Τ / ως η φυσική παράµετρος που χαρακτηρίζει την διαδικασία διάσπασης. Ορίζεται σαν το χρόνο υποδιπλασιασµού ενός αρχικού πληθυσµού πυρήνων: T / ln = λ Είναι φανερό ότι η µελέτη των διακυµάνσεων του ρυθµού διάσπασης ραδιενεργών πυρήνων µπορεί να υλοποιηθεί µε δυο τρόπους. Είτε κρατώντας το διάστηµα t σταθερό να προσδιορίσει κανείς τις διακυµάνσεις του αριθµού διασπάσεων σε αυτό το διάστηµα. Είτε βρίσκοντας τις διακυµάνσεις των χρονικών διαστηµάτων στα οποία υλοποιείται προκαθορισµένος αριθµός διασπάσεων.

16 Στη παρούσα άσκηση θα επιλεγεί ο πρώτος τρόπος δηλ. θα µετρηθεί ο αριθµός διασπάσεων σε προκαθορισµένο σταθερό διάστηµα t.. Εφαρµόζοντας το κριτήριο χ για έλεγχο της θεωρητικής υπόθεσης Από την ανωτέρω περιγραφή προκύπτει ότι αν θεωρηθεί ότι η πιθανότητα διάσπασης ενός ραδιενεργού πυρήνα συγκεκριµένου είδους είναι πολύ µικρή και ότι σε µια συλλογή µε πολύ µεγάλο αριθµό πυρήνων (αντιστρόφως ανάλογο της πιθανότητας διάσπασης) αυτού του είδους κάθε πυρήνας διασπάται ανεξάρτητα από τους άλλους µε την ίδια πιθανότητα, τότε ο αριθµός διασπάσεων σε προκαθορισµένο χρονικό διάστηµα θα είναι µια τυχαία µεταβλητή που θα κατανέµεται σύµφωνα µε τη κατανοµή Poisson (). Αυτή η θεωρητική πρόβλεψη µπορεί να ελεγχθεί πειραµατικά µε µέτρηση των συχνοτήτων εµφάνισης των διαφόρων δυνατών τιµών του αριθµού διασπάσεων σε προκαθορισµένο χρονικό διάστηµα t (διακυµάνσεις του αριθµού διασπάσεων) και χρήση του κριτηρίου χ. Όπως ήδη είπαµε, ο αριθµός διασπάσεων σε προκαθορισµένο χρονικό διάστηµα t που θα καταγράφει η πειραµατική µετρητική συσκευή (ανιχνευτής), αν ισχύουν οι θεωρητικές υποθέσεις µας, θα ακολουθεί την κατανοµή () µε µέσο αριθµό διασπάσεων µ. (Εδώ αγνοούµε το «νεκρό χρόνο» του συστήµατος ή άλλως το t είναι «ζωντανός χρόνος» που ισούται µε τον «πραγµατικό χρόνο» µείον τον «νεκρό χρόνο» (βλέπε άσκηση για ανιχνευτή ακτινοβολιών). Κατά συνέπεια αν ληφθούν Ν ολ καταγραφές ίσων χρονικών διαστηµάτων, t, η σχέση: µ k e = P( k) = e k! (7) k ολ ολ µ θα παρέχει την αναµενόµενη συχνότητα καταγραφής k διασπάσεων. Έστω ότι οι αντίστοιχες συχνότητες που παρατηρήθηκαν είναι O k. Για τον υπολογισµό του χ να σηµειώσουµε ότι: H τιµή του µ δεν είναι συνήθως γνωστή και θα πρέπει. να προσδιοριστεί πειραµατικά. Αυτό θα γίνει είτε µε ανεξάρτητη µέτρηση είτε από τη σχέση:

17 µ = Ok k (8) ολ k Στη δεύτερη περίπτωση εισάγεται µία ακόµη δεσµευτική σχέση µεταξύ των παραµέτρων της χ. Να σηµειώσουµε ότι στον υπολογισµό του µ υπεισέρχεται ένα σφάλµα σ µ το οποίο είναι της τάξεως σ Νολ όπου σ η τυπική απόκλιση της κατανοµής (). Είπαµε ότι για να ακολουθεί το χ την κατανοµή που περιγράφηκε στην εισαγωγή θα πρέπει οι συχνότητες να είναι αρκετά µεγάλοι αριθµοί. Πρακτικά αρκεί να είναι e k, O k > 5. Αν δε συµβαίνει αυτό πρέπει να συµπτύξουµε (αθροίζοντας) γειτονικές συχνότητες ώστε να προκύψουν νέες τιµές > 5. Φυσικά, το πλήθος των τιµών k και, βέβαια, οι βαθµοί ελευθερίας περιορίζονται ανάλογα.. Εφαρµόζοντας τη µέθοδο προσοµοίωσης Monte-Carlo Στην παρούσα άσκηση επιχειρείται η προσοµοίωση της διαδικασίας διάσπασης ραδιενεργών πυρήνων. Σ αυτό το πρόβληµα ο αλγόριθµος προσοµοίωσης είναι πολύ απλός: έστω ένα σύνολο από Ν ίδιους ραδιενεργούς πυρήνες. Όπως αναφέραµε στην ενότητα. η πιθανότητα διάσπασης ενός πυρήνα αυτού του είδους σε χρονικό διάστηµα t είναι λ t όπου το λ χαρακτηρίζει το είδος του πυρήνα και το t προκαθορίζεται. Για να προσοµοιώσουµε τη διαδικασία διάσπασης θεωρούµε Ν τυχαίους αριθµούς οµοιόµορφα κατανεµηµένους στο [0,). Κάθε τυχαίος αριθµός αντιστοιχεί σε έναν πυρήνα. Συγκρίνουµε κάθε έναν από τους Ν αριθµούς µε τη πιθανότητα λ t. Αν ο τυχαίος αριθµός είναι µικρότερος από λ t τότε θεωρούµε ότι ο αντίστοιχος πυρήνας διασπάστηκε στο διάστηµα t (γιατί;). Έτσι βρίσκουµε το συνολικό αριθµό διασπασµένων πυρήνων στο διάστηµα t. Επαναλαµβάνουµε την ίδια διαδικασία χρησιµοποιώντας Ν διαφορετικούς τυχαίους αριθµούς οµοιόµορφα κατανεµηµένους στο [0,). Καταλήγουµε έτσι σε ένα νέο αριθµό διασπασµένων πυρήνων. Η διαδικασία επαναλαµβάνεται Μ φορές µε Μ. Μετά το πέρας της διαδικασίας κατασκευάζουµε ιστόγραµµα µε τους παρατηρηµένους αριθµούς διασπασµένων πυρήνων. Κανονικοποιώντας τις συχνότητες εµφάνισης των διαφόρων αριθµών διασπάσεων έτσι ώστε το εµβαδόν του ιστογράµµατος να είναι παίρνουµε τη κατανοµή του αριθµού διασπάσεων η οποία για Μ θα τείνει προς τη

18 κατανοµή Poisson εάν οι θεωρητικές µας υποθέσεις για ανεξαρτησία των πυρήνων και σταθερή πιθανότητα διάσπασης ισχύουν. 3. Όργανα. Ανιχνευτής. Καταµετρητής µε προρρύθµιση χρόνου/αριθµού διασπάσεων 3. Ραδιενεργός πηγή 4. Ηλεκτρονικός υπολογιστής 4. Εκτέλεση της άσκησης. Αναγνωρίστε τα όργανα που θα χρησιµοποιήσετε. Προσοχή στη χρήση της ραδιενεργής πηγής.. Ρυθµίστε το προκαθορισµένο χρονικό διάστηµα καταγραφής διασπάσεων στη τιµή t= sec. Καθορίστε τη θέση της πηγής έτσι ώστε σε αυτό το χρονικό διάστηµα να καταγράφονται κατά µέσο όρο λιγότερες από 0 διασπάσεις (γιατί;). 3. Πάρτε 00 µετρήσεις του αριθµού διασπάσεων για τον έλεγχο χ. Προσέξτε να µην µεταβάλλετε τη θέση της πηγής κατά τη διάρκεια των µετρήσεων (γιατί;). Γράψτε τις µετρήσεις σας απευθείας σε αρχείο απλού κειµένου και ονοµάστε το lowmean.dat. Προσοχή: Όλες οι διαδικασίες να εκτελούνται στο φάκελο: PAW_nuclear που βρίσκεται στην επιφάνεια εργασίας. 4. Μετακινείστε τη πηγή έτσι ώστε να καταγράφετε σε διάστηµα sec περισσότερες από 30 διασπάσεις κατά µέσο όρο. Πάρτε εκ νέου 00 µετρήσεις του αριθµού διασπάσεων προσέχοντας να µην µετακινηθεί η πηγή. Γράψτε τις µετρήσεις σας απευθείας σε αρχείο απλού κειµένου και ονοµάστε το highmean.dat. 5. Με διπλό κλικ στο εικονίδιο του αρχείου pawt.exe εισέρχεστε στο περιβάλλον επεξεργασίας δεδοµένων paw. Εκτελέστε το αρχείο experiment.kumac για τα δεδοµένα lowmean.dat γράφοντας στην είσοδο εντολών exe experiment και πατώντας ακολούθως το πλήκτρο Enter.

19 Στην οθόνη του υπολογιστή σας θα εµφανισθεί το ιστόγραµµα των δεδοµένων σας για µικρή τιµή του µέσου αριθµού διασπάσεων καθώς και οι µετρήσεις σας. Εικόνα των παραθύρων που ανοίγει το PAW κατά την εκτέλεσή του. Το δεξιό παράθυρο είναι το παράθυρο που δίνονται οι εντολές και το αριστερό είναι το παράθυρο γραφικών. Κατά την εκτέλεση των προγραµµάτων, το παράθυρο γραφικών δεν πρέπει να επικαλύπτεται από κανένα άλλο παράθυρο. Για παράδειγµα η εντολή για την εκτέλεση του προγράµµατος experiment δίνεται στο παράθυρο εντολών όπως φαίνεται στην παρακάτω εικόνα:

20 Επακόλουθα στο ίδιο παράθυρο τυπώνονται τα δεδοµένα από τη συγκεκριµένη µέτρηση. Κατά την εκτέλεση του προγράµµατος αυτού στο παράθυρο γραφικών εµφανίζεται η εικόνα που φαίνεται παρακάτω: Στατιστικά δεδοµένα Παρουσίαση καµπύλης προσαρµογής εδοµένα από την προσαρµογή Τιµές παραµέτρων Παρουσίαση δεδοµένων Επιβεβαιώστε µε απ ευθείας καταµέτρηση τις τιµές των διαφόρων συχνοτήτων εµφάνισης καθώς και τα αντίστοιχα σφάλµατα. 6. Συγκρίνατε τη µέση τιµή του ιστογράµµατος (είναι η τιµή της µεταβλητής mean στο εµφανιζόµενο πλαίσιο) µε τη πειραµατική τιµή του µ που βρίσκετε χρησιµοποιώντας τη σχέση (8).

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

Εργαστηριακή ή Άσκηση η 3

Εργαστηριακή ή Άσκηση η 3 Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:09101187 Υπεύθυνος Άσκησης: Μ. Κόκκορης Συνεργάτης: Κώστας Καραϊσκος Ημερομηνία Διεξαγωγής: 9/11/005 Εργαστήριο Πυρηνικής Φυσικής και Στοιχειωδών ν Σωματιδίων Εργαστηριακή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)

ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής.

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής. ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL Το πακέτο Excel είναι ένα πρόγραμμα φύλλου εργασίας (spreadsheet) με το οποίο μπορούμε να κάνουμε υπολογισμούς και διαγράμματα που είναι χρήσιμοι στα οικονομικά. Στο Excel το φύλλο εργασίας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ6 / ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # - Λύσεις Ασκήσεων Θέµα Α Έστω T t ο µέσος χρόνος µετάδοσης ενός πλαισίου δεδοµένων και Τ f, αντίστοιχα, ο χρόνος µετάδοσης πλαισίου επιβεβαίωσης αρνητικής, na, ή θετικής ac

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller

Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller ΑΠ1 Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller 1. Σκοπός Στην άσκηση αυτή γίνεται µελέτη της εξασθενήσεως της ακτινοβολίας γ (ραδιενεργός πηγή Co 60 ) µε την βοήθεια απαριθµητή

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα