Μεθοδολογίες παρεµβολής σε DTM.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μεθοδολογίες παρεµβολής σε DTM."

Transcript

1 Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία υπολογισµού των υψοµέτρων µιας επιφάνειας από τις µετρήσεις που έγιναν µέσα στην γειτονική περιοχή ή την γενικότερη περιοχή. Οι περιπτώσεις που χρησιµοποιούµε την παρεµβολή είναι : Μετατροπή µιας επιφάνειας µεγαλύτερης διακριτικής ικανότητας σε µια άλλη επιφάνεια µικρότερης διακριτικής ικανότητας. Η περιοχή ενδιαφέροντος δεν καλύπτεται πλήρως από τα δεδοµένα εδάφους. Μια επιφάνεια αντιπροσωπεύεται από ένα πρότυπο στοιχείων που είναι διαφορετικό από το απαιτούµενο. Για να κατασκευάσουµε το ψηφιακό µοντέλο εδάφους, χρειαζόµαστε την εκτίµηση του υψοµέτρου για κάθε σηµείο του πλέγµατος. Για το να κάνουµε αυτό, θα πρέπει να γνωρίζουµε αν το σηµείο είναι ακριβώς σε ένα σηµείο όπου το στοιχείο δειγµατοληψίας είναι διαθέσιµο, ή µεταξύ των σηµείων δειγµατοληψίας. Στην πρώτη περίπτωση, το υψόµετρο µπορεί να ληφθεί άµεσα από τη βάση δεδοµένων (ή την αρχική παρατήρηση), ενώ στη δεύτερη περίπτωση είναι αναγκαία µια µέθοδος υπολογισµού του υψοµέτρου από τα δεδοµένα των παρατηρήσεων. Σε ένα DTM χρησιµοποιούµε µεθόδους παρεµβολής για τις περιπτώσεις όπου απαιτείται : Υπολογισµός του υψοµέτρου σε τυχαίο σηµείο της επιφάνειας. ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ.

2 Υπολογισµός των υψοµέτρων των κορυφών τετραγωνικού κανάβου από σηµεία γνωστών υψοµέτρων. Προσδιορισµός του υψοµέτρου από υπάρχουσες ισοϋψείς καµπύλες. Υπολογισµός του υψοµέτρου σε νέο τετραγωνικού κάναβο (επανασύσταση). Καµία τεχνική παρεµβολής δεν µπορεί να θεωρηθεί ανώτερη από τις υπόλοιπες και άρα η καταλληλότερη για όλες τις εφαρµογές. Τα κριτήρια µε βάση τα οποία µπορούµε να επιλέξουµε µια µέθοδο παρεµβολής DTM είναι : ο) Ο βαθµός στον οποίο τα τοπικά χαρακτηριστικά γνωρίσµατα πρέπει να ληφθούν υπόψη. ο) Η συνάρτηση παρεµβολής να µπορεί να προσαρµοστεί στον ποικίλο χαρακτήρα της περιοχής. 3ο) Oι αλγόριθµοι παρεµβολής που θα χρησιµοποιήσουµε πρέπει να προσαρµοστούν στο χαρακτήρα των δεδοµένων-παρατηρήσεων (τύπος, ακρίβεια, σηµασία, κ.λπ...) όπως και στη µορφή του ψηφιακού µοντέλου (δηλ. Ορθογωνικός κάναβος κ.τ.λ.). 4ο) Ο επιθυµητός βαθµός ακρίβειας και το υπολογιστικό κόστος (χρόνος επεξεργασίας στον Η/Υ). Γενικά υπάρχουν δυο κατηγορίες τεχνικών για την παρεµβολή υψοµέτρου σηµείων σε µια επιφάνεια από τις αρχικές παρατηρήσεις, η "συνολική προσαρµογή" (Globl Ft) και η "τοπική παρεµβολή" (Locl Ft). Η πρώτη υπολογίζει µια ενιαία συνάρτηση για την περιγραφή µιας επιφάνειας και η οποία καλύπτει ολόκληρη την περιοχή ενώ η δεύτερη υπολογίζει την επιφάνεια στους διαδοχικούς κόµβους του πλέγµατος βασιζόµενη σε µια επιλογή των κοντινότερων σηµείων.. Μέθοδοι συνολικής προσαρµογής (Globl Ft) ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ.

3 Η µέθοδος συνολικής προσαρµογής χρησιµοποιεί µια επιφάνεια παρεµβολής που θεωρούµε ότι προσεγγίζει την φυσική επιφάνεια. Η µέθοδος βασίζεται στον προσδιορισµό ενός πολυωνύµου που θεωρούµε ότι προσεγγίζει βέλτιστα την πραγµατική επιφάνεια µε βάση το κριτήριο των ελαχίστων τετραγώνων. Το πολυώνυµο παρεµβολής µπορεί να επεκταθεί σε οποιοδήποτε επιθυµητό βαθµό, αν και πρακτικά υπάρχουν όρια που εξαρτώνται από τα σφάλµατα λόγω στρογγυλοποίησης και της διακριτικής ικανότητας του πλέγµατος. Οι άγνωστοι συντελεστές υπολογίζονται από την επίλυση ενός συστήµατος γραµµικών εξισώσεων µε την χρήση ελαχίστων τετραγώνων και περιλαµβάνουν τα αθροίσµατα των συντεταγµένων,, και των αρχικών δεδοµένων. Με βάση τους συντελεστές του πολυωνύµου που υπολογίσαµε, στη συνέχεια µπορούµε να υπολογίσουµε το υψόµετρο οποιοδήποτε σηµείου µέσα στην περιοχή του πλέγµατος. Γενικά η παρεµβολή επιφανείας χρησιµοποιείται σε εφαρµογές όπου δεν ενδιαφέρουν οι τοπικές διακυµάνσεις ή η επίδραση τους υπολογίζεται ξεχωριστά µε την χρήση άλλων αλγορίθµων. Υπάρχουν διάφορα µειονεκτήµατα και πλεονεκτήµατα σε µια παρεµβολή επιφάνειας : Πλεονεκτήµατα Παραγωγή µιας συνολικής επιφάνειας Γρήγορος προγραµµατισµός Αποδοτική σε περιπτώσεις οµαλής επιφάνειας Μειονεκτήµατα Η πολυωνυµική επιφάνεια αποτελεί µια απλοποιηµένη µορφή της φυσικής επιφάνειας. εν δίνει καλή ακρίβεια τοπικά. εν δίνει αξιόπιστες τιµές στα άκρα της επιφάνειας. Η επίτευξη καλής ακρίβειας απαιτεί πολυώνυµα µεγάλου βαθµού µε συνέπεια µεγάλο υπολογιστικό κόστος. ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 3

4 ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 4 Για τον υπολογισµό της επιφάνειας παρεµβολής µπορούµε να χρησιµοποιήσουµε µια γραµµική συνάρτηση : ) (, 0 ή πολυώνυµο παρεµβολής δεύτερης τάξεως ) (, ή και µεγαλύτερης τάξεως. Για την περίπτωση όπου χρησιµοποιήσουµε µια γραµµική συνάρτηση παρεµβολής το σύστηµα των εξισώσεων που προκύπτει µε βάση το κριτήριο των ελαχίστων τετράγωνων δίνεται από τις εξισώσεις : ) (, ) (, ) (, M όπου είναι ο αριθµός των σηµείων, και σε µορφή πινάκων : o

5 Παράδειγµα : Έστω ότι θέλουµε να υπολογίσουµε µια επιφάνεια παρεµβολής της µορφής (, ) 0 για το παρακάτω ψηφιακό µοντέλο εδάφους : αν η ισοδιάσταση του κανάβου είναι 0 µ. και θεωρήσουµε σαν αρχή των αξόνων (0,0) το κάτω αριστερό σηµείο του πλέγµατος, στον παρακάτω πίνακα φαίνονται αναλυτικά όλα τα απαραίτητα αθροίσµατα για την δηµιουργία του συστήµατος των γραµµικών εξισώσεων. ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 5

6 Σηµείο 0 0 3,55 0 0, , , , , , , , , , , , , , , , , Σύνολα , και το σύστηµα των εξισώσεων γίνεται : o 3, o 3,556 0, ,00967 συνεπώς το πολυώνυµο παρεµβολής έχει τη µορφή: (, ) 3,556 0, , Μέθοδοι τοπικής παρεµβολής (Locl Ft) Οι µέθοδοι µε επιφάνεια παρεµβολής χρησιµοποιούν εξωτερικές χωρικές δοµές στην παρεµβολή. Αντίθετα οι µέθοδοι τοπικής παρεµβολής χρησιµοποιούν τις πληροφορίες από τα κοντινότερα σηµεία για των υπολογισµό των ενδιάµεσων τιµών και ακολουθούν την παρακάτω λογική :. Καθορισµός της περιοχής ή της γειτονιάς αναζήτησης γύρω από το σηµείο παρεµβολής.. Εύρεση των σηµείων- στοιχείων µέσα σε αυτήν την γειτονιά. ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 6

7 3. Επιλογή του µαθηµατικού προτύπου για να αντιπροσωπεύσει την µορφή πέρα από αυτόν τον περιορισµένο αριθµό σηµείων. Οι µέθοδοι τοπικής παρεµβολής που µπορούµε να χρησιµοποιήσουµε, ανάλογα µε την µορφή των δεδοµένων, στα ψηφιακά µοντέλα είναι: Παρεµβολή σε δεδοµένα ΤΙΝ. Γραµµική Παρεµβολή. Παρεµβολή µε επιφάνεια ης τάξης Παρεµβολή µε επιφάνεια 5 ης τάξης Παρεµβολή σε Ορθογωνικό κάναβο. Παρεµβολή γειτονικού σηµείου. Γραµµική Παρεµβολή. ιγραµµική Παρεµβολή. ικυβική παρεµβολή Παρεµβολή µε χρήση συναρτήσεως βάρους 4. Μέθοδοι τοπικής παρεµβολής µε δεδοµένα από ορθογωνικό κάναβο. 4.. Παρεµβολή γειτονικού σηµείου. Ο αλγόριθµός της παρεµβολής γειτονικού σηµείου αναλύεται στο κεφάλαιο.4. των σηµειώσεων και βασίζεται στην αρχή ότι η τιµή του ενδιάµεσου σηµείου είναι ίση µε την τιµή της ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 7

8 κοντινότερης κορυφής του πλέγµατος εισόδου. Στην πραγµατικότητα δεν εκτελείται καµία πραγµατική παρεµβολή. Η µέθοδος παρεµβολής γειτονικού σηµείου χρησιµοποιείται στις περιπτώσεις όπου δεν θέλουµε να αλλάξουν οι τιµές των στοιχείων εισόδου, δεν χρησιµοποιείται συνήθως για παρεµβολή σε επιφάνεια. 4.. Γραµµική Παρεµβολή. Στην γραµµική παρεµβολή το υψόµετρο του ενδιάµεσου σηµείου προκύπτει από την εφαρµογή της παρεµβολής σε τρία γνωστά σηµεία του κανάβου. Ολόκληρη η περιοχή παρεµβολής υποδιαιρείται στα τρίγωνα και το υψόµετρο υπολογίζεται µε βάση τον αλγόριθµο: Βήµα ο : Έυρεση του κανάβου που βρίσκεται το ενδιάµεσο σηµείο (, ), παίρνουµε τις τέσσερεις κορυφές του πλέγµατος (,, ), (,, ), ( 3, 3, 3 ) και ( 4, 4, 4 ). Βήµα ο : Υπολογισµός των αποστάσεων s και t. s και t όπου, η ισοδιάσταση κατά και αντίστοιχα. Βήµα 3 ο : Προσδιορισµός του τριγώνου µέσα στο οποίο βρίσκεται το σηµείο : αν s t Υπολογισµός του δ 0 αν s > t Βήµα 4 ο : Υπολογισµός του υψοµέτρου από την συνάρτηση : { ( ) s ( ) t} ( ){ ( ) s ( ) t} (, ) δ 3 δ ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 8

9 4.3. ιγραµµική Παρεµβολή. Η µέθοδος της διγραµµικής παρεµβολής αναλύεται στο κεφάλαιο.4. των σηµειώσεων και για τον προσδιορισµό του υψοµέτρου του ενδιάµεσου σηµείου χρησιµοποιεί τα τέσσερα κοντινότερα σηµεία του κανάβου ακολουθώντας τον αλγόριθµο : Βήµα ο : Εύρεση του τετραγώνου του κάναβου όπου βρίσκεται το ενδιάµεσο σηµείο (, ), παίρνουµε τις τέσσερεις κορυφές του πλέγµατος (,, ), (,, ), ( 3, 3, 3 ) και ( 4, 4, 4 ). Βήµα ο : Υπολογισµός των αποστάσεων s και t. s και t όπου, η ισοδιάσταση κατά και αντίστοιχα. Βήµα 3 ο : Υπολογισµός του υψοµέτρου από την εξίσωση της διγραµµικής παρεµβολής: (, ) ( s) ( t) ( s) t s ( t) 4 s t 3 ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 9

10 Παράδειγµα : ίνονται τα υψόµετρα των τεσσάρων πλησιέστερων σηµείων : Z3.45, Z3.40, Z33.40, Z43.50 Αν η ισοδιάσταση του κανάβου είναι 0m και οι αποστάσεις s και t υπολογίστηκαν και είναι : s0.7, t0.4 Το υψόµετρο του σηµείου, προκύπτει από την εξίσωση: (, ) (, ) ( 0.6) ( 0.7) 3.45 ( 0.6) ( 0.7) ικυβική Παρεµβολή. Η δικυβική παρεµβολή (βλ. κεφάλαιο.4. των σηµειώσεων) υπολογίζει το υψόµετρο του ενδιάµεσου σηµείου από τα υψόµετρα των δεκαέξι κοντινότερων σηµείων του πλέγµατος ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ. 0

11 εισόδου. Η µορφή του εξαγόµενου ψηφιακού µοντέλου εδάφους εξαρτάται από την µορφή της συνάρτησης παρεµβολής που θα χρησιµοποιήσουµε. H χρησιµοποίηση µιας οµαλής καµπύλης και µιας µεγαλύτερης γειτονιάς δίνει στην δικυβική παρεµβολή µια τάση να εξοµαλύνει τα υψόµετρα, και µπορεί σε µερικές περιπτώσεις να οδηγήσει τις τιµές του πλέγµατος εξόδου να είναι έξω από τη σειρά των τιµών στο πλέγµα εισόδου. ΣΕΡΡΕΣ ΕΚΕΜΒΡΙΟΣ 003 Σελ.

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Η γνώση του αναγλύφου

Η γνώση του αναγλύφου ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ Η γνώση του αναγλύφου συµβάλλει στον προσδιορισµό Ισοϋψών καµπυλών Κλίσεων του εδάφους Προσανατολισµού Ορατότητας Μεταβολών Κατανοµής φωτισµού ιατοµών Χωµατισµών Υδροκρίτη Οπτικοποίησης

Διαβάστε περισσότερα

1 Πολυωνυµική Παρεµβολή

1 Πολυωνυµική Παρεµβολή 1 Πολυωνυµική Παρεµβολή εδοµένων n + 1 ανά δύο διαφορετικών σηµείων x o, x 1, x,..., x n και των αντίστοιχων συναρτησιακών τιµών y o = f(x o ), y 1 = f(x 1 ), y = f(x ),...,y n (x n ) επιθυµούµε να προσεγγίσουµε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

Κεφάλαιο 7. 7 Ψηφιακή επεξεργασία εικόνας. 7.1 Παραμορφώσεις. 7.2 Γεωμετρικές διορθώσεις

Κεφάλαιο 7. 7 Ψηφιακή επεξεργασία εικόνας. 7.1 Παραμορφώσεις. 7.2 Γεωμετρικές διορθώσεις Κεφάλαιο 7 7 Ψηφιακή επεξεργασία εικόνας 7.1 Παραμορφώσεις Η δορυφορική εικόνα μπορεί να υποστεί διάφορες γεωμετρικές παραμορφώσεις, που μπορούν γενικά να οφείλονται στην κίνηση του δορυφόρου ως προς τη

Διαβάστε περισσότερα

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887 Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

2. Η τιµή της εκτιµήσεως της µεταβλητής στα σηµεία όπου υπάρχουν µετρήσεις να είναι η ίδια µε τη

2. Η τιµή της εκτιµήσεως της µεταβλητής στα σηµεία όπου υπάρχουν µετρήσεις να είναι η ίδια µε τη ΜΕΘΟ ΟΙ ΧΩΡΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ, ΒΕΛΤΙΣΤΗ ΠΑΡΕΜΒΟΛΗ ΠΡΟΧΩΡΗΜΕΝΕΣ ΓΕΩΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Η παρεµβολή στο χώρο αποτελεί ένα σηµαντικό αντικείµενο µελέτης στη χαρτογραφία και σε όσους τοµείς της επιστήµης είναι

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Έλεγχος και αποκατάσταση συνέπειας χρονοσειρών βροχόπτωσης Παράδειγµα Η ετήσια βροχόπτωση του σταθµού Κάτω Ζαχλωρού Χ και η αντίστοιχη βροχόπτωση του γειτονικού του σταθµού Τσιβλός Υ δίνονται στον Πίνακα

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

Λειτουργία σηµείο γραµµή σε πολύγωνο

Λειτουργία σηµείο γραµµή σε πολύγωνο Λειτουργία σηµείο γραµµή σε πολύγωνο 2 5 7 3 1 6 8 4 2 5 1 6 7 8 3 4 Υπολογισµός του ελάχιστου περιβάλλοντος ορθογώνιου παραλληλόγραµµου του πολυγώνου που εξετάζεται. Ο υπολογισµός αυτών γίνεται εύκολα

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή Προσαρμογή ρ ρμ http://ecouseschemegtug/couses/computtol_methods_fo_egees/ Παρεµβολή Προσαρμογή Παρεµβολή tepolto είναι η διαδικασία µε την οποία βρίσκεται

Διαβάστε περισσότερα

7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ

7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ 7. ΣΥΓΚΡΙΣΗ ΚΑΙ ΣΥΝ ΙΑΣΜΟΣ ΤΩΝ ΙΑΦΟΡΩΝ ΜΕΘΟ ΩΝ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 7.. ΣΥΓΚΡΙΣΗ ΤΩΝ ΒΑΣΙΚΩΝ ΣΤΡΑΤΗΓΙΚΩΝ Στα προηγούµενα κεφάλαια αναφέρθηκαν λεπτοµερώς τα πλεονεκτήµατα και µειονεκτήµατα των διαφόρων στρατηγικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ 4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ

ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΨΗΦΙΑΚΑ ΜΟΝΤΕΛΑ Ε ΑΦΟΥΣ Χρίστος Χαλκιάς Τµήµα Γεωγραφίας Σ υ σ τ ή µ α τ α Γ ε ω γ ρ α φ ι κ ώ ν Π λ η ρ ο φ ο ρ ι ώ ν ΙΙ Τι είναι ένα ΨΜΕ Ψηφιακό Μοντέλο Εδάφους θεωρείται κάθε

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

3.9 Πίνακας συνδιακύμανσης των παραμέτρων

3.9 Πίνακας συνδιακύμανσης των παραμέτρων Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Τελευταία ενηµέρωση: 4 Ιανουαρίου 8 Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο 6-7 -- Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου Οδηγίες για την 6 η άσκηση της 6 ης εργασίας

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 4 : Ορθογωνιότητα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

170 ΕΜΠ ΠΡΟΗΓΜΕΝΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ ΧΩΡΟ-ΧΡΟΝΙΚΩΝ Ε ΟΜΕΝΩΝ ΕΚΤΙΜΗΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΞΙΩΝ ΑΚΙΝΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ G.I.S.

170 ΕΜΠ ΠΡΟΗΓΜΕΝΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ ΧΩΡΟ-ΧΡΟΝΙΚΩΝ Ε ΟΜΕΝΩΝ ΕΚΤΙΜΗΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΞΙΩΝ ΑΚΙΝΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ G.I.S. 170 ΕΜΠ ΠΡΟΗΓΜΕΝΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ ΧΩΡΟ-ΧΡΟΝΙΚΩΝ Ε ΟΜΕΝΩΝ ΕΚΤΙΜΗΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΞΙΩΝ ΑΚΙΝΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ G.I.S. Καθ. Βασίλειος Ασημακόπουλος ρ. Έλλη Παγουρτζή Μονάδα Συστημάτων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ 7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ Για να προσδιορισθεί η καμπύλη παλινδρόμησης, η οποία αποτελείται από όλα τα ζεύγη σημείων τα οποία μπορούν προσδιορισθούν

Διαβάστε περισσότερα

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών

Διαβάστε περισσότερα

2 3 4 v. Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση :

2 3 4 v. Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση : ίνεται η εξίσωση : ν v 1... = 0, v Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση : Με την βοήθεια του λογισµικού mathcad, κατασκευάζω τις συναρτήσεις f ν ()=

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

T (K) m 2 /m

T (K) m 2 /m Ορθοί και λανθασµένοι τρόποι απεικονίσεως δεδοµένων σε διάγραµµα Από µετρήσεις σηµείου ζέσεως σειράς διαλυµάτων προκύπτουν τα εξής δεδοµένα: m /m.5..5..5.55.. Σύµφωνα µε την θεωρία τα δεδοµένα πρέπει να

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική 4 η Εργασία Επιστροφή: 24/3/13 Yπενθύµιση: Οι εργασίες πρέπει να επιστρέφονται µε e-mail που θα στέλνετε από το πανεπιστηµιακό σας λογαριασµό το αργότερο µέχρι

Διαβάστε περισσότερα

Εργασία στο εκπαιδευτικό λογισµικό Function Probe

Εργασία στο εκπαιδευτικό λογισµικό Function Probe Γιάννης Π. Πλατάρος -1-20/10/2003 ΚΑΤΑΣΚΕΥΗ ΑΝΑΛΥΤΙΚΗΣ ΕΚΦΡΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΙΑΤΡΙΚΟ ΠΡΟΒΛΗΜΑ Εργασία στο εκπαιδευτικό λογισµικό Function Probe Περίληψη: ίνεται στους µαθητές η διαπραγµάτευση ενός προβλήµατος

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία Πρόγραµµα Μεταπτυχιακών Σπουδών "Υπολογιστικά Μαθηµατικά και Πληροφορική" Κατεύθυνση: Τεχνολογίες Πληροφορικής και Επικοινωνιών στην Εκπαίδευση Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση 1 ΕΙΣΑΓΩΓΗ 11 Τι είναι η αριθµητική ανάλυση Στα µαθητικά και φοιτητικά µας χρόνια, έχουµε γνωριστεί µε µία ποικιλία από µαθηµατικά προβλήµατα των οποίων µαθαίνουµε σταδιακά τις λύσεις Παραδείγµατος χάριν,

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

ιεύθυνση Λέξης Ερµηνεία Περιεχοµένου Λέξης ιεύθυνση Λέξης b7 b6 b5 b4 b3 b2 b1 b0

ιεύθυνση Λέξης Ερµηνεία Περιεχοµένου Λέξης ιεύθυνση Λέξης b7 b6 b5 b4 b3 b2 b1 b0 Μάθηµα 43ο Θέµα Εισαγωγή Παραδείγµατα 1. Τι ονοµάζουµε µνήµη; Τι είδους τεχνολογία χρησιµοποιούµε συνήθως για τις µνήµες; 2. Η λέξη µιας µνήµης, από τι αποτελείται; 3. Τι ονοµάζουµε διεύθυνση µιας µνήµης

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα