ιακριτού χρόνου Τυχαίες ιαδικασίες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιακριτού χρόνου Τυχαίες ιαδικασίες"

Transcript

1 ιακριτού χρόνου Τυχαίες ιαδικασίες Τα σήµατα ταξινοµούνται σε δύο ευρείες κατηγορίες: 1. Αιτιοκρατικά (deterministic): Αναπαράγονται ακριβώς ίδια µε επαναλαµβανόµενες διαδικασίες. Παράδειγµα το µοναδιαίο βήµα ή το κρουστικό σήµα. 2. Τυχαία (random): Τυχαίο σήµα ή τυχαία διαδικασία είναι το σήµα που δεν επαναλαµβάνεται ακριβώς το ίδιο µε προβλέψιµο τρόπο. Παράδειγµα ο θόρυβος κβαντισµού, τα χιόνια στην οθόνη του ραντάρ, το βούισµα από την κασέτα κατά την αναπαραγωγή ήχου ή ο θόρυβος της µηχανής κατά τη µετάδοση σήµατος φωνής από το πιλοτήριο ενός αεροπλάνου. Ορισµένα σήµατα µπορεί να θεωρηθούν είτε αιτιοκρατικά είτε τυχαία ανάλογα µε την εφαρµογή. Για παράδειγµα το σήµα της φωνής µπορεί να θεωρηθεί αιτιοκρατικό αν πρόκειται για συγκεκριµένη κυµατοµορφή την οποία θέλουµε να επεξεργαστούµε ή αναλύσουµε. Όµως το σήµα της φωνής µπορεί να θεωρηθεί επίσης και τυχαία διαδικασία στην περίπτωση που κάποια συγκεκριµένη κυµατοµορφή θεωρείται ότι ανήκει σε µια ευρεία συλλογή µε όλες τις πιθανές κυµατοµορφές προκειµένου να σχεδιάσουµε ένα σύστηµα που θα επεξεργάζεται µε βέλτιστο τρόπο σήµατα φωνής γενικά. Στο µάθηµα αυτό θα επικεντρωθούµε ιδιαίτερα στα τυχαία σήµατα. Επειδή οι τυχαίες διαδικασίες µπορούν να περιγραφούν µόνο πιθανοκρατικά ή µε όρους κάποιας µέσης συµπεριφοράς θα ξεκινήσουµε µε σύντοµη ανασκόπηση των τυχαίων διαδικασιών. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Η αρχή της τυχαίας µεταβλητής µπορεί να γίνει καλύτερα κατανοητός µε το ακόλουθο παράδειγµα. Αν υποθέσουµε ότι στρίβουµε ένα δίκαιο κέρµα η πιθανότητα να φέρουµε κορώνα Pr{H}=0.5 είναι ίση µε την πιθανότητα να φέρουµε γράµµατα Pr{T}=0.5. Το σύνολο όλων των πιθανών αποτελεσµάτων ενός πειράµατος αποτελεί τον δειγµατοχώρο (sample space) Ω o οποίος έχει πάντα Pr{Ω}=1. Για το συγκεκριµένο παράδειγµα ο δειγµατοχώρος αποτελείται από Ω={Η,Τ} Pr{H,T}=1. Τα υποσύνολα του διεγµατοχώρου ονοµάζονται γεγονότα (events) και το κάθε στοιχείο ξεχωριστά του δειγµατοχώρου ονοµάζεται στοιχειώδες γεγονός (elementary event). Στο παραπάνω παράδειγµα τα µόνα στοιχειώδη γεγονότα που υπάρχουν είναι τα ω 1 ={Η} και ω 2 ={Τ}. Μπορούµε τώρα να υποθέσουµε ότι υπάρχει µια πραγµατική µεταβλητή x η οποία παίρνει την τιµή x=1 κάθε φορά που το κέρµα φέρνει κορώνα και x=-1 όποτε έρχεται γράµµατα. Με αυτόν τον τρόπο ορίζεται µια αντιστοιχία µεταξύ των γεγονότων του πειράµατος και των πραγµατικών αριθµών: f : Ω R οπότε θα ισχύει: ω = { Η} x = 1 Pr{ x = 1} = ω2 = { T} x = 1 Pr{ x = 1} = 0.5 Αφού οι µόνες τιµές που µπορεί να πάρει η µεταβλητή x είναι {1,-1} άρα για οποιονδήποτε άλλο αριθµό a θα είναι: Pr{x=a}=0 αν a ±1 και Pr{Ω}=Pr{x=±1}=1. Η µεταβλητή x λέγεται τυχαία µεταβλητή και καθορίζεται µε όρους πιθανοφάνειας (πιθανότητας). Ο ορισµός της τυχαίας µεταβλητής ως αντιστοίχηση στοιχειωδών γεγονότων ενός δειγµατοχώρου µε σηµεία στον άξονα στον πραγµατικών αριθµών απεικονίζεται στο παρακάτω σχήµα: Η συγκεκριµένη τυχαία µεταβλητή είναι πραγµατική αλλά επιπλέον επειδή µπορεί να πάρει µόνο µία από ένα σύνολο δύο διαφορετικών τιµών ονοµάζεται Bernouli τυχαία µεταβλητή. Με παρόµοιο τρόπο µπορούµε να ορίσουµε µιγαδικές τυχαίες µεταβλητές. Για παράδειγµα στην περίπτωση που έχουµε πείραµα µε δύο δίκαια ζάρια, το ένα άσπρο και το άλλο µαύρο µια µιγαδική τυχαία µεταβλητή µπορεί να οριστεί ώς: z=m+jn όπου m είναι ο αριθµός που φέρνει το άσπρο ζάρι και n ο αριθµός του µαύρου ζαριού. Μέχρι στιγµής οι Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 1

2 τυχαίες µεταβλητές ήταν διακριτές αφού το αποτέλεσµα των πειραµάτων ήταν ένα σύνολο διακριτών γεγονότων. Για κάθε διακριτή τυχαία µεταβλητή ορίζεται η συνάρτηση πιθανότητας µάζας (probability mass function (pmf)) ως: Pr ( a) = Pr{ x a} x = Κατά αντιστοιχία µπορούµε να ορίσουµε συνεχείς τυχαίες µεταβλητές όπως για παράδειγµα στο πείραµα µε µια ρουλέτα άπειρης ανάλυσης που µπορεί να παράγει σε µια περιστροφή της οποιονδήποτε αριθµό από το 0 έως το 1. Ο δειγµατοχώρος σε αυτή την περίπτωση είναι: Ω = { ω : 0 ω 1}. Αν ο τροχός είναι δίκαιος ώστε κάθε αριθµός στο διάστηµα από 0 έως 1 να είναι ισοπίθανος τότε η ανάθεση πιθανότητας στο Ω µπορεί να γίνει ως εξής. Για κάθε διάστηµα Ι=(α 1,α 2 ] υποσύνολο του [0,1] ορίζουµε την πιθανότητα του γεγονότος ω є Ι ως ακολούθως: Pr{ ω Ι} = Pr{ a < ω a = a a 1 2} Επιπλέον για οποιαδήποτε δύο ασυνεχή διαστήµατα Ι 1 και Ι 2 η πιθανότητα ότι το αποτέλεσµα του πειράµατος θα σε ένα από αυτά θα είναι: Pr{ ω Ι1 ή ω Ι 2} = Pr{ ω Ι1} + Pr{ ω Ι 2} Νόµος Πιθανότητας (Probability Law): Καθορίζει τα αξιώµατα που πρέπει να ισχύουν προκειµένου η ανάθεση πιθανότητας σε κάθε γεγονός Α ενός δειγµατοχώρου Ω να είναι έγκυρη: 1. Pr(A) 0 για κάθε Α є Ω 2. Pr(Ω) =1 για το δειγµατοχώρο Ω 3. Για κάθε δύο αµοιβαία ανεξάρτητα γεγονότα Α1 και Α2 ( A 1 A2 = 0 ) ισχύει: Στις εφαρµογές επεξεργασίας σήµατος είναι σηµαντικότερη η πιθανοκρατική περιγραφή της τυχαίας µεταβλητής αντί του στατιστικού χαρακτηρισµού των γεγονότων του δειγµατοχώρου. Για µια πραγµατική τυχαία µεταβλητή ένας στατιστικός χαρακτηρισµός είναι η συνάρτηση κατανοµής πιθανότητας (probability distribution function ή cumulative distribution function (cdf) ) που ορίζεται ως: Fx( a) = Pr{ x a}. Για παράδειγµα για την τυχαία µεταβλητή που ορίσαµε για το πείραµα µε το κέρµα η συνάρτηση κατανοµής 0 a < 1 πιθανότητας θα είναι: Fx( a) = a < a Το διάγραµµα της παραπάνω cdf είναι το σχήµα (α) στην παρακάτω εικόνα: 2 1 Παρατηρήστε ότι υπάρχουν δύο βηµατικές αλλαγές της συνάρτησης στο x=-1 και x=1. Οι ασυνέχειες που παρατηρούνται είναι εξαιτίας των διακριτών πιθανοτήτων µάζας σε αυτά τα σηµεία. Ένας άλλος τρόπος για να χαρακτηρίσουµε στατιστικά µια τυχαία µεταβλητή είναι η συνάρτηση πυκνότητας πιθανότητας (probability density function (pdf)) που ορίζεται ως εξής: d f x ( a) = Fx ( a) da Για την τυχαία µεταβλητή µε την παραπάνω συνάρτηση κατανοµής η pdf θα έχει το σχήµα (b) της παραπάνω εικόνας και θα είναι: f x 1 1 ( a) = δ ( a + 1) + δ ( a 1) 2 2 όπου δ(α) είναι το κρουστικό σήµα. Οι pdf που περιέχουν κρουστικά σήµατα είναι χαρακτηριστικές των τυχαίων µεταβλητών διακριτού τύπου. Για το παράδειγµα συνεχούς τυχαίας µεταβλητής µε την ρουλέτα που αναφέραµε πιο πάνω η cdf θα είναι: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 2

3 και η pdf θα είναι: 0 a < 0 Fx( a) = a 0 a < a f x 1 0 a 1 ( a) = 0 αλλο ύ Τόσο η cdf όσο και η pdf απεικονίζονται στο σχήµα (c) και (d) αντίστοιχα της παρακάτω εικόνας. Παρατηρήστε ότι η cdf της συνεχούς τυχαίας µεταβλητής είναι συνεχής συνάρτηση του α ενώ η pdf είναι επιµέρους συνεχής. Για µιγαδικές τυχαίες µεταβλητές τα πράγµατα αλλάζουν κάπως αφού δεν έχει νόηµα η ανισότητα z α. Μπορούµε να δούµε την z = x + jy σαν ζεύγος πραγµατικών τυχαίων µεταβλητών (του x και y) οπότε η ανάθεση πιθανοτήτων να γίνει µε όρους από κοινού (joint) cdf και pdf των x και y όπως θα δούµε παρακάτω. Μέσοι συνόλου (ensemble averages) Ένας ολοκληρωµένος στατιστικά χαρακτηρισµός µιας τυχαίας µεταβλητής απαιτεί να υπάρχει η δυνατότητα να καθορίζεται η πιθανότητα οποιουδήποτε γεγονότος στον δειγµατοχώρο. Σε πολλές εφαρµογές παρόλα αυτά ο ολοκληρωµένος στατιστικά χαρακτηρισµός της τυχαίας µεταβλητής µπορεί να µην είναι απαραίτητος εφόσον είναι γνωστή η µέση συµπεριφορά της τυχαίας µεταβλητής. Για παράδειγµα προκειµένου να αποφασίσουµε να παίξουµε ή όχι 31 αυτό που µας ενδιαφέρει είναι ο αναµενόµενος ρυθµός απόδοσης σε µια παρτίδα αντί του ολοκληρωµένου στατιστικά χαρακτηρισµού του παιχνιδιού. Στο µάθηµα θα επικεντρωθούµε ιδιαίτερα στους στατιστικούς µέσους όρους και γι αυτό στην παράγραφο αυτή θα εισάγουµε τις έννοιες αναµενόµενη τιµή τυχαίας µεταβλητής ή συνάρτησης τυχαίας µεταβλητής. Έστω x τυχαία µεταβλητή όπως ορίζεται σε ένα πείραµα µε ζάρι. Ας υποθέσουµε ότι το ζάρι ρίχνεται N T φορές και ότι ο αριθµός k εµφανίζεται n κ φορές. Η µέση τιµή που υπολογίζεται µε τον ακόλουθο τρόπο ονοµάζεται sample mean (δειγµατικός µέσος) Αν, τότε και η παραπάνω εξίσωση γίνεται: Η µέση ή αναµενόµενη τιµή (expected value) µιας διακριτής τυχαίας µεταβλητής x που θεωρεί ότι µια τιµή α κ µε πιθανότητα Pr{x = α κ } ορίζεται ως εξής: Συναρτήσει της pdf f x (a), η αναµενόµενη τιµή µπορεί να γραφεί ως: Ο παραπάνω ορισµός ισχύει και για συνεχείς τυχαίες µεταβλητές. Παράδειγµα 1: Υπολογισµός µέσου τυχαίας µεταβλητής (ΤΜ) Για την ΤΜ που ορίζεται στο πείραµα µε το κέρµα η αναµενόµενη τιµή είναι: E{x] = Pr{x = 1} - Pr{x = -1} = 0 Για την ΤΜ στο πείραµα µε το ζάρι: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 3

4 Τέλος για την συνεχή ΤΜ στο πείραµα της ρουλέτας: Υπάρχουν πολλά παραδείγµατα στα οποία είναι απαραίτητο να υπολογίσουµε την αναµενόµενη τιµή µιας συνάρτησης ΤΜ. Για παράδειγµα στην εύρεση της µέσης ισχύος που καταναλίσκεται σε αντίσταση 1 ohm όταν η τάση x είναι ΤΜ είναι απαραίτητο να υπολογίσουµε την αναµενόµενη τιµή του y = x 2. Αν x είναι ΤΜ µε pdf f x (a) και αν y = g(x), τότε η αναµενόµενη τιµή (ΑΤ) του y είναι: Για παράδειγµα η ΑΤ του y = x 2 είναι: και η ΑΤ του y = x is Προκειµένου να δούµε πως προέκυψε ο παραπάνω ορισµός της ΑΤ µιας συνάρτησης ΤΜ ας θεωρήσουµε το πρόβληµα υπολογισµού της ΑΤ της x 2 όπου x είναι ΤΜ ορισµένη στο πείραµα µε το ρίξιµο του ζαριού. Υποθέτοντας ότι ρίξαµε το ζάρι N T φορές και ότι ο αριθµός k εµφανίζεται n κ φορές η µέση τετραγωνική τιµή του αριθµού που εµφανίζεται είναι κατά προσέγγιση ίση µε τη µέση τετραγωνική τιµή δείγµατος (sample mean-square value): Με όρους pdf η παραπάνω εξίσωση γίνεται: η οποία είναι ίδια µε τον ορισµό της ΑΤ της συγκεκριµένης συνάρτησης που είδαµε πιο πάνω. Η αναµενόµενη τιµή του x 2 είναι ένας σηµαντικός στατιστικός µέσος που αναφέρεται ως µέση τετραγωνική τιµή (mean-square (MS) value). Η MS τιµή χρησιµοποιείται τακτικά για τη µέτρηση της ποιότητας µιας εκτίµησης. Για παράδειγµα στην δηµιουργία ενός εκτιµητή µιας τυχαίας µεταβλητής x είναι σύνηθες να θέλουµε να βρούµε εκείνο τον εκτιµητή που ελαχιστοποιεί το µέσο τετραγωνικό σφάλµα (mean-square error) MSE, Ένας άλλος σχετικός µέσος είναι η διακύµανση (variance) η οποία είναι η MS τιµή της ΤΜ Τις περισσότερες φορές αναφέρεται είτε ως Var{x} είτε ως και ορίζεται ως: Η τετραγωνική ρίζα της διακύµανσης, είναι η τυπική απόκλιση (standard deviation). Για µιγαδικές ΤΜ η MS τιµή είναι και η διακύµανση είναι Από τον ορισµό της ΑΤ καταλαβαίνουµε ότι η ΑΤ είναι γραµµικός τελεστής αφού για δύο ΤΜ x και y και για κάθε ζεύγος σταθερών a και b, Χρησιµοποιώντας τη γραµµικότητα της ΑΤ η διακύµανση µπορεί να εκφραστεί ως: Συνεπώς αν η µέση τιµή της ΤΜ x είναι µηδέν, τότε: Από κοινού κατανεµηµένες ΤΜ Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 4

5 Τώρα θα κοιτάξουµε την περίπτωση που χρειάζεται να δουλέψουµε µε δύο ΤΜ. Σε αντίθεση µε την περίπτωση της µίας ΤΜ όταν έχουµε δύο ή περισσότερες είναι απαραίτητο να θεωρήσουµε στατιστικές εξαρτήσεις που µπορεί να υπάρχουν µεταξύ των ΤΜ. Για παράδειγµα στο παράδειγµα µε το τίµιο κέρµα ας θεωρήσουµε ότι η τυχαία µεταβλητή x παίρνει την τιµή 1 όταν πέφτει κεφαλή και -1 για γράµµατα. Αν ρίξουµε δύο τίµια κέρµατα και το αποτέλεσµα του πρώτου κέρµατος ορίζει την τιµή της ΤΜ x(1) ενώ του δεύτερου κέρµατος ορίζει την ΤΜ x(2) τότε {x(l), x(2)} θα είναι ένα ζεύγος ΤΜ µε για i = 1,2. Αν το αποτέλεσµα του πρώτου κέρµατος δεν επηρεάζει το αποτέλεσµα του δεύτερου τότε κάθε ένα από τα ακόλουθα αποτελέσµατα:{0, 0}, {0, 1), {1,0}, και {1,1} είναι ισοπίθανα. Ας δούµε όµως και το ακόλουθο πείραµα. Ας υποθέσουµε ότι έχουµε 3 ζάρια. Το πρώτο είναι τίµιο, το δεύτερο έχει αυξηµένη πιθανότητα για κεφαλή και το τρίτο αυξηµένη πιθανότητα για γράµµατα. Έστω x (l) η ΤΜ του τίµιου ζαριού όπως και πριν. Έστω µια δεύτερη ΤΜ x (2) η οποία παίρνει τιµές µε βάση τη ρίψη κάποιου κέρµατος αλλά ισχύει το εξής παράδοξο. Ανάλογα µε το αποτέλεσµα του τίµιου ζαριού επιλέγεται για ρίψη από τα ανέντιµα κέρµατα εκείνο που έχει µεγαλύτερη πιθανότητα στο αποτέλεσµα του τίµιου ζαριού. Αν δηλαδή το τίµιο φέρει κεφαλή τότε θα χρησιµοποιηθεί το κέρµα µε αυξηµένη πιθανότητα στην κεφαλή και το αντίθετο αν φέρει γράµµατα. Με βάση αυτό τον ορισµό για τις ΤΜ x(1) και x(2) βλέπουµε ότι υπάρχει εξάρτηση µεταξύ των ΤΜ υπό την έννοια ότι είναι πολύ πιθανότερο οι δύο ΤΜ να έχουν τις ίδιες τιµές στο τέλος από το να έχουν διαφορετικές. Αυτό σηµαίνει ότι παρατηρώντας την τιµή του x(1) αυξάνω την πιθανότητα να προβλέψω την τιµή για το x(2). Στην ακραία περίπτωση που το δεύτερο κέρµα έχει και στις δύο πλευρές κεφαλή ενώ το τρίτο έχει και στις δύο πλευρές γράµµατα οι x(1) και x(2) θα έχουν πάντα τις ίδιες τιµές. Η συσχέτιση µεταξύ των ΤΜ περιλαµβάνεται στην από κοινού (joint) κατανοµή πιθανότητας και από κοινού (joint) pdf που ορίζονται ως ακολούθως: Η joint distribution function είναι όπως και στην περίπτωση της µίας ΤΜ η joint density function για δύο ΤΜ είναι η παράγωγος της αντίστοιχης συνάρτησης κατανοµής: Οι ίδιες συναρτήσεις χρησιµοποιούνται στην περίπτωση που έχουµε µιγαδικές ΤΜ. Για παράδειγµα αν z= x + jy µια µιγαδική ΤΜ και c= a + jb ένας µιγαδικός αριθµός τότε η συνάρτηση κατανοµής της z θα είναι: Για περισσότερες από δύο ΤΜ οι joint distribution και joint density functions ορίζονται µε παρόµοιο τρόπο. Για παράδειγµα για n ΤΜ θα είναι: και Από κοινού ροπές (Joint Moments) Όπως και στην περίπτωση της µίας ΤΜ οι µέσοι ενός συνόλου αποτελούν ένα σηµαντικό και χρήσιµο χαρακτηρισµό από κοινού κατανεµηµένων ΤΜ. Οι δύο µέσοι πρωταρχικής σηµασίας είναι η συσχέτιση (correlation) και η συνδιακύµανση (covariance). Η συσχέτιση (correlation), αναφέρεται συχνά ως και είναι η ακόλουθη από κοινού ροπή δεύτερης τάξης (second-order joint moment) όπου για την περίπτωση των µιγαδικών ΤΜ, y* είναι η µιγαδικός συζυγής του y. Ένας µέσος συνόλου (ensemble average) που σχετίζεται µε την συσχέτιση είναι η συνδιακύµανση c xy, που ορίζεται ως: όπου και είναι οι µέσοι (Αναµενόµενες τιµές) των ΤΜ x και y, αντίστοιχα. Προφανώς αν µία από τις δύο ΤΜ x ή y έχουν µηδενική µέση τιµή τότε η συνδιακύµανση είναι ίση µε την συσχέτιση. Συχνά είναι χρήσιµο να κανονικοποιούµε την συνδιακύµανση. Μια τέτοια µορφή κανονικοποιηµένων συνδιακυµάνσεων είναι οι συντελεστές συσχέτισης (correlation coefficient) και ορίζεται ως εξής: Για TM µε µηδενικό µέσο οι συντελεστές συσχέτισης γίνονται: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 5

6 Εξαιτίας της κανονικοποίησης µε τον όρο άνω φραγµένο στο ένα:, οι συντελεστές συσχέτισης έχουν πλάτος (magnitude) Η ιδιότητα αυτή µπορεί εύκολα να αποδειχτεί στην περίπτωση των πραγµατικών ΤΜ ως εξής. Ας θεωρήσουµε (χωρίς απώλεια γενίκευσης) ότι x και y έχουν µηδενικό µέσο. Τότε αν a είναι πραγµατικός αριθµός τότε (αx-y) 2 0 και, (1) Αφού η παραπάνω εξίσωση είναι quadratic µε µη αρνητικές τιµές για οποιαδήποτε τιµή του a, συνεπώς οι ρίζες της εξίσωσης πρέπει να είναι είτε µιγαδικοί είτε εφόσον είναι πραγµατικοί να είναι ίσες µεταξύ τους. Με άλλα λόγια η διακρίνουσα πρέπει να µην είναι θετική: ή το οποίο εκφράζει την ανισότητα συνηµίτονου (cosine inequality). Ως εκ τούτου Παρατηρήστε ότι εάν υπάρχει µια τιµή του a για την οποία ισχύει η ισότητα στην εξίσωση (1) τότε που σηµαίνει ότι (µε πιθανότητα 1). Ανεξάρτητες, Ασυσχέτιστες και Ορθογώνιες ΤΜ Υπάρχουν πολλά παραδείγµατα ΤΜ σε διάφορες εφαρµογές για τις οποίες η τιµή της µίας ΤΜ δεν εξαρτάται από την τιµή της άλλης. Αυτές οι ΤΜ λέγονται στατιστικά ανεξάρτητες. Ένας πιο ακριβής τρόπος ορισµού της στατιστικής ανεξαρτησίας δίνεται ως εξής: Ορισµός: ύο ΤΜ x και y λέγονται στατιστικά ανεξάρτητες αν η από κοινού συνάρτηση πυκνότητας πιθανότητας είναι διαχωρίσιµη ως εξής: Μια ασθενέστερη µορφή ανεξαρτησίας συµβαίνει όταν η joint second-order moment διαχωρίσιµη, δηλαδή: είναι ή ύο ΤΜ που ικανοποιούν την παραπάνω εξίσωση λέγονται ασυσχέτιστες (uncorrelated). Παρατηρήστε ότι αφού συνεπώς δύο ΤΜ x και y θα είναι ασυσχέτιστες αν η συνδιακύµανση τους είναι µηδέν, Προφανώς δυο στατιστικά ανεξάρτητες ΤΜ θα είναι πάντα ασυσχέτιστες. Το αντίστροφο όµως δεν είναι πάντα αληθές. Μια χρήσιµη ιδιότητα των ασυσχέτιστων ΤΜ είναι η ακόλουθη: Ιδιότητα: Η διακύµανση του αθροίσµατος δύο ΤΜ x και y είναι ίσο µε το άθροισµα των διακυµάνσεων: Var{x+y}=Var{x}+Var{y} Η συσχέτιση µεταξύ ΤΜ αποτελεί ένα σηµαντικό χαρακτηριστικό της στατιστικής εξάρτησης µεταξύ τους και θα παίξει ιδιαίτερα σηµαντικό ρόλο στην µελέτη των τυχαίων διαδικασιών και στην φασµατική εκτίµηση. Συνεπώς είναι σηµαντικό να κατανοήσουµε τι ακριβώς σηµαίνει η συσχέτιση πέρα από τον απλό ορισµό της. Στην επόµενη παράγραφο θα δείξουµε πως συνδέεται η γραµµική πρόβλεψη µε την συσχέτιση στο πρόβληµα της γραµµικής µέσης-τετραγωνικής εκτίµησης. Μια ιδιότητα που συνδέεται µε την ασυσχετικότητα είναι η ορθογωνικότητα (orthogonality). Συγκεκριµένα δύο ΤΜ λέγονται ορθογώνιες όταν η συσχέτισης τους είναι µηδέν: Παρότι οι ορθογώνιες ΤΜ δεν είναι απαραίτητα ασυσχέτιστες, οι µηδενικού µέσου ΤΜ που είναι ασυσχέτιστες θα είναι πάντα ορθογώνιες. \ Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 6

7 Γραµµική Μέσου Τετραγώνου Εκτίµηση (Linear Mean-Square Estimation) Στην παράγραφο αυτή θα δούµε σύντοµα το πρόβληµα της εκτίµησης µιας ΤΜ y µε βάση την παρατήρηση από µια άλλη ΤΜ x. Το πρόβληµα αυτό γενικά προκύπτει όταν η y δεν µπορεί να παρατηρηθεί ή υπολογιστεί άµεσα οπότε µια ΤΜ που σχετίζεται χρησιµοποιείται για τον υπολογισµό του y. Για παράδειγµα θέλουµε να εκτιµήσουµε το IQ (Intelligence Quotient) ενός ατόµου µε βάση την απόδοση του σε κάποιο σχετικό τεστ. Αν αναπαραστήσουµε το IQ µε µια ΤΜ y και την απόδοση στο τεστ µε µια δεύτερη ΤΜ x, τότε θεωρώντας ότι υπάρχει συσχέτιση (correlation) µεταξύ x και y, ο στόχος είναι η εύρεση της καλύτερης εκτίµησης του y βασισµένοι στο x. Στη µέση τετραγωνική εκτίµηση, το πρόβληµα µοντελοποιείται στην εύρεση µιας εκτίµησης ŷ τέτοιας ώστε να ελαχιστοποιείται το µέσο τετραγωνικό σφάλµα: Παρότι η λύση στο παραπάνω πρόβληµα γενικά µας οδηγεί σε ένα µη γραµµικό εκτιµητή (η βέλτιστη εκτίµηση είναι ο υπό συνθήκη µέσος ) σε πολλές περιπτώσεις ένας γραµµικός εκτιµητής είναι προτιµότερος. Στη γραµµική µέσου τετραγώνου εκτίµηση ο εκτιµητής περιορίζεται να έχει την ακόλουθη µορφή: και ο στόχος είναι να βρούµε τις τιµές του a και b που ελαχιστοποιούν το MSE: Υπάρχουν πολλά πλεονεκτήµατα από τη χρήση γραµµικού εκτιµητή. Το πρώτο είναι ότι οι παράµετροι a και b εξαρτώνται µόνο από το second-order moments του x και y και όχι από τις joint density functions. εύτερον, οι εξισώσεις που θα πρέπει να λυθούν για τα a και b είναι γραµµικές. Τέλος για Gaussian ΤΜ όπως θα τις δούµε στην επόµενη παράγραφο η βέλτιστη µη γραµµική µέση τετραγωνική εκτίµηση είναι γραµµική. Το πρόβληµα αυτό αποτελεί ειδική περίπτωση ενός γενικότερου προβλήµατος µέσης τετραγωνικής εκτίµησης που προκύπτει σε πολλές εφαρµογές επεξεργασίας σήµατος. Το να λύσουµε το πρόβληµα της γραµµικής µέσης τετραγωνικής εκτίµησης είναι εφικτό µε διαφόριση του ξ ως προς τις a και b και θέτοντας την παράγωγο ίση µε το µηδέν: Η πρώτη από τις παραπάνω εξισώσεις µας λεει ουσιαστικά ότι: όπου είναι το σφάλµα εκτίµησης. Αυτή η σχέση που είναι γνωστή ως αρχή της ορθογωνικότητας (orthogonality principle), µας λεει ότι για τον βέλτιστο γραµµικό προβλεπτή το σφάλµα εκτίµησης θα είναι ορθογώνιο µε τα δεδοµένα x. Η αρχή της ορθογωνικότητας είναι θεµελιώδης στα προβλήµατα εκτίµησης µέσου τετραγώνου. Λύνοντας τις παραπάνω εξισώσεις ως προς a και b βρίσκουµε: Από την πρώτη εξίσωση βρίσκουµε ότι: (2) το οποίο αν αντικαταστήσουµε στην δεύτερη: όπου χρησιµοποιήσαµε τη σχέση Ως αποτέλεσµα η εκτίµηση για το y γράφεται: όπου: (3) Συνδυάζοντας τις δύο τελευταίες εξισώσεις βγάζω τελικά: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 7

8 Το επόµενο βήµα είναι να υπολογίσουµε το MSE. Επειδή: Αντικαθιστώντας την εξίσωση (2) στην παραπάνω: Τέλος χρησιµοποιώντας την έκφραση για το a στην εξίσωση (3), το ελάχιστο MSE γίνεται: του οποίου η γραφική παράσταση σαν συνάρτηση του φαίνεται στην παρακάτω εικόνα: Παρατηρήστε ότι αφού το ελάχιστο MSE πρέπει να είναι µη αρνητικό, η παραπάνω εξίσωση µας ξανατονίζει την ιδιότητα ότι οι συντελεστές συσχέτισης δεν µπορούν να υπερβούν την τιµή 1 κατά απόλυτη τιµή. Ας δούµε τώρα ορισµένες ειδικές περιπτώσεις του προβλήµατος της γραµµικής MS εκτίµησης. Πρώτα, µπορούµε να παρατηρήσουµε ότι αν x και y είναι ασυσχέτιστα τότε a = 0 και b = E{y}. Συνεπώς, η εκτίµηση για το y είναι: και το ελάχιστο MSE: Το παραπάνω µας λεει ότι η ΤΜ x δεν χρησιµοποιείται στην εκτίµηση του y, οπότε το να γνωρίζουµε την τιµή της ΤΜ x δεν βελτιώνει την ακρίβεια της εκτίµησης του y. Μια άλλη ειδική περίπτωση συµβαίνει όταν Σε αυτή την περίπτωση το ελάχιστο MSE είναι µηδέν: και συνεπώς θα ισχύει y=ax+b. Έτσι όταν το πλάτος των συντελεστών συσχέτισης είναι ίσο µε ένα, οι ΤΜ x και y εξαρτώνται η µία µε την άλλη µε γραµµικό τρόπο. Με βάση τις παραπάνω παρατηρήσεις καταλήγουµε στο συµπέρασµα ότι οι συντελεστές συσχέτισης προσφέρουν ένα τρόπο να µετρήσουµε την γραµµική προβλεψιµότητα µεταξύ δύο ΤΜ. Όσο πιο κοντά είναι το ρ στο ένα τόσο µικρότερο είναι το MSE σε µια εκτίµηση του y µε γραµµικό εκτιµητή. xy Gaussian Τυχαίες Μεταβλητές Οι Gaussian ΤΜ παίζουν κεντρικό ρόλο στη θεωρία πιθανοτήτων. Μία ΤΜ x λέγεται Gaussian αν η pdf της έχει την ακόλουθη µορφή: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 8

9 όπου και είναι ο µέσος και η διακύµανση του x, αντίστοιχα. Παρατηρήστε ότι η pdf µιας Gaussian ΤΜ ορίζεται πλήρως εφόσον προσδιοριστούν η µέση τιµή και η διακύµανση. ύο ΤΜ x και y λέγονται από κοινού ( jointly) Gaussian αν η joint pdf είναι: όπου: Εδώ, και είναι οι µέσες τιµές και οι και οι διακυµάνσεις των Gaussian ΤΜ x και y, αντίστοιχα. Η συσχέτιση µεταξύ x και y είναι η. Όπως και µε την απλή Gaussian ΤΜ, η joint pdf ορίζεται πλήρως εφόσον γίνουν γνωστές οι µέσες τιµές, οι διακυµάνσεις και η συσχέτιση. Οι Gaussian ΤΜ έχουν µερικές σηµαντικές ιδιότητες.: Ιδιότητα 1. Αν x και y είναι jointly Gaussian, τότε για κάθε ζεύγος σταθερών a και b η ΤΜ: θα είναι Gaussian µε µέσο και διακύµανση: Ιδιότητα 2. Αν δύο jointly Gaussian ΤΜ είναι ασυσχέτιστες: τότε θα είναι στατιστικά ανεξάρτητες: Ιδιότητα 3. Αν x και y είναι jointly Gaussian ΤΜ τότε η βέλτιστη µη γραµµική εκτίµηση για το y που ελαχιστοποιεί το MSE είναι η γραµµική εκτίµηση: Ιδιότητα 4. Αν x είναι Gaussian µε µηδενική µέση τιµή τότε: Παραµετρική Εκτίµηση: Bias and Consistency Υπάρχουν πολλά παραδείγµατα στην επεξεργασία σήµατος αλλά και σε άλλους επιστηµονικούς τοµείς όπου είναι απαραίτητο να εκτιµήσουµε την τιµή µιας άγνωστης παραµέτρου από ένα σύνολο παρατηρήσεων µιας ΤΜ. Για παράδειγµα, αν µας δίνεται ένα σύνολο παρατηρήσεων από µια Gaussian κατανοµή, η εκτίµηση του µέσου και της διακύµανσης από αυτές τις παρατηρήσεις είναι ένα πρόβληµα παραµετρικής εκτίµησης. Ως συγκεκριµένη εφαρµογή του παραπάνω ας θυµηθούµε ότι σε µια γραµµική MS εκτίµηση, η εκτίµηση της τιµής της ΤΜ y από µια παρατήρηση µιας σχετιζόµενης ΤΜ x, οι συντελεστές a και b στην εκτιµήτρια εξαρτάται από τη µέση τιµή και διακύµανση των x και y όπως επίσης και από την συσχέτιση τους. Αν αυτοί οι στατιστικοί µέσοι είναι άγνωστοι τότε είναι απαραίτητο να εκτιµήσουµε αυτές τις παράµετρους από ένα σύνολο παρατηρήσεων των x και y. Αφού κάθε εκτίµηση θα είναι µια συνάρτηση των παρατηρήσεων οι εκτιµήσεις οι ίδιες θα είναι ΤΜ. Συνεπώς, για να µπορέσουµε να µετρήσουµε την αποδοτικότητα ενός συγκεκριµένου εκτιµητή είναι σηµαντικό να µπορούµε να χαρακτηρίσουµε τις στατιστικές του ιδιότητες. Οι στατιστικές ιδιότητες που µας ενδιαφέρουν περιλαµβάνουν την στατιστική απόκλιση (bias) και την διακύµανση (variance). Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 9

10 Ας θεωρήσουµε το πρόβληµα εκτίµησης της τιµής µιας παραµέτρου θ από µια ακολουθία τυχαίων µεταβλητών x, για n = 1,2, L, N. Αφού η εκτίµηση είναι συνάρτηση Ν τυχαίων µεταβλητών θα n την ορίζουµε ως θˆν. Γενικά θα θέλαµε η εκτίµηση να είναι ίση κατά µέσο όρο µε την πραγµατική τιµή. Η διαφορά µεταξύ της αναµενόµενης τιµής της εκτίµησης και της πραγµατικής τιµής θ ονοµάζεται στατιστική απόκλιση (bias) και θα τη δηλώνουµε ως Β: B = θ Ε{ ˆ θ Ν } Αν το bias είναι µηδέν, τότε η αναµενόµενη τιµή της εκτίµησης είναι ίση µε την πραγµατική τιµή: θ = Ε{ ˆ θ Ν } και η εκτίµηση λέγεται unbiased. Αν Β 0 τότε η εκτίµηση θˆ λέγεται biased. Αν µια εκτίµηση είναι biased αλλά το bias τείνει στο µηδέν όσο ο αριθµός των παρατηρήσεων N τείνει στο άπειρο: lim E{ ˆ θ } = θ N Ν τότε η εκτίµηση λέγεται ότι είναι ασυµπτωτικά unbiased. Γενικά είναι επιθυµητό ένας εκτιµητής να είναι είτε unbiased είτε ασυµπτωτικά unbiased. Παρόλα αυτά το bias όπως θα φανεί και στο ακόλουθο παράδειγµα δεν είναι το µοναδικό σηµαντικό στατιστικό µέτρο. Παράδειγµα: An Unbiased Estimator Έστω x µια ΤΜ ορισµένη στο πείραµα µε το ρίξιµο κέρµατος µε x = 1 όταν έρθει κεφαλή και x = -1 όταν έρθουν γράµµατα. Αν το κέρµα δεν είναι δίκαιο έτσι ώστε η πιθανότητα να φέρει κεφαλή είναι και η πιθανότητα να φέρει γράµµατα είναι, τότε η µέση τιµή του x θα είναι: Ας υποθέσουµε ότι η τιµή του είναι άγνωστη και ότι η µέση τιµή του x πρέπει να εκτιµηθεί. Ρίχνοντας το κέρµα Ν φορές και δηλώνοντας τις τιµές που προκύπτουν για την ΤΜ x ως, µπορούµε να θεωρήσουµε τον ακόλουθο εκτιµητή για το, Αφού η αναµενόµενη τιµή του είναι: τότε ο εκτιµητής αυτός είναι unbiased. Παρόλα αυτά είναι προφανές ότι ο δεν είναι πολύ καλός εκτιµητής της µέσης τιµής. Ο λόγος είναι ότι η εκτίµηση είτε θα είναι ίση µε ένα µε πιθανότητα, είτε θα είναι ίση µε µείον ένα µε πιθανότητα. Συνεπώς η ακρίβεια της εκτίµησης δεν βελτιώνεται όσο αυξάνεται ο αριθµός των παρατηρήσεων. Μάλιστα παρατηρήστε ότι η διακύµανση της εκτίµησης: δεν µειώνεται µε το Ν. Προκειµένου η εκτίµηση µιας παραµέτρου να συγκλίνει κατά κάποιο τρόπο στην πραγµατική τιµή της είναι απαραίτητο η διακύµανση της εκτίµησης να τείνει στο µηδέν όσο ο αριθµός των παρατηρήσεων τείνει στο άπειρο: Αν είναι unbiased,, προκύπτει συνεπώς από την ανισότητα Tchebycheff ότι για κάθε Συνεπώς, αν η διακύµανση τείνει στο µηδέν όσο το, τότε η πιθανότητα ότι διαφέρει µε περισσότερο από σε σχέση µε την πραγµατική τιµή θα τείνει στο µηδέν. Σε αυτή την περίπτωση το λέγεται ότι συγκλίνει στο θ µε πιθανότητα 1. Μια άλλη µορφή σύγκλισης που είναι πιο δυνατή από την σύγκλιση µε πιθανότητα ένα είναι η µέση τετραγωνική σύγκλιση (mean-square convergence). Μια εκτίµηση λέγεται ότι συγκλίνει στην πραγµατική τιµή µε την έννοια του µέσου τετραγώνου αν: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 10

11 ( Παρατηρήστε ότι για έναν unbiased εκτιµητή αυτό είναι ισοδύναµο µε την συνθήκη που δίνεται στην εξίσωση (4) ότι η διακύµανση της εκτίµησης τείνει στο µηδέν. Τέλος µια εκτίµηση λέγεται ότι είναι συνεπής (consistent) αν συγκλίνει µε κάποια έννοια στην πραγµατική τιµή της παραµέτρου. Ανάλογα µε την µορφή σύγκλισης που θα χρησιµοποιηθεί µπορούµε να εισαγάγουµε διαφορετικούς ορισµούς της συνέπειας. Ένας ορισµός που θα ακολουθήσουµε στο µάθηµα είναι ο ακόλουθος. Μια εκτίµηση λέγεται συνεπής αν είναι ασυµπτωτικά unbiased και έχει διακύµανση που τείνει στο µηδέν όσο το N τείνει στο άπειρο. Παράδειγµα: The Sample Mean Έστω x µια ΤΜ µε µέσο και διακύµανση. Αν µας δοθούν N ασυσχέτιστες παρατηρήσεις του x ορισµένες ως, ας υποθέσουµε ότι ένας εκτιµητής του έχει την ακόλουθη µορφή: Αυτή η εκτίµηση είναι γνωστή ως ο δειγµατικός µέσος και έχει την ακόλουθη αναµενόµενη τιµή: Συνεπώς ο δειγµατικός µέσος είναι ένας unbiased εκτιµητής. Επιπλέον η διακύµανση της εκτίµησης είναι: Αφού η διακύµανση τείνει στο µηδέν όσο το εκτιµητής., ο δειγµατικός µέσος είναι ένας συνεπής (consistent) ΤΥΧΑΙΕΣ ΙΑ ΙΚΑΣΙΕΣ Θα αναφερθούµε τώρα στις διακριτού χρόνου τυχαίες διαδικασίες οι οποίες είναι µια ακολουθία τυχαίων µεταβλητών µε δείκτες. Γνωρίζοντας λοιπόν τις βασικές αρχές για τις τυχαίες µεταβλητές η αναγωγή στις τυχαίες διαδικασίες γίνεται σχετικά απλά. Ορισµοί Όπως µια τυχαία µεταβλητή αποτελεί µια αντιστοίχηση από τον δειγµατοχώρο ενός πειράµατος σε ένα σύνολο πραγµατικών ή µιγαδικών αριθµών, µια διακριτού χρόνου τυχαία διαδικασία είναι µια αντιστοιχία από τον δειγµατοχώρο Ω σε µια συλλογή (ensemble) σηµάτων διακριτού χρόνου x(n). Στο παρακάτω σχήµα απεικονίζεται αυτή η αντιστοιχία. ηλαδή η διακριτού χρόνου τυχαία διαδικασία είναι στην πραγµατικότητα µια συλλογή σηµάτων διακριτού χρόνου. Ένας άλλος τρόπος, πιο χρήσιµος, είναι να παραστήσουµε τυχαίες διαδικασίες είναι ως ακολουθία τυχαίων µεταβλητών µε βάση κάποιο δείκτη: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 11

12 Ένα απλό παράδειγµα τυχαίας διαδικασίας διακριτού χρόνου είναι το ακόλουθο. Θεωρήστε το πείραµα µε το ρίξιµο ενός δίκαιου ζαριού και έστω ότι το αποτέλεσµα του πειράµατος αντιστοιχεί σε µια τυχαία µεταβλητή Α. ηλαδή η ΤΜ Α θα παίρνει τιµές από 1-6 µε ίση πιθανότητα. Αν θεωρήσουµε το σήµα: τότε µια τυχαία διαδικασία έχει προκύψει που αποτελείται από τη συλλογή των έξι διαφορετικών και ισοπίθανων σηµάτων διακριτού-χρόνου. Μια πιο πολύπλοκη διαδικασία µπορεί να κατασκευαστεί θεωρώντας το πείραµα της επαναλαµβανόµενης ρίψης ενός δίκαιου κέρµατος. Θέτοντας την τιµή του x(n) στη χρονική στιγµή n ίση µε 1 για κεφαλή και -1 για γράµµατα τότε η ακολουθία x(n) γίνεται διακριτού-χρόνου τυχαία διαδικασία αποτελούµενη από την τυχαία ακολουθία 1 και -1. Όταν το ρίξιµο του κέρµατος στην χρονική στιγµή n δεν επηρεάζει µε κανένα τρόπο το αποτέλεσµα της ρίψης του κέρµατος σε άλλες χρονικές στιγµές τότε το x(n) θα λέγεται διαδικασία Bernoulli. Ένα παράδειγµα διαδικασίας Bernoulli φαίνεται στο διάγραµµα (α) της παρακάτω εικόνας. Από µία τυχαία διαδικασία x (n), µπορούν να δηµιουργηθούν και άλλες τυχαίες διαδικασίες µετασχηµατίζοντας την x (n) µε βάση κάποια µαθηµατικό τελεστή. Ένας τέτοιος χρήσιµος µετασχηµατισµός είναι το γραµµικό φίλτρο. Για παράδειγµα, αν εφαρµόσουµε στην παραπάνω διαδικασία Bernoulli το πρώτης-τάξης αναδροµικό φίλτρο που ορίζεται από την ακόλουθη εξίσωση διαφορών παράγεται µια νέα διαδικασία της οποίας το διάγραµµα φαίνεται στην παραπάνω εικόνα (b). Σαν τελευταίο παράδειγµα διακριτού-χρόνου τυχαίας διαδικασίας ας θεωρήσουµε το πείραµα της ρουλέτας άπειρης ανάλυση που µπορεί να φέρει οποιονδήποτε αριθµό µε ίση πιθανότητα στο διάστηµα [0, 1]. Αν ο αριθµός που προκύπτει µε ένα γύρισµα της ρουλέτας εκχωρείτε στην τυχαία µεταβλητή x, τότε η µεταβλητή αυτή µπορεί να αναπτυχθεί µε µια άπειρη δυαδική ακολουθία ως εξής: όπου x (n) είναι ίσο είτε µε ένα είτε µε µηδέν για όλα τα n 0. Η ακολουθία των δυαδικών συνιστωσών x(n), σχηµατίζει µια διακριτού-χρόνου τυχαία διαδικασία. Όπως είπαµε η διακριτού χρόνου τυχαία διαδικασία είναι µια συλλογή τυχαίων µεταβλητών µε βάση κάποιο δείκτη. Συγκεκριµένα για Ω και άρα για κάθε γεγονός υπάρχει µια αντίστοιχη τιµή που αποτελεί τυχαία διαδικασία και η οποία έχει κάποια συνάρτηση κατανοµής πιθανότητας (cdf) ορισµένη ως: και pdf: Προκειµένου να σχηµατίσουµε έναν πλήρη στατιστικά χαρακτηρισµό της τυχαίας διαδικασίας (Τ ) πέρα από την πρώτης-τάξης συναρτήσεις (cdf και pdf) θα πρέπει να ορίσουµε και τις joint cdf και pdf οι οποίες ορίζουν πως σχετίζονται οι τυχαίες µεταβλητές της Τ. Συγκεκριµένα η joint cdf θα είναι: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 12

13 για κάθε συλλογή ΤΜ Ανάλογα µε τη µορφή των από κοινού (joint) συναρτήσεων (cdf, pdf) µπορούν να δηµιουργηθούν σηµαντικά διαφορετικές Τ. Για παράδειγµα, θεωρήστε την Τ που σχηµατίζεται από µια ακολουθία Gaussian ΤΜ x(n). Αν οι ΤΜ x(n) είναι ασυσχέτιστες τότε η διαδικασία είναι γνωστή ως λευκός Γκαουσιανός θόρυβος (white Gaussian noise) και η µορφή που έχει είναι µιας πολύ τυχαίας ακολουθίας, µε µορφή θορύβου. Από την άλλη µεριά αν θεωρήσουµε ότι x(n)=a όπου a είναι µια Gaussian τυχαία µεταβλητή, τότε όλες οι τυχαίες µεταβλητές στη συλλογή θα είναι ίσες µε µια σταθερά για όλα τα n. Παρατηρούµε ότι παρότι οι δύο διαδικασίες που περιγράψαµε έχουν τα ίδια first-order statistics διαφέρουν σηµαντικά και αυτό οφείλεται στις διαφορές που υπάρχουν στην pdf µεγαλύτερης τάξης. Ensemble Averages (Μέσοι Συνόλου) Αφού η τυχαία διαδικασία είναι ακολουθία τυχαίων µεταβλητών µπορούµε να υπολογίσουµε το µέσο όρο για κάθε µια τυχαία µεταβλητή και να δηµιουργήσουµε την παρακάτω αιτιοκρατική ακολουθία: η οποία είναι γνωστή ως ο µέσος όρος (mean) της διαδικασίας. Με παρόµοιο τρόπο ορίζουµε την διακύµανση (variance) της διαδικασίας: Τα παραπάνω πρώτης τάξης στατιστικά µεγέθη αποτελούν τους µέσους συνόλου (ensemble averages) και γενικά εξαρτώνται και τα δύο από την τιµή του n. ύο πρόσθετοι µέσοι συνόλου που είναι πολύ σηµαντικοί στις τυχαίες διαδικασίες είναι η αυτοδιακύµανση (autocovariance): και η αυτοσυσχέτιση (autocorrelation): οι οποίες σχετίζουν τις τυχαίες µεταβλητές x(k) και x(l). Παρατηρήστε ότι αν k = l τότε η αυτοδιακύµανσης γίνεται η γνωστή µας διακύµανση: Επίσης από τον ορισµό της αυτοδιακύµανσης προκύπτει ότι η αυτοδιακύµανση σχετίζεται µε την αυτοσυσχέτιση ως εξής: Για τυχαίες διαδικασίες µηδενικού µέσου η αυτοσυσχέτιση και η αυτοδιακύµανση είναι ίσες. Χωρίς να χάνουµε την γενικότητα µπορούµε να θεωρούµε τυχαίες διαδικασίες µε µηδενικό µέσο οπότε η αυτοδιακύµανση και η αυτοσυσχέτιση θα ταυτίζονται ως µεγέθη. Η υπόθεση αυτή προκύπτει από την παρατήρηση ότι αν για κάθε Τ x(n) µε µή µηδενικό µέσο µπορούµε να δηµιουργήσουµε µια Τ µε µηδενικό µέσο y(n) κάνοντας την ακόλουθη απλή αφαίρεση: Όπως και στην περίπτωση των ΤΜ η αυτοσυσχέτιση και η αυτοδιακύµανση µας παρέχουν πληροφορία σχετικά µε την γραµµική εξάρτηση µεταξύ δύο τυχαίων µεταβλητών. Για παράδειγµα αν για, τότε οι τυχαίες µεταβλητές x(k) και x(l) είναι ασυσχέτιστες και άρα η γνώση που έχουµε για την µία δεν µας βοηθάει στην εκτίµηση της άλλης µε βάση για παράδειγµα κάποιο γραµµικό εκτιµητή. Παράδειγµα 1 Η Αρµονική ιαδικασία Μια σηµαντική Τ που συναντάται στην επεξεργασία σήµατος σε πολλές εφαρµογές όπως στα radar και sonar είναι η αρµονική διαδικασία. Ένα παράδειγµα τέτοιας πραγµατικής διαδικασίας είναι το ηµιτονοειδές µε τυχαία διαφορά φάσης που ορίζεται ως εξής: όπου A και είναι σταθερές και είναι ΤΜ οµοιόµορφα κατανεµηµένη στο διάστηµα έως. Άρα η pdf για το είναι: j Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 13

14 1 Η µέση τιµή της διαδικασίας: µπορεί να υπολογιστεί ως ακολούθως: Το παραπάνω µας δείχνει ότι η x(n) είναι διαδικασία µηδενικού µέσου. Με παρόµοιο τρόπο υπολογίζουµε την αυτοσυσχέτιση : και χρησιµοποιώντας την τριγωνοµετρική ιδιότητα: βγάζουµε τελικά: Στην παραπάνω εξίσωση ο πρώτος όρος είναι η αναµενόµενη τιµή µιας σταθεράς, ενώ ο δεύτερος όρος είναι ίσος µε το µηδέν. Συνεπώς: Ως άλλο παράδειγµα ας θεωρήσουµε τη µιγαδική αρµονική διαδικασία: όπου φ όπως και πριν είναι µια ΤΜ οµοιόµορφα κατανεµηµένη στο διάστηµα [, ]. Ο µέσος όρος της διαδικασίας είναι µηδέν: και η αυτοσυσχέτιση θα είναι: Παρατηρήστε ότι και για τις δύο αρµονικές διαδικασίες η µέση τιµή είναι σταθερά και η αυτοδιακύµανση είναι συνάρτηση µόνο της διαφοράς µεταξύ k και l. Αυτό σηµαίνει ότι τα πρώτης και δεύτερης τάξης statistics δεν εξαρτώνται από κάποια απόλυτη τιµή χρονικής στιγµής, δηλαδή η µέση τιµή και η αυτοδιακύµανση δεν αλλάζουν αν η διαδικασία µετατοπιστεί χρονικά. Αυτές οι διαδικασίες όπως θα δούµε αναλυτικότερα παρακάτω λέγονται στάσιµες υπό την ευρεία έννοια (wide-sense stationary). Οι ακολουθίες αυτοσυσχέτισης και αυτοδιακύµανσης παρέχουν πληροφόρηση για την στατιστική σχέση µεταξύ δυο τυχαίων µεταβλητών που προκύπτουν από την ίδια διαδικασία. Σε εφαρµογές όµως στις οποίες ορίζονται περισσότερες της µίας τυχαίας διαδικασίας είναι συχνά ενδιαφέρον να ορίσουµε την διακύµανση ή συσχέτιση µεταξύ µιας τυχαίας µεταβλητής x(k), από µια τυχαία διαδικασία και µιας τυχαίας µεταβλητής y(l) από µια άλλη. Συγκεκριµένα για δύο τυχαίες διαδικασίες x(n) και y(n), η cross-covariance ορίζεται ως: και η cross-correlation ως: Οι συναρτήσεις αυτές ικανοποιούν την ακόλουθη σχέση: Όπως µε τις τυχαίες µεταβλητές λέµε ότι είναι ασυσχέτιστες όταν διαδικασίες x(n) και y(l) λέγονται ασυσχέτιστες αν έτσι και δύο τυχαίες για όλα τα k και l ή ισοδύναµα ύο τυχαίες διαδικασίες x(n) και y(n) λέγονται ορθογώνιες (orthogonal) αν η cross-correlation είναι µηδέν: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 14

15 Παρότι οι ορθογώνιες τυχαίες διαδικασίες δεν είναι απαραίτητα ασυσχέτιστες, οι µηδενικού µέσου και ασυσχέτιστες τυχαίες διαδικασίες είναι πάντα ορθογώνιες. Παράδειγµα 2 Cross-correlation Θεωρήστε το ζεύγος των διαδικασιών, x(n) και y(n), όπου η y(n) σχετίζεται µε την x(n) ως εξής: Η cross-correlation µεταξύ των x(n) και y(n) θα είναι: Αν τώρα θεωρήσουµε ότι η Τ y (n) είναι ίση µε την συνέλιξη της x (n) µε µία αιτιοκρατική ακολουθία h(n), όπως για παράδειγµα η απόκριση µοναδιαίου δείγµατος ενός γραµµικού χρονικά αναλλοίωτου φίλτρου: τότε η cross-correlation µεταξύ των x(n) και y(n) θα είναι: Στην πράξη, κάθε συσκευή ανάγνωσης δεδοµένων, τόσο θόρυβος όσο και σφάλµατα µέτρησης εισάγονται συνήθως στα δεδοµένα. Σε πολλές εφαρµογές αυτός ο θόρυβος µοντελοποιείται ως προσθετικός έτσι ώστε αν x(n) δηλώνει το «σήµα» και w(n) το «θόρυβο» το τελικό σήµα θα είναι: Συχνά, αυτός ο προσθετικός θόρυβος θεωρείται ότι έχει µηδενική µέση τιµή και είναι ασυσχέτιστος µε το σήµα. Σε αυτή την περίπτωση η αυτοσυσχέτιση του παρατηρούµενου σήµατος, y (n), θα είναι το άθροισµα των αυτοσυσχετίσεων των x(n) και w(n). Συγκεκριµένα σηµειώστε ότι αφού: αν x(n) και w(n) είναι ασυσχέτιστα, τότε και συνεπώς: Αυτό το θεµελιώδες αποτέλεσµα συνοψίζεται στην ακόλουθη ιδιότητα: Ιδιότητα: Αν δύο τυχαίες διαδικασίες x(n) και y(n) είναι ασυσχέτιστες τότε η αυτοσυσχέτιση του αθροίσµατος: είναι ίσο µε το άθροισµα των αυτοσυσχετίσεων: Παράδειγµα 3: Αυτοσυσχέτιση ενός αθροίσµατος διαδικασιών Ας θεωρήσουµε ένα άθροισµα από M ηµιτονοειδή σε προσθετικό θόρυβο όπου και είναι σταθερές και είναι ασυσχέτιστες τυχαίες µεταβλητές οµοιόµορφα κατανεµηµένες στο διάστηµα [-π,π]. Αφού οι ΤΜ είναι ασυσχέτιστες τότε και η κάθε ηµιτονοειδής διαδικασία θα είναι ασυσχέτιστη µε τις άλλες. Αν επιπλέον θεωρήσουµε ότι και ο θόρυβος είναι ασυσχέτιστος µε τα ηµιτονοειδή τότε (χρησιµοποιώντας το αποτέλεσµα από το παράεδειγµα 1) θα ισχύει: όπου είναι η αυτοσυσχέτιση του προσθετικού θορύβου. Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 15

16 Gaussian ιαδικασίες Αν είναι ένα διάνυσµα από n πραγµατικές τυχαίες µεταβλητές, τότε το x λέγεται Gaussian τυχαίο διάνυσµα και οι τυχαίες µεταβλητές λέγονται από κοινού (jointly) Gaussian αν η από κοινού pdf των n τυχαίων µεταβλητών έχει την ακόλουθη µορφή: όπου είναι ένα διάνυσµα που περιέχει τους µέσους των, είναι ένας συµµετρικός θετικά ορισµένος (positive definite) πίνακας του οποίου τα στοιχεία είναι οι συνδιακυµάνσεις µεταξύ και, και είναι η ορίζουσα του πίνακα συνδιακύµανσης. Μια διακριτού χρόνου τυχαία διαδικασία x (n) λέγεται Gaussian αν κάθε πεπερασµένη συλλογή δειγµάτων του x(n) είναι jointly Gaussian. Παρατηρήστε ότι µια Gaussian τυχαία διαδικασία ορίζεται πλήρως εφόσον το διάνυσµα των µέσων και ο πίνακας της συνδιακύµανσης είναι γνωστά. Οι Gaussian διαδικασίες έχουν µεγάλο ενδιαφέρον αφού σε πολλές πραγµατικές εφαρµογές οι τυχαίες διαδικασίες είναι είτε Gaussian, είτε κατά προσέγγιση Gaussian ως αποτέλεσµα του Central Limit theorem. Στάσιµες ιαδικασίες Σε πολλές εφαρµογές επεξεργασίας σήµατος, τα στατιστικά ή οι µέσοι συνόλου µιας τυχαίας διαδικασίας είναι συχνά ανεξάρτητες του χρόνου. Για παράδειγµα ο θόρυβος κβαντισµού που προέρχεται από σφάλµατα στρογγυλοποίησης σε ένα fixed point digital signal processor έχουν τυπικά σταθερό µέσο και διακύµανση όποτε το σήµα εισόδου είναι επαρκώς σύνθετο. Επιπλέον συχνά θεωρούµε ότι ο θόρυβος κβαντισµού έχει πρώτης και δεύτερης τάξης pdf ανεξάρτητες του χρόνου. Αυτές οι συνθήκες αποτελούν στατιστικά χρονικά αναλλοίωτα παραδείγµατα ή στάσιµότητας (stationarity). Υπάρχουν διαφορετικοί τύποι στασιµότητας. Όπως θα δούµε η υπόθεση της στασιµότητας είναι σηµαντική για την εκτίµηση µέσων συνόλου (ensemble averages). Αν η πρώτης τάξης pdf µιας τυχαίας διαδικασίας x (n) είναι ανεξάρτητη του χρόνου, δηλαδή: για όλα τα k, τότε η διαδικασία λέγεται στάσιµη πρώτης τάξης (first-order stationary). Για µια πρώτης τάξης στάσιµη διαδικασία τα πρώτης τάξης statistics θα είναι ανεξάρτητα του χρόνου. Για παράδειγµα ο µέσος της διαδικασίας θα είναι σταθερός: και το ίδιο θα ισχύει και για την διακύµανση Με παρόµοια λογική, µια διαδικασία θα λέγεται δεύτερης τάξης στάσιµη (second-order stationary) αν η δεύτερης τάξης joint pdf εξαρτάται µόνο από τη διαφορά (n 1 -n 2 ), και όχι από τις ξεχωριστές τιµές n 1 και n 2. Ισοδύναµα, η διαδικασία x(n) θα είναι δεύτερης τάξης στάσιµη αν για κάθε k, η διαδικασίες x(n) και x(n + k) έχουν την ίδια δεύτερης τάξης joint pdf. Αν µια διαδικασία είναι δεύτερης τάξης στάσιµη θα είναι και πρώτης τάξης στάσιµη. Επιπλέον οι δεύτερης τάξης στάσιµες διαδικασίες έχουν δεύτερης τάξης statistics που είναι αναλλοίωτα σε µια χρονική µετατόπιση της διαδικασίας. Για παράδειγµα η ακολουθία αυτοσυσχέτισης έχει την ιδιότητα: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 16

17 Συνεπώς η συσχέτιση µεταξύ των τυχαίων µεταβλητών x(k) και x(l) εξαρτάται µόνο από την διαφορά k-l, διαχωρίζοντας τις δύο τυχαίες µεταβλητές στο χρόνο: Η διαφορά αυτή (k-l), ονοµάζεται καθυστέρηση (lag), και µπορούµε µε µια µικρή διαφοροποίηση στη σηµειογραφία να γράψουµε την συσχέτιση ως συνάρτηση της καθυστέρησης: Συνεχίζοντας µε παρόµοιο τρόπο σε µεγαλύτερης τάξης joint pdf, µια διαδικασία λέγεται στάσιµη τάξης L αν οι διαδικασίες x(n) και x(n + k) έχουν την ίδια L-τάξης joint pdf. Τέλος µια διαδικασία που είναι στάσιµη για όλες τις τάξεις L > 0 λέγεται στάσιµη υπό την ακριβή έννοια (stationary in the strict sense) ή SSS. Επειδή στο µάθηµα θα επικεντρωθούµε περισσότερο στον µέσο και την αυτοσυσχέτιση µιας διαδικασίας και όχι τόσο στην pdf θα µας απασχολήσει µια άλλη µορφή στασιµότητας γνωστή ως στασιµότητα υπό την ευρεία έννοια wide-sense stationary (WSS), η οποία ορίζεται ως εξής: Wide Sense Stationarity. Μια τυχαία διαδικασία x (n) θα λέγεται ότι είναι wide-sense stationary αν ισχύουν οι ακόλουθες τρεις συνθήκες: 1. Ο µέσος της διαδικασίας είναι σταθερά: 2. Η αυτοσυσχέτιση εξαρτάται µόνο από την διαφορά, k-l. 3. Η διακύµανση της διαδικασίας είναι πεπερασµένη Αφού οι περιορισµοί αφορούν τους µέσους συνόλου αντί της pdf η στασιµότητα υπό την ευρεία έννοια είναι ασθενέστερος περιορισµός από την στασιµότητα δεύτερης τάξης. Παρόλα αυτά στην περίπτωση µιας Gaussian διαδικασίας, η WSS είναι ισοδύναµη µε την SSS. Αυτό είναι συνέπεια του γεγονότος ότι µια Gaussian τυχαία διαδικασία ορίζεται πλήρως µε τον µέσο και την διακύµανση. Μερικά παραδείγµατα WSS τυχαίων διαδικασιών περιλαµβάνουν την διαδικασία Bernoulli και το ηµιτονοειδές µε τυχαία διαφορά φάσης που είδαµε πιο πριν. Ένα παράδειγµα διαδικασίας που δεν είναι WSS είναι η συνηµιτονοειδής διαδικασία της οποίας το πλάτος είναι τυχαία µεταβλητή µε τιµές από το ρίξιµο του ζαριού. Στην περίπτωση δύο ή περισσότερων διαδικασιών παρόµοιοι ορισµοί ισχύουν για από κοινού στασιµότητα joint stationarity. Για παράδειγµα δύο διαδικασίες x(n) και y(n) λέγονται jointly wide-sense stationary αν x(n) και y(n) είναι WSS και η cross-correlation r xy (k,l) εξαρτάται µόνο από την διαφορά k-l : Και πάλι για jointly WSS διαδικασίες, θα γράψουµε την cross-correlation ως συνάρτηση µόνο της διαφοράς lag, k-l, ως εξής: Η αυτοσυσχέτιση µιας WSS διαδικασίας έχει ένα σύνολο χρήσιµων και σηµαντικών ιδιοτήτων µερικές από τις οποίας είναι: Ιδιότητα 1 Συµµετρία. Η ακολουθία αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας είναι συζηγής συµµετρική συνάρτηση του k, Για µια πραγµατική διαδικασία, η ακολουθία αυτοσυσχέτισης είναι συµµετρική Η ιδιότητα προκύπτει απευθείας από τον ορισµό της συνάρτησης αυτοσυσχέτισης: Ιδιότητα 2 Mean-square value. Η ακολουθία αυτοσυσχέτισης µιας WSS διαδικασίας µε καθυστέρηση (lag) k=0 είναι ίση µε τη µέση τετραγωνική τιµή µιας διαδικασίας: Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 17

18 Ιδιότητα 3 Maximum value. Το πλάτος της ακολουθίας αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας µε καθυστέρηση k είναι άνω φραγµένη από την τιµή της µε καθυστέρηση k = 0, Ιδιότητα 4 Περιοδικότητα. Αν η ακολουθία αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας είναι τέτοια ώστε: για κάποιο, τότε είναι περιοδική µε περίοδο. Επιπλέον, και x(n) λέγεται ότι είναι mean-square periodic. Παράδειγµα περιοδικής διαδικασίας είναι η ηµιτονοειδής διαδικασία µε την τυχαία µετατόπιση φάσης που είδαµε στο παράδειγµα 1. Με x ( n) = Acos( nω 0 + φ) η ακολουθία αυτοσυσχέτισης είναι 1 2 r x ( k) = A cos( kω0 ). Συνεπώς αν 0 = 2π / Ν 2 x(n) είναι mean-squared periodic. ω τότε (k) είναι περιοδική µε περίοδο Ν και η Τ r x Πίνακες Αυτοδιακύµανσης και Αυτοσυσχέτισης Οι ακολουθίες αυτοδιακύµανσης και αυτοσυσχέτισης συχνά αναπαριστώνται υπό µορφή πινάκων. Για παράδειγµα, αν είναι ένα διάνυσµα µε p + 1 τιµές µιας διαδικασίας x(n), τότε το εξωτερικό γινόµενο: (1) είναι ένας πίνακας (p + 1) x (p + 1). Αν η Τ x(n) είναι wide-sense stationary, παίρνοντας την αναµενόµενη τιµή και χρησιµοποιώντας την Hermitian συµµετρία της ακολουθίας αυτοσυσχέτισης,, οδηγούµαστε στον ακόλουθο (p + 1) x (p + 1) πίνακα µε τιµές αυτοσυσχέτισης: (2) ο οποίος ονοµάζεται πίνακας αυτοσυσχέτισης autocorrelation matrix. Με παρόµοιο τρόπο σχηµατίζοντας το εξωτερικό γινόµενο του διανύσµατος µε τον εαυτό του και παίρνοντας την αναµενόµενη τιµή του µας οδηγεί σε ένα (p + 1) x (p + 1) πίνακα ο οποίος αναφέρεται ως πίνακας συνδιακύµανσης: Η σχέση µεταξύ του και είναι: όπου είναι ένα διάνυσµα µήκους (p+1) ο οποίος περιέχει τη µέση τιµή της διαδικασίας (Επειδή η διαδικασία είναι WSS η µέση τιµή της διαδικασίας θα είναι σταθερά. Για διαδικασίες µηδενικού µέσου οι πίνακες αυτοδιακύµανσης και αυτοσυσχέτισης είναι ίσοι. Όπως είπαµε και νωρίτερα, χωρίς απώλεια γενικότητας θα θεωρούµε ότι όλες οι τυχαίες διαδικασίες έχουν µηδενικούς µέσους και άρα ο πίνακας συναδιακύµανσης θα εµφανίζεται σπάνια. Ο πίνακας αυτοσυσχέτισης έχει µερικές πολύ σηµαντικές ιδιότητες. Το πρώτο πράγµα που παρατηρούµε είναι ότι ο πίνακας αυτοσυσχέτισης µιας WSS διαδικασίας έχει ιδιαίτερη δοµή. Πέρα από το ότι είναι Hermitian, όλοι οι όροι κατά µήκος των διαγωνίων είναι ίσοι. Αυτό σηµαίνει ότι ο είναι Hermitian Toeplitz πίνακας. Στην περίπτωση µιας τυχαίας διαδικασίας µε πραγµατικές τιµές ο πίνακας θα είναι συµµετρικός Toeplitz πίνακας. Οπότε θα ισχύει η ακόλουθη ιδιότητα για τον Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 18

19 Ιδιότητα 1. Ο πίνακας αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας x(n) είναι ένας Hermitian Toeplitz πίνακας, I Το αντίστροφο παρόλα αυτά δεν είναι αληθές δεν αναπαριστούν όλοι οι Hermitian Toeplitz πίνακες έγκυρους πίνακες αυτοσυσχέτισης. Για παράδειγµα αφού, τότε οι όροι κατά µήκος της κύριας διαγωνίου του θα πρέπει να είναι µη αρνητικοί. Συνεπώς: δεν µπορεί να είναι πίνακας αυτοσυσχέτισης µιας WSS διαδικασίας. Παρόλα αυτά το να είναι θετικοί οι όροι κατά µήκος της κύριας διαγωνίου δεν είναι επαρκής συνθήκη για να εγγυηθεί ότι ένας Hermitian Toeplitz είναι έγκυρος πίνακας αυτοσυσχέτισης. Για παράδειγµα: δεν αντιστοιχεί σε έγκυρο πίνακα αυτοσυσχέτισης. Αυτό που απαιτείται είναι ότι ο είναι µη αρνητικός ορισµένος (nonnegative definite) πίνακας. θα πρέπει να Ιδιότητα 2. Ο πίνακας αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας είναι µη αρνητικά ορισµένος (nonnegative definite). Για να αποδείξουµε την ιδιότητα θα πρέπει να δείξουµε ότι αν είναι πίνακας αυτοσυσχέτισης τότε: (3) για κάθε διάνυσµα a. Αφού, µπορούµε να γράψουµε την εξίσωση (3) ως εξής: Συνεπώς: (4) και αφού για κάθε a, θα ισχύει: και άρα ισχύει η ιδιότητα. Η επόµενη ιδιότητα είναι αποτέλεσµα του γεγονότος ότι ο πίνακας αυτοσυσχέτισης είναι Hermitian και nonnegative definite. Συγκεκριµένα οι ιδιοτιµές ενός Hermitian πίνακα είναι πραγµατικές και για έναν nonnegative definite πίνακα, θα είναι µη αρνητικές και οι ιδιοτιµές. Αυτό µας οδηγεί στην ακόλουθη ιδιότητα: Ιδιότητα 3. Οι ιδιοτιµές, λκ του πίνακα αυτοσυσχέτισης µιας WSS τυχαίας διαδικασίας είναι πραγµατικές και µη αρνητικές Παράδειγµα 5 Autocorrelation Matrix Όπως είδαµε στο παράδειγµα 1, οι ακολουθία αυτοσυσχετίσης ενός ηµιτονοειδούς τυχαίας φάσης είναι: Συνεπώς ο 2 x 2 πίνακας αυτοσυσχέτισης είναι: Οι ιδιοτιµές του θα είναι: και η ορίζουσα του θα είναι: Συνεπώς ο είναι µη αρνητικός ορισµένος και αν, τότε θα είναι θετικά ορισµένος. Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 19

20 Σαν δεύτερο παράδειγµα θεωρήστε την µιγαδική διαδικασία που αποτελείται από ένα άθροισµα δύο µιγαδικών εκθετικών: όπου A,, και είναι σταθερές και και είναι ασυσχέτιστες τυχαίες µεταβλητές οµοιόµορφα κατανεµηµένες στο διάστηµα [-π,π]. Όπως είδαµε στο παράδειγµα 1 η αυτοσυσχέτιση ενός µιγαδικού εκθετικού είναι Αφού y(n) είναι άθροισµα δύο ασυσχέτιστων διαδικασιών η ακολουθία αυτοσυσχέτισης του y(n) θα είναι: και ο 2 x 2 πίνακας αυτοσυσχέτισης θα είναι: Οι ιδιοτιµές του είναι: Παρατηρήστε ότι αν είδαµε πιο πρίν., τότε το παραπάνω είναι ίδιο µε το ηµιτονοειδές τυχαίας φάσης που Στατιστική Επεξεργασία Σήµατος για Τηλεπικοινωνίες 20

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

Στοχαστικές Διαδικασίες (έμφαση στις σ.δ. διακριτού χρόνου)

Στοχαστικές Διαδικασίες (έμφαση στις σ.δ. διακριτού χρόνου) Στοχαστικές Διαδικασίες (έμφαση στις σ.δ. διακριτού χρόνου) Εισαγωγικές Έννοιες για το μάθημα Ψηφιακές Τηλεπικοινωνίες Τυχαίες Μεταβλητές: Ορισμοί Θεωρούμε το πείραμα της ρίψης ενός νομίσματος. Το πείραμα

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Η Έννοια της τυχαίας ιαδικασίας

Η Έννοια της τυχαίας ιαδικασίας Η Έννοια της τυχαίας ιαδικασίας Η έννοια της τυχαίας διαδικασίας, βασίζεται στην επέκταση της έννοιας της τυχαίας µεταβλητής, ώστε να συµπεριλάβει το χρόνο. Σεκάθεαποτέλεσµα s k ενόςπειράµατοςτύχης αντιστοιχούµε,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Εισαγωγή στις στοχαστικές διαδικασίες

Εισαγωγή στις στοχαστικές διαδικασίες Κεφάλαιο 2 Εισαγωγή στις στοχαστικές διαδικασίες 2.1 Εισαγωγή Στο κεφάλαιο αυτό κάνουμε μια συνοπτική αναφορά στη θεωρία πιθανοτήτων και στις στοχαστικές διαδικασίες. Το μαθηματικό υπόβαθρο αυτό σχετίζεται

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 3: Τυχαίες Διαδικασίες Διακριτού Χρόνου Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Εισαγωγή στις

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Εκτίµηση Τυχαίων Σηµάτων FIR φίλτρα: Ορίζουµε

Διαβάστε περισσότερα

3.9 Πίνακας συνδιακύμανσης των παραμέτρων

3.9 Πίνακας συνδιακύμανσης των παραμέτρων Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο

Διαβάστε περισσότερα

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών Βιβλιογραφία Ενότητας Benvento []: Κεφάλαιo Widrow [985]:

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

Αναλογικές και Ψηφιακές Επικοινωνίες

Αναλογικές και Ψηφιακές Επικοινωνίες Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (1) Αγγελική Αλεξίου alexiou@unipi.gr 1 Ενότητες Μαθήματος Ενότητα 1 Εισαγωγή Ορισμός Στοχαστικών ανελίξεων Στατιστική Στοχαστικών Διαδικασιών Στασιμότητα Εργοδικότητα Ενότητα 2 Διαδικασίες

Διαβάστε περισσότερα

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ. Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Στα προηγούµενα κεφάλαια ορίσαµε και µελετήσαµε την τ.µ. µε τη ϐοήθεια της πιθανο- ϑεωρίας (κατανοµή, ϱοπές) και της στατιστικής (εκτίµηση, στατιστική υπόθεση). Σ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς

( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ Βασικά αξιώµατα και ιδιότητες της πιθανότητας Σεραφείµ Καραµπογιάς Η αθροιστική συνάρτηση κατανοµής cumulaive diribuio ucio CDF µίας τυχαίας µεταβλητής X ορίζεται

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

1. Εισαγωγή στη Φασµατική εκτίµηση

1. Εισαγωγή στη Φασµατική εκτίµηση 1. Εισαγωγή στη Φασµατική εκτίµηση Γνωρίζουµε ότι η ανάλυση Fourier είναι ένα χρήσιµο εργαλείο για την περιγραφή και ανάλυση διακριτού χρόνου αιτιοκρατικών σηµάτων. Η ανάλυση Fourier παίζει σηµαντικό ρόλο

Διαβάστε περισσότερα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Βασικές έννοιες θεωρίας πιθανοτήτων

Βασικές έννοιες θεωρίας πιθανοτήτων Βασικές έννοιες θεωρίας πιθανοτήτων Ορισµός πιθανότητας Έστω Ω το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος Συµβολίζουµε µε ω τα στοιχεία του Ω Ονοµάζουµε ενδεχόµενο (evet ένα υποσύνολο του Ω Για

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ιαφορική εντροπία Σεραφείµ Καραµπογιάς ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Περιεχόµενα διαλέξεων 2ης εβδοµάδας

Περιεχόµενα διαλέξεων 2ης εβδοµάδας Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα