Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής"

Transcript

1 Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας 9:00-11:00 & 11:00-13:00 Διάρκεια Προγράμματος 2 ώρες Κόστος συμμετοχής 2.50 ανά μαθητή συνοδοί & εκπαιδευτικοί δωρεάν Μια πορεία αναζήτησης της σχέσης Τέχνης και Μαθηματικών, μέσα από την αλληλεπίδραση με έργα Τέχνης και διαδραστικά εκθέματα. Αναζητούνται τα σημεία όπου συναντώνται και αλληλοεπηρεάζονται οι δυο αυτοί τομείς της ανθρώπινης σκέψης και έκφρασης, με έμφαση στη γεωμετρική περίοδο της Ελληνικής τέχνης, στη σχέση Μαθηματικών και Μουσικής (Πυθαγόρεια κλίμακα), στην κλασική τέχνη (Παρθενών Αναλογίες Χρυσή Τομή), στη γραμμική προοπτική (Αναγέννηση), στη Γεωμετρία της μοντέρνας τέχνης (Κυβισμός, Κονστρουκτιβισμός, Bauhauss) και τέλος στη σύγχρονη λεγόμενη «μαθηματική τέχνη» των μορφοκλασματικών (fractals). Με αφορμή κατάλληλα επιλεγμένα έργα των M. C. Escher και V. Vasarely αλλά και άλλων καλλιτεχνών, οι μαθητές εισάγονται αβίαστα στη φύση και κυρίως στη φιλοσοφία σημαντικών μαθηματικών εννοιών.

2 Πρόγραμμα Γυμνασίου Περιγραφή Το πρόγραμ μα «Τέχνη και Μαθηματικά» για το γυμνάσιο, αποτελείτ αι από τρία διδακτικά μέρη, δύο ε κ των οποίων είναι κοινά για τ ους μαθητές όλων των τάξε ων (Μέρη Α & Β ) και από ένα ειδικό μέρος (Μέρ ος Γ ), τ ο οποί ο είναι κατάλληλα προσαρ μοσ μένο στις γνωστικές δυνατότητες κάθε τάξης. Στο τέλος, οι μαθητ ές καλούνται να συμπληρώσουν ένα έντυπο αξιολόγησης. Μέρος Α : Γενικό Εισαγωγικό διάρκεια: 15 λεπτά Παράλληλη περιήγηση με προβολή κατάλληλου οπτικοακουστικού υλικού, στην ιστορία αφενός της Τέχνης και αφετέρου των Μαθηματικών, επικεντρωμένη σε τρεις βασικές περιόδους: (Π1) Αρχαία Ελληνική και κλασική Τέχνη: σύνδεση με τα αρχαία Ελληνικά Μαθηματικά. (Π2) Αραβικός πολιτισμός και Αναγέννηση: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. (Π3) Μοντέρνα Τέχνη: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. Μέρος Β : Επίσκεψη των δύο εκθεσιακών χώρων του μουσείου διάρκεια: 30 λεπτά Περιήγηση στην τρέχουσα έκθεση του Μουσείου Ηρακλειδών με έργα των M. C. Escher και V. Vasarely. Μέρος Γ : Παρουσίαση ειδικού θέματος στις αίθουσες διαλόγου και αλληλεπίδρασης διάρκεια: 60 λεπτά Ο διάλογος με αφορμή επιλεγμένα έργα τέχνης, πολυμεσικό υλικό και αλληλεπιδραστικά εκθέματα, επικεντρώνεται σε μία συγκεκριμένη για κάθε τάξη θεματική ενότητα. Ακολουθεί αναλυτική περιγραφή των προτεινόμενων θεματικών ενοτήτων του ειδικού μέρους για κάθε τάξη, από τις οποίες μπορούν να επιλέξουν οι εκπαιδευτικοί. Μέρος Δ : Ανατροφοδότηση - Αξιολόγηση διάρκεια: 15 λεπτά Συμπλήρωση εντύπου αξιολόγησης με ανώνυμη και ελεύθερη καταγραφή παρατηρήσεων και εντυπώσεων για το πρόγραμμα. Σκοπός του εκπαιδευτικού προγράμματος «Τέχνη και Μαθηματικά» είναι να αποτελέσει συμπλήρωμα της διδασκόμενης ύλης των Μαθηματικών, στην κατεύθυνση της κοινά επιθυμητής από όλους τους ερευνητές της Διδακτικής, «διαθεμα τικότητας», διασυνδέοντας τα Μαθηματικά με την Ιστορία της Επιστήμης και της Τέχνης, τη Φιλοσοφία και τα κλασικά γράμματα.

3 Γυμνάσιο Ειδικό Μέρος Όσον αφορά στο ειδικό μέρος (Μέρος Γ) του προγράμματος του Γυμνασίου, οι εκπαιδευτικοί μπορούν να επιλέξουν μία από τις παρακάτω εννέα θεματικές ενότητες: I. Εισαγωγή στην αλληλεπίδραση τέχνης & μαθηματικών II. III. IV. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής Μουσική & μαθηματικά Οι διαστάσεις του χώρου & η προοπτική V. Ομοιότητα λόγοι και αναλογίες VI. VII. VIII. IX. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα Πλακοστρώσεις Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια. Τα Μαθηματικά στη Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή. Ακολουθεί αναλυτική περιγραφή των παραπάνω θεματικών ενοτήτων.

4 I. Εισαγωγή στην αλληλεπίδραση τέχνης & μαθηματικών Γυμνάσιο Η θεματική ενότητα (Ι), αποτελεί μία εισαγωγική ενότητα αλληλεπίδρασης της τέχνης και των μαθηματικών. Μπορεί να αποτελέσει μια αφετηρία για μεταγενέστερες επισκέψεις ενός τμήματος στο μουσείο (για τις περισσότερο εξειδικευμένες ενότητες ΙΙ, ΙΙΙ, ΙV, V,VI και VII) ή να επιλεγεί από τμήματα που προτιμούν μια γενική περιήγηση στην σχέση μεταξύ τέχνης και μαθηματικών χωρίς να επικεντρωθούν σε ειδικότερα θέματα. «Αφανής αρμονία κρείττων φανερής.» Α, Β & Γ Γυμνασίου Ειδικότερα, μέσα από διάλογο, και ειδικά σχεδιασμένη προβολή, οι μαθητές: o Ανακαλύπτουν τις αμφισημίες και το γεωμετρικό υπόβαθρο των έργων του V. Vasarely, του M.C. Escher και άλλων καλλιτεχνών. o Αναζητούν την ύπαρξη μαθηματικών αναλογιών στην τέχνη και το ρόλο της χρυσής τομής στη φύση και την αισθητική. o Εμπλέκονται στις αναζητήσεις του Πυθαγόρα και ανακαλύπτουν τα απλά κλάσματα που κρύβονται πίσω από την αρμονία, τη μελωδία και το ρυθμό της μουσικής. o Ανακαλύπτουν τις ζωγραφικές τεχνικές δημιουργίας βάθους στον δισδιάστατο καμβά με έμφαση στη γραμμική προοπτική. o Εισάγονται στην ιδέα της αυτοομοιότητας μέσα από τους πίνακες του M. C. Escher.

5 ΙΙ. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής Στόχος της ενότητας αυτής είναι η δημιουργία αμφισβήτησης στην εμπιστοσύνη προς τις αισθήσεις και συνειδητοποίησης της ανάγκης να χρησιμοποιηθεί η λογική - μαθηματική σκέψη για την εξαγωγή ασφαλών συμπερασμάτων, μέσω της παρατήρησης πινάκων που εμπεριέχουν οφθαλμαπάτες και αμφισημίες οι οποίες οδηγούν σε αβεβαιότητες και αντιφάσεις. Στόχος αυτής της θεματικής ενότητας είναι επίσης μια περιήγηση των μαθητών στα διάφορα παράδοξα, που κατά καιρούς απασχόλησαν μαθηματικούς, φιλοσόφους και καλλιτέχνες, καθώς και η συνεισφορά τους στην εξέλιξη της ανθρώπινης σκέψης. Πώς οι καλλιτέχνες της op art πειραματίζονται με την ανθρώπινη πλάνη; Ποιος είναι ο ρόλος της λογικής - μαθηματικής σκέψης στην αντιμετώπιση των παραδόξων; Πιο συγκεκριμένα, μέσα από διάλογο, ομαδικά παιχνίδια, εικαστικά έργα Τέχνης και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Προσδιορίζουν το ρόλο της ψευδαίσθησης και της αμφισημίας στα έργα του V. Vasarely (αμφισημία της ισομετρικής προβολής, φαινόμενο του κύβου του Necker), στην προσπάθεια παρακίνησης των θεατών να αποκτήσουν ενεργή συμμετοχή απέναντι στα έργα της op art. o Αναζητούν το ρόλο της απόδειξης ως μοναδικό μέσο εύρεσης της αλήθειας, μακριά από κάθε ψευδαίσθηση και οφθαλμαπάτη. o Εμπλέκονται σε «παιχνίδια διαστάσεων» μέσα από αδύνατα σχήματα των μαθηματικών, μερικά από τα οποία απεικονίζονται στην τέχνη του M.C. Escher. o Παρακινούνται να αντιμετωπίσουν το παράδοξο του δρομέα, εμπλέκονται στους προβληματισμούς του Ζήνωνα καθώς και σε άλλα λογικά και συνολοθεωρητικά παράδοξα. o Εισάγονται στην έννοια της αυτοαναφοράς μέσα από γλωσσικά παιχνίδια και τους πίνακες του M.C. Escher. o Καλούνται να προσδιορίσουν το ρόλο της γλώσσας στη δημιουργία παραδόξων. Ποιoς είναι ο ρόλος της μαθηματικής σκέψης στην αντιμετώπιση των λογικών και συνολοθεωρητικών παραδόξων; Ποιοι είναι οι νόμοι που διέπουν την ανθρώπινη αντίληψη; Β, Γ Γυμνασίου

6 IΙΙ. Μουσική και Μαθηματικά Πώς οι μαθηματικές αναλογίες εμπλέκονται στην αντίληψη του ρυθμού; Ποιες είναι οι μαθηματικές σχέσεις που διέπουν την Πυθαγόρεια αρμονία; Α, Β & Γ Γυμνασίου Στόχος της ενότητας αυτής είναι οι μαθητές να αναπτύξουν μαθηματικές και παράλληλα μουσικές δεξιότητες μέσα από μουσικά παιχνίδια, πειραματισμό με μουσικά όργανα και ακρόαση κομματιών της κλασικής αλλά και της σύγχρονης μουσικής δημιουργίας (jazz, ethnic, blues, rock). Οι μαθητές παρακινούνται να πειραματιστούν με τον ήχο, τη μουσική και τα συναισθήματα που αυτή δημιουργεί, καθώς αλλάζουν οι συνθήκες παραγωγής του, να απελευθερώσουν τη δημιουργική τους ικανότητα και να ανακαλύψουν ότι η τέχνη της μουσικής αποτελεί ένα μέσο έκφρασης και μια γλώσσα επικοινωνίας μεταξύ των ανθρώπων διαφορετικών πολιτισμών και εθνικοτήτων. Μέσα από βιωματικές δραστηριότητες, δημιουργικά παιχνίδια, μουσικά παραδείγματα και κατάλληλα επιλεγμένο οπτικοακουστικό υλικό: o Εμπλέκονται σε βιωματικές δραστηριότητες στις οποίες ασκούνται στον στοιχειώδη έλεγχο της φωνής τους, καθώς και ποικίλων μουσικών οργάνων, και μέσα από αυτές μαθαίνουν να αναγνωρίζουν και τα βασικά χαρακτηριστικά του ήχου: ένταση, οξύτητα, χροιά και διάρκεια. o Ανακαλύπτουν τη συμμετρία και την κανονικότητα που δημιουργεί μουσικούς ήχους, σε αντίθεση με την ασυμμετρία του θορύβου. o Ανακαλύπτουν την έννοια του ρυθμού και την οργάνωση του χρόνου στη μουσική, ενώ παράλληλα αναζητούν μαθηματικές αναλογίες στα ρυθμικά μοτίβα που καλούνται να δημιουργήσουν ή να αναπαράγουν μέσα από ομαδικά παιχνίδια με κρουστά. o Πειραματίζονται με το μονόχορδο του Πυθαγόρα και μέσα από τη διαφωνία ή τη συμφωνία των μουσικών συνηχήσεων που δημιουργούν, οδηγούνται στην αναζήτηση των μαθηματικών σχέσεων που διέπουν την αρμονία. o Κατασκευάζουν τη μείζονα κλίμακα και εξασκούνται στην αναγνώριση των μουσικών διαστημάτων από τα οποία αποτελείται. o Μέσα από παιχνίδια ρόλων φτιάχνουν τα δικά τους μουσικά κομμάτια συνδέοντας ρυθμούς με μελωδίες και παρατηρούν τις ακουστικές εντυπώσεις των δημιουργιών τους.

7 IV. Οι διαστάσεις του χώρου & η προοπτική Στόχος του προγράμματος είναι η εξοικείωση των μαθητών με την έννοια της διάστασης και η συνειδητοποίηση της αναγκαιότητας της προοπτικής για τη δημιουργία βάθους στη ζωγραφική και στην αρχιτεκτονική σχεδίαση. Οι μαθητές ταξιδεύουν μαζί με τους ήρωες της «Επιπεδοχώρας», του γνωστού διηγήματος του E.Abbott, σε κόσμους διαφορετικών διαστάσεων, βιώνοντας την καθημερινότητα και τους προβληματισμούς των υποθετικών κατοίκων τους. Ένα ταξίδι σε κόσμους διαφορετικών διαστάσεων για την αναζήτηση των μυστικών της προοπτικής που κρύβουν οι πίνακες της αναγέννησης... Β & Γ Γυμνασίου Ειδικότερα, μέσα από την αφήγηση, παρατήρηση εικαστικών έργων Τέχνης, ομαδικές δραστηριότητες και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Συλλαμβάνουν την έννοια της διάστασης καθώς, με αφετηρία τον τρισδιάστατο περιβάλλοντα χώρο, οδηγούνται στον κόσμο της Επιπεδοχώρας, της Γραμμοχώρας αλλά και στον τετραδιάστατο χωρο-χρόνο. o Εμπλέκονται σε βιωματικά παιχνίδια επίλυσης προβλημάτων με στόχο την κατανόηση των περιορισμών της κίνησης σε λιγότερες από τρεις διαστάσεις. o Αναζητούν το ρόλο της σκιάς στην οπτική αντίληψη. o Αναζητούν την ύπαρξη κανόνων που οδηγούν στην απεικόνιση του τρισδιάστατου χώρου, πάνω στη δισδιάστατη επιφάνεια του ζωγραφικού καμβά. o Παρακινούνται με βάση τους κανόνες που ανακάλυψαν, να κατασκευάσουν το δικό τους προοπτικό σχέδιο, ενός δοσμένου φυσικού αντικειμένου. o Αναζητούν το πραγματικό μαθηματικό υπόβαθρο της γραμμικής προοπτικής στους πίνακες της Αναγέννησης.

8 V. Ομοιότητα λόγοι και αναλογίες Στόχος της ενότητας αυτής είναι η ανάδειξη μέσα από έργα ζωγραφικής, γλυπτικής και αρχιτεκτονικής, της θεμελιώδους έννοιας του λόγου στη μαθηματική της διάσταση, καθώς και της αναλογίας. Ο λόγος δυο μεγεθών προσδιορίζει πόσες φορές μεγαλύτερο ή μικρότερο είναι ένα μέγεθος από κάποιο άλλο ομοειδές του. Η παρουσία σταθερού λόγου μεταξύ κάποιων μερών ενός σχήματος, είναι αυτή που αναδεικνύει την έννοια της αναλογίας, προσδιορίζει τη μεγέθυνση ή τη σμίκρυνση ενός σχήματος και οδηγεί στη γενικότερη έννοια της ομοιότητας των σχημάτων. Από την άλλη πλευρά, εισάγεται η έννοια της πραγματικής ευθείας ως το σύνολο των λόγων όλων των δυνατών ευθυγράμμων τμημάτων προς ένα αυθαίρετα επιλεγέν (το μοναδιαίο), ενώ η (ανέφικτη) προσπάθεια απόδοσης ονόματος σε κάθε χρωματική απόχρωση, οδηγεί στο συνεχές ορατό φάσμα και την αντιστοιχία της χρωματικής κλίμακας με τμήμα της ευθειογραμμής. «Λόγον έχειν προς άλληλα μεγέθη λέγεται α δύναται πολλαπλασιαζόμενα αλλήλων υπερέχειν.» Α, Β & Γ Γυμνασίου Πιο συγκεκριμένα, μέσα από εικαστικές προκλήσεις που δημιουργούνται από την παρατήρηση ειδικά επιλεγμένων εικαστικών έργων Τέχνης, το διάλογο, τα ομαδικά «παιχνίδια», και την αξιοποίηση της σύγχρονης τεχνολογίας οι μαθητές: o Κατανοούν την έννοια του λόγου και της αναλογίας σε γεωμετρικά σχήματα που τους παρέχονται σε διάφορα υλικά. o Αναγνωρίζουν διαισθητικά μέσα από ένα πλήθος ειδικά επιλεγμένων ζωγραφικών πινάκων, εκείνους τους πίνακες, που κατά την εκτίμησή τους, στα εικονιζόμενα μέρη τους διαθέτουν αναλογίες. o Χρησιμοποιώντας όργανα μέτρησης υπολογίζουν λόγους και αναλογίες ομοίων σχημάτων σε ζωγραφικούς πίνακες. o Αλλάζοντας την τιμή του λόγου, μεγεθύνουν ή σμικρύνουν γεωμετρικά σχήματα. o Αναζητούν γεωμετρικά δομικά στοιχεία του πίνακα και υπολογίζουν το λόγο σε βασικά μεγέθη τους όπως: γωνίες, μήκη, εμβαδά, όγκους. o Ανακαλύπτουν ότι η αδυναμία απόδοσης ονομασίας σε κάθε χρώμα του πίνακα που δημιουργεί η απειρία των διαφορετικών χρωματικών αποχρώσεων, οδηγεί στην ανάγκη αντιστοίχισης αυτών με αριθμούς που αποδίδουν τις συχνότητες του ορατού φάσματος.

9 VI. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα Στόχος της ενότητας αυτής είναι η ανάδειξη της θεμελιώδους έννοιας της συμμετρίας και των άλλων επίπεδων μετασχηματισμών μέσω της πρόκλησης του ωραίου που προσφέρει η παρατήρηση επιλεγμένων εικαστικών έργων Τέχνης. Ο πλούτος των πινάκων του Μ.C. Escher, του V.Vasarely αλλά και άλλων καλλιτεχνών, με παρουσία αξονικής και κεντρικής συμμετρίας, εισάγει αβίαστα τους μαθητές σε αυτές τις έννοιες, μέσα σε ένα ευχάριστο καλλιτεχνικό περιβάλλον. Παράλληλα, δίνεται η ευκαιρία να γίνει επέκταση και στους υπόλοιπους επίπεδους μετασχηματισμούς που δεν εμπεριέχονται στην σχολική ύλη, καθώς και στα αποτελέσματα της σύνθεσης (διαδοχικής επενέργειας) αυτών των μετασχηματισμών. Πιο συγκεκριμένα, μέσα από εικαστικές προκλήσεις που δημιουργούνται από την παρατήρηση ειδικά επιλεγμένων εικαστικών έργων Τέχνης, το διάλογο, τα ομαδικά «παιχνίδια», και την αξιοποίηση της σύγχρονης τεχνολογίας οι μαθητές: o Αναγνωρίζουν διαισθητικά μέσα από ένα πλήθος ειδικά επιλεγμένων ζωγραφικών πινάκων, εκείνους τους πίνακες, που κατά την εκτίμησή τους, διαθέτουν συμμετρίες ή άλλους μετασχηματισμούς. o Διακρίνουν τα διαφορετικά είδη συμμετριών και μετασχηματισμών. o Κατανοούν τη μαθηματική έννοια της συμμετρίας και διατυπώνουν ορισμούς. o Αναγνωρίζουν συμμετρίες σε δοσμένα γεωμετρικά μοτίβα ζωγραφικών πινάκων. o Κατανοούν την έννοια του γεωμετρικού μοτίβου και συμπληρώνουν επεκτείνουν γεωμετρικά μοτίβα. o Επιχειρούν να αναγνωρίσουν το ρόλο της συμμετρίας τόσο στην τέχνη, όσο και στα μαθηματικά. o Κατασκευάζουν τα δικά τους γεωμετρικά μοτίβα. «Σύμμετρον όπερ εκατέρου των άκρων απέχει.» A, Β & Γ Γυμνασίου

10 VII. Πλακοστρώσεις Από τα επιτύμβια μωσαϊκά των Σουμέριων ναών το 3500 π.χ. και τα ρωμαϊκά ψηφιδωτά δάπεδα του 2 ου αιώνα μ.χ., έως τις αραβικές επιτοίχιες δημιουργίες των καλλιτεχνικών μοτίβων στη Σεβίλλη και την Αλάμπρα, αλλά και τα περίτεχνα υφαντά της λαϊκής τέχνης, παρατηρούμε, την επανάληψη σχηματικών μορφών που καλύπτουν, χωρίς να επικαλύπτονται μεταξύ τους, επιφάνειες επίπεδες ή καμπύλες με τρόπο αρμονικό, ο οποίος δεν επιτρέπει κενά μεταξύ αυτών των επαναλαμβανόμενων μορφών (πλακόστρωση). Το φαινόμενο αυτό δεν εμφανίζεται μόνο ως προϊόν της ανθρώπινης καλλιτεχνικής δημιουργίας, αλλά παρουσιάζεται και ως φυσική επιλογή άλλων πλασμάτων της φύσης, όπως οι μέλισσες, για την κατασκευή των κηρηθρών. Με ποιο τρόπο όμως μπορεί κάποιος να κατασκευάσει τέτοιου είδους καλλιτεχνικά δημιουργήματα; Υπάρχουν νόμοι στους οποίους υπακούουν αυτές οι κατασκευές; Οποιεσδήποτε απλές γεωμετρικές σχηματικές μορφές επιτρέπουν την κάλυψη επίπεδων ή καμπυλόγραμμων επιφανειών χωρίς την μεταξύ τους επικάλυψη; Πως αναδύεται η αναγκαιότητα των Μαθηματικών μέσα από αυτές τις κατασκευές; Ποιες έννοιες των μαθηματικών αναδεικνύονται; Στην παρούσα ενότητα ο επισκέπτης μέσα από την αλληλεπίδρασή του με εικαστικά έργα γνωστών ζωγράφων (π.χ. του Escher), αλλά και κατάλληλων εικόνων επιχειρεί μέσω μιας πρώτης παρατήρησης να ανακαλύψει το «βασικό πλακίδιο», αλλά και την «μικρότερη ομάδα πλακιδίων», που δομούν το εικαστικό έργο ή την εικόνα και στη συνέχεια να ανακαλύψει τους τρόπους βάσει των οποίων κατασκευάζεται η δομή αυτή. Επίσης μέσω χειραπτικού υλικού (αφορά κυρίως τις μικρότερες ηλικίες) πειραματίζεται με τη χρήση βασικών γεωμετρικών σχημάτων, στην κάλυψη επίπεδων επιφανειών. Καλλιτεχνικά μοτίβα και υπόρρητοι Μαθηματικοί νόμοι κατάλληλη για όλες τις τάξεις του Γυμνασίου

11 VIII. Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια Η ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΓΝΩΣΗ ΤΟΥ ΣΠΗΛΑΙΟΥ ΤΟΥ ΠΛΑΤΩΝΑ Στην παρούσα ενότητα ο επισκέπτης παρατηρεί τις σκιές διαφόρων στερεών αντικειμένων που διαθέτουν απλή γεωμετρική μορφή, όπως σφαίρα, κύβος, πρίσμα κ. ά., γλυπτών τα οποία διαθέτουν σαφείς μορφές, αλλά και άλλων κατασκευών οι οποίες είναι άμορφες συνθέσεις υλικών (δημιουργίες του Larry Kagan). Οι σκιές αυτές αποτελούν εκπλήξεις σε σχέση με τα αντικείμενα που τις δημιουργούν. Αντιστρόφως, μέσα από υποδεικνυόμενες εικόνες σκιών και εικαστικά έργα, επιχειρεί να αναγνωρίσει τα στερεά αντικείμενα που τις δημιουργούν, να ταξινομήσει αυτά, αλλά και να ανακαλύψει ποια γεωμετρικά χαρακτηριστικά τους παραμένουν αναλλοίωτα και ποια μεταβάλλονται. Πως δημιουργείται η σκιά ενός αντικειμένου; Ποια η σχέση με την έννοια της προβολής στα Μαθηματικά και την αντιστροφή μιας συνάρτησης; Το ίδιο αντικείμενο μπορεί να δημιουργήσει διαφορετικές μορφές σκιών; Αν ναι, τότε που οφείλεται η διαφορετικότητα; Μπορούμε από τη σκιά ενός αντικειμένου να γνωρίσουμε το ίδιο το αντικείμενο; Θα μπορούσε να επικοινωνήσει ο τρισδιάστατος κόσμος των στερεών αντικειμένων με τον δισδιάστατο κόσμο των σκιών τους, χωρίς να υπάρχει απώλεια πληροφοριών; Με ποιο τρόπο λειτούργησε η σκιά στην ερμηνεία του φαινομένου των εκλείψεων; Με ποιο τρόπο γενικότερα λειτουργεί το φαινόμενο της προβολής-σκιάς στην Τέχνη, την Φιλοσοφία, τα Μαθηματικά και την Επιστήμη; κατάλληλη για όλες τις τάξεις του Γυμνασίου

12 ΙΧ. Τα Μαθηματικά στη Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή. Οι κερήθρες των μελισσών, η δομή της κατασκευής ενός κοχυλιού, η σχέση ανάμεσα στο πλήθος των δεξιόστροφων και αριστερόστροφων σπειρών του ηλίανθου και του κουκουναριού, η συμμετρία μιας πεταλούδας και μιας μαργαρίτας, η μοριακή δομή ενός ορυκτού, η χαρακτηριστική ομορφιά των νιφάδων του χιονιού, το ιδιότυπο σχήμα μιας φτέρης, ο τρόπος με τον οποίο αναπτύσσονται τα κλαδιά ενός δένδρου, η χαρακτηριστική αναλογία στα μέρη του ανθρώπινου σώματος, είναι δημιουργήματα της Φύσης και έγιναν απ αυτήν με τρόπο σοφό και μελετημένο. Πίσω από όλη αυτή τη δημιουργία κρύβονται νόμοι που όπως έλεγε ο Γαλιλαίος είναι γραμμένοι στο μεγάλο βιβλίο της Φύσης και που τα γράμματα στις σελίδες του είναι σχήματα και αριθμοί. Στόχος αυτής της θεματικής ενότητας είναι ο προβληματισμός των μαθητών στα Μαθηματικά αυτά της Φύσης και της Τέχνης, στον ορισμό της μαθηματικής έννοιας του λόγου και της αναλογίας, καθώς και τις φιλοσοφικές προεκτάσεις της. Μέσα από την άποψη του M.C. Escher στον πίνακα «Verbum» για τη δημιουργία και εξέλιξη της ζωής που απεικονίζεται στον πίνακα αυτό, διερευνάται η διασύνδεση του μαθηματικού λόγου με τις υπόλοιπες σημασίες της λέξης λόγος (αίτιο, λογική, ομιλία). «Λόγον έχειν προς άλληλα μεγέθη λέγεται α δύναται πολλαπλασιαζόμενα αλλήλων υπερέχειν.» Α, Β & Γ Γυμνασίου Ειδικότερα οι μαθητές: o Εισάγονται στην έννοια της χρυσής τομής α) αλγεβρικά μέσω της παρατήρησης και καταμέτρησης των αριστερόστροφων και δεξιόστροφων ελίκων σε κουκουνάρια και ηλίανθους και το σχηματισμό της σχετικής ακολουθίας Fibonacci β) γεωμετρικά μέσω της παρατήρησης εικαστικών έργων και αρχιτεκτονημάτων με εμφανή την παρουσία της χρυσής τομής. o Κατασκευάζουν γεωμετρικά τη χρυσή τομή. o Κατανοούν γιατί είναι άρρητος αριθμός και ανακαλύπτουν το συνεχές περιοδικό κλάσμα με το οποίο παριστάνεται, όντας ο πιο απλός άρρητος αριθμός. o Γνωρίζουν και κατασκευάζουν το χρυσό τρίγωνο, το χρυσό ορθογώνιο, και το κανονικό πεντάγωνο. o Ανακαλύπτουν τη χρήση της χρυσής τομής σε μια σειρά έργων τέχνης, εικαστικών, γλυπτών και αρχιτεκτονημάτων.

13 Συνοπτικός Πίνακας Ακολουθεί συνοπτικός πίνακας με τις θεματικές ενότητες για το γυμνάσιο που προτάθηκαν παραπάνω και τις τάξεις στις οποίες αντιστοιχούν. Η ταξινόμηση που ακολουθεί δεν είναι υποχρεωτική καθώς, κατόπιν συνεννόησης με τους εκπαιδευτικούς, κάποια θεματική ενότητα μπορεί να παρουσιασθεί σε μαθητές διαφορετικών τάξεων από τις προτεινόμενες, ενώ μπορεί να επιλεγεί και ένας συνδυασμός τους. Θεματικές Ενότητες Γυμνάσιο Α Β Γ I. Εισαγωγή στην αλληλεπίδραση τέχνης και μαθηματικών II. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής III. Μουσική και μαθηματικά IV. Οι διαστάσεις του χώρου και η προοπτική V. Ομοιότητα λόγοι και αναλογίες VI. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα VII. Πλακοστρώσεις VIII. Προβολές και σκιές. Φωτεινές απεικονίσεις σε σκοτεινά σπήλαια. ΙΧ. Τα Μαθηματικά στη Φύση και την Τέχνη. Λόγος, αναλογία, χρυσή τομή. IX.

Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Συνεργασία - Παρουσίαση Ναταλία Κωτσάνη Γιώργος Μαυρομμάτης

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

Τέχνη & Μαθηματικά. Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης

Τέχνη & Μαθηματικά. Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης w Τέχνη & Μαθηματικά Σχεδιασμός Αποστόλης Παπανικολάου Άρης Μαυρομμάτης Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης Στο ανανεωμένο Εκπαιδευτικό πρόγραμμα Τέχνη και Μαθηματικά

Διαβάστε περισσότερα

Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας

Διαβάστε περισσότερα

Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής

Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Συνεργασία - Παρουσίαση Ναταλία Κωτσάνη Γιώργος Μαυρομμάτης

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ:

ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ: ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ: Η αισθητική της Φύσης και της Τέχνης και η Λογική των Μαθηματικών» για όλες τις εκπαιδευτικές βαθμίδες Το Εκπαιδευτικό Πρόγραμμα «ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ»,

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp

ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ MathemArtics Camp Τα Θερινά Ολοήμερα Εργαστήρια του Μουσείου Ηρακλειδών MathemArtics Camp πραγματοποιούνται σε κύκλους των δύο εβδομάδων. Για το καλοκαίρι

Διαβάστε περισσότερα

1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296

1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296 Πολιτιστικό πρόγραµµα: Επίσκεψη στο Μουσείο Ηρακλειδών 21/2/2012 Σ.Πατσιοµίτου Η επίσκεψη στο Μουσείο

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

Επίσκεψη στο Μουσείο Ηρακλειδών

Επίσκεψη στο Μουσείο Ηρακλειδών 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Επίσκεψη στο Μουσείο Ηρακλειδών 19/3/2012 Σ.Πατσιοµίτου 1 Η επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο, πραγματοποιήθηκε στις 19/3/2012 από τους μαθητές της Γ τάξης

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας

Διαβάστε περισσότερα

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely;

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely; Ημερίδα«Η διδασκαλία της Πληροφορικής στην Α/θμια και Β/θμια εκπαίδευση» Ομάδα Ηλεκτρονικής Μάθησης Τμήμα Κοινωνικής και Εκπαιδευτικής Πολιτικής, Πανεπιστήμιο Πελοποννήσου ΣχέδιοεργασίαςγιατηνΒ ήγ Γυμνασίου

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Ν Η Π Ι Α Γ Ω Γ Ε Ι Ο

Ν Η Π Ι Α Γ Ω Γ Ε Ι Ο ΙΔΙΩΤΙΚΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ «Ο ΑΓΙΟΣ ΓΕΩΡΓΙΟΣ» Ν Η Π Ι Α Γ Ω Γ Ε Ι Ο ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Α. ΣΚΟΠΟΣ ΤΟΥ ΝΗΠΙΑΓΩΓΕΙΟΥ Σκοπός του Νηπιαγωγείου είναι να βοηθήσει τα παιδιά να αναπτυχθούν σωματικά, συναισθηματικά,

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

από ευχάριστες δραστηριότητες, όπως εκείνες της προανάγνωσης,, ενώ παράλληλα συνειδητοποιούν το φωνημικό χαρακτήρα της γλώσσας και διακρίνουν τα

από ευχάριστες δραστηριότητες, όπως εκείνες της προανάγνωσης,, ενώ παράλληλα συνειδητοποιούν το φωνημικό χαρακτήρα της γλώσσας και διακρίνουν τα ΔΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης. Το ελεύθερο παιχνίδι είτε ατομικό,είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να χρησιμοποιούν

Διαβάστε περισσότερα

Διάρκεια: 2Χ80 Προτεινόμενη τάξη: Δ -Στ Εισηγήτρια: Χάρις Πολυκάρπου

Διάρκεια: 2Χ80 Προτεινόμενη τάξη: Δ -Στ Εισηγήτρια: Χάρις Πολυκάρπου ΘΕΑΤΡΙΚΗ ΑΓΩΓΗ Θεατρικό Εργαστήρι: Δημιουργία δραματικών πλαισίων με αφορμή μαθηματικές έννοιες. Ανάπτυξη ικανοτήτων για επικοινωνία μέσω του θεάτρου και του δράματος. Ειδικότερα αναφορικά με τις παρακάτω

Διαβάστε περισσότερα

ΜΟΥΣΕΙΟ ΛΑΪΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΠΑΡΑΔΟΣΗΣ «ΑΓΓΕΛΙΚΗ ΧΑΤΖΗΜΙΧΑΛΗ» Αγγελικής Χατζημιχάλη 6, Πλάκα, τηλ. 2103243987

ΜΟΥΣΕΙΟ ΛΑΪΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΠΑΡΑΔΟΣΗΣ «ΑΓΓΕΛΙΚΗ ΧΑΤΖΗΜΙΧΑΛΗ» Αγγελικής Χατζημιχάλη 6, Πλάκα, τηλ. 2103243987 ΜΟΥΣΕΙΟ ΛΑΪΚΗΣ ΤΕΧΝΗΣ ΚΑΙ ΠΑΡΑΔΟΣΗΣ «ΑΓΓΕΛΙΚΗ ΧΑΤΖΗΜΙΧΑΛΗ» Αγγελικής Χατζημιχάλη 6, Πλάκα, τηλ. 2103243987 Εκπαιδευτικά προγράμματα μουσειακής αγωγής για σχολικές ομάδες Σχολικό έτος 2015 2016 Οι εξειδικευμένες

Διαβάστε περισσότερα

Μουσική Παιδαγωγική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία. Εισαγωγικές έννοιες μουσικής παιδαγωγικής. Τι είναι Μουσική Παιδαγωγική

Μουσική Παιδαγωγική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία. Εισαγωγικές έννοιες μουσικής παιδαγωγικής. Τι είναι Μουσική Παιδαγωγική Μουσικοκινητική Αγωγή Α εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Μουσικοκινητική Αγωγή (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσική Παιδαγωγική Εισαγωγικές έννοιες μουσικής παιδαγωγικής Μουσικοκινητική

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ

ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ ΤΙΤΛΟΣ «Ο κύκλος του νερού» ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ Το σενάριο µάθησης περιλαµβάνει δραστηριότητες που καλύπτουν όλα τα γνωστικά αντικείµενα που προβλέπονται από το ΕΠΠΣ νηπιαγωγείου. Συγκεκριµένα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε Ειδικοί σκοποί ΑΠΣ Κατανόηση: φυσικού κόσμου νόμων που τον διέπουν φυσικών φαινομένων διαδικασιών που οδηγούν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»

ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου» ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ «Τα μυστικά ενός αγγείου» ΜΠΙΛΙΟΥΡΗ ΑΡΓΥΡΗ 2011 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΟΥΣΕΙΑΚΗΣ ΑΓΩΓΗΣ «ΤΑ ΜΥΣΤΙΚΑ ΕΝΟΣ ΑΓΓΕΙΟΥ» ΘΕΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Η παρούσα εργασία αποτελεί το θεωρητικό

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

Δομή και Περιεχόμενο

Δομή και Περιεχόμενο Υπουργείο Παιδείας & Πολιτισμού Διεύθυνση Δημοτικής Εκπαίδευσης Δομή και Περιεχόμενο Ομάδα Υποστήριξης Νέου Αναλυτικού Προγράμματος Εικαστικών Τεχνών Ιανουάριος 2013 Δομή ΝΑΠ Εικαστικών Τεχνών ΕΙΚΑΣΤΙΚΗ

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΕΘΝΙΚΟΥ ΑΡΧΑΙΟΛΟΓΙΚΟΥ ΜΟΥΣΕΙΟΥ

ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΕΘΝΙΚΟΥ ΑΡΧΑΙΟΛΟΓΙΚΟΥ ΜΟΥΣΕΙΟΥ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΕΘΝΙΚΟΥ ΑΡΧΑΙΟΛΟΓΙΚΟΥ ΜΟΥΣΕΙΟΥ Για τη σχολική χρονιά 2015-2016 (διάστημα Οκτωβρίου-Δεκεμβρίου) θα πραγματοποιούνται δωρεάν για μαθητές Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης

Διαβάστε περισσότερα

ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου»

ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου» ΤΡΟΠΟΙ ΑΞΙΟΠΟΙΗΣΗΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΨΗΦΙΑΚΩΝ ΚΟΜΙΚΣ ΣΤΗΝ ΤΑΞΗ «οι μύθοι του Αισώπου» 6/Θ ΔΗΜ. ΣΧΟΛΕΙΟ ΚΙΤΡΟΥΣ ΠΙΕΡΙΑΣ Μαρία Υφαντή (ΠΕ 11) Δαμιανός Τσιλφόγλου (ΠΕ 20) Θέμα: Μύθοι Αισώπου και διδαχές του Τάξη

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ [δύο (2) ώρες την εβδομάδα]

ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ [δύο (2) ώρες την εβδομάδα] ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ [δύο (2) ώρες την εβδομάδα] Εισαγωγικό σημείωμα Οι οδηγίες που ακολουθούν αναφέρονται στο μάθημα «Τεχνικό», που διδάσκεται στην Α τάξη ημερησίων και εσπερινών ΕΠΑ.Λ. και είναι μάθημα της

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα.

Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα. Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης. Το ελεύθερο παιχνίδι είτε ατομικό,είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να χρησιμοποιούν δημιουργικά

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΥΝΕΔΡΙΟ ΜΑΘΗΜΑΤΙΚΑ ΣΤΑ Π.Π ΓΥΜΝΑΣΙΑ-ΛΥΚΕΙΑ ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΤΕΧΝΗΣ Λαλαζήση Χρυσούλα, Αρχιτέκτων- Πολιτικός Μηχανικός Σχολική Σύμβουλος ΠΔΕ Αττικής Αργύρη Παναγιώτα, Μαθηματικός

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Γ Υ Μ Ν Α Σ Ι Ο ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 «Τα Μαθηµατικά µέσα

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΚΗ ΨΥΧΑΓΩΓΙΑ ΓΙΑ ΠΑΙΔΙΑ ΕΚΠΑΙΔΕΥΣΗ ΜΕΣΑ ΑΠΟ ΤΟ ΠΑΙΧΝΙΔΙ

ΔΗΜΙΟΥΡΓΙΚΗ ΨΥΧΑΓΩΓΙΑ ΓΙΑ ΠΑΙΔΙΑ ΕΚΠΑΙΔΕΥΣΗ ΜΕΣΑ ΑΠΟ ΤΟ ΠΑΙΧΝΙΔΙ ΑΘΗΝΑ ΤΟ ΠΟΛΥΤΕΧΝΟ ΧΩΡΟΣ ΠΑΙΔΙΚΗΣ ΚΑΛΛΙΤΕΧΝΙΚΗΣ ΑΓΩΓΗΣ Το πολύτεχνο είναι ένα καλλιτεχνικό εργαστήριο που προσφέρει εκπαιδευτικά και καλλιτεχνικά προγράμματα σε μαθητές ηλικίας 2 έως 9 ετών τα οποία είναι

Διαβάστε περισσότερα

ΣΔΕ ΘΕΣ/ΝΙΚΗΣ. Συμμετρία και Τέχνη

ΣΔΕ ΘΕΣ/ΝΙΚΗΣ. Συμμετρία και Τέχνη Συμμετρία και Τέχνη Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός) (Αξονική και

Διαβάστε περισσότερα

Ενότητα στις Εικαστικές Τέχνες

Ενότητα στις Εικαστικές Τέχνες Ενότητα στις Εικαστικές Τέχνες Τίτλος: Ιστορίες δωματίων Βαθμίδα: 2 Τάξη: Ε Διάρκεια: 6 Χ 80 Περιγραφή Ενότητας Οι μαθητές και οι μαθήτριες μέσα από διάφορες δραστηριότητες που αφορούν στο δωμάτιό τους

Διαβάστε περισσότερα

Σύγχρονος χορός: Ιστορία, εκπαίδευση, σύνθεση και χορογραφία. Ενότητα 9: Χοροθέατρο Γαλάνη Μαρία (Μάρω) PhD Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

Σύγχρονος χορός: Ιστορία, εκπαίδευση, σύνθεση και χορογραφία. Ενότητα 9: Χοροθέατρο Γαλάνη Μαρία (Μάρω) PhD Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Σύγχρονος χορός: Ιστορία, εκπαίδευση, σύνθεση και χορογραφία Ενότητα 9: Χοροθέατρο Γαλάνη Μαρία (Μάρω) PhD Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης 1 Σκοπός της ενότητας Γνωριμία με την τέχνη του χοροθεάτρου

Διαβάστε περισσότερα

ΚΟΡΜΟΣ. 2. Στοιχεία Οπτικής - Θεωρία Χρώματος - Φωτομετρία (3) (3) 3. Εισαγωγή στην Ανθρωπολογία της Τέχνης 3 4. Αισθητική Ι 3

ΚΟΡΜΟΣ. 2. Στοιχεία Οπτικής - Θεωρία Χρώματος - Φωτομετρία (3) (3) 3. Εισαγωγή στην Ανθρωπολογία της Τέχνης 3 4. Αισθητική Ι 3 ΚΟΡΜΟΣ Α Εξάμηνο /Φροντιστήριο 1. Ιστορία της Αρχαίας Ελληνικής Τέχνης Ι 2. Στοιχεία Οπτικής - Χρώματος - Φωτομετρία. Εισαγωγή στην Ανθρωπολογία της Τέχνης 4. Αισθητική Ι 5. Ζωγραφικής Ι 6. Γλυπτικής Ι

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Το μουσείο ζωντανεύει με ταξίδι σχολικό! Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους 2011-2012. ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ ποδράσηη

Το μουσείο ζωντανεύει με ταξίδι σχολικό! Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους 2011-2012. ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ ποδράσηη ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ 9 5 ποδράσηη Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους 2011-2012 Μουσείο Επιστημών και Τεχνολογίας Πανεπιστημίου Πατρών 2ο Δημοτικό Σχολείο Ακράτας Δημοτικό Μουσείο

Διαβάστε περισσότερα

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Το έργο υλοποιείται με δωρεά από το Σύντομη περιγραφή Το Ελληνικό Παιδικό Μουσείο

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

Ο ΑΞΟΝΑΣ της ΔΙΑΘΕΜΑΤΙΚΟΤΗΤΑΣ στο ψηφιακό μουσικό ανθολόγιο ΕΥΤΕΡΠΗ ΜΑΙΗ ΚΟΚΚΙΔΟΥ

Ο ΑΞΟΝΑΣ της ΔΙΑΘΕΜΑΤΙΚΟΤΗΤΑΣ στο ψηφιακό μουσικό ανθολόγιο ΕΥΤΕΡΠΗ ΜΑΙΗ ΚΟΚΚΙΔΟΥ Ο ΑΞΟΝΑΣ της ΔΙΑΘΕΜΑΤΙΚΟΤΗΤΑΣ στο ψηφιακό μουσικό ανθολόγιο ΕΥΤΕΡΠΗ ΜΑΙΗ ΚΟΚΚΙΔΟΥ Διαθεματικότητα -Ιδανικό της ολιστικής γνώσης -Διασυνδέσεις με νόημα μεταξύ γνωστικών περιοχών -Μελέτη σύνθετων ερωτημάτων

Διαβάστε περισσότερα

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή:

ΕΥΤΕΡΑ Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Κολύμβηση/ Φυσική αγωγή: ΕΥΤΕΡΑ * Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης: Το ελεύθερο παιχνίδι είτε ατομικό, είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να αναπτύσσονται,

Διαβάστε περισσότερα

Γενικό Λύκειο Καρπενησίου. «Τα Πολύγωνα και οι Πλακοστρώσεις του M. C. Escher»

Γενικό Λύκειο Καρπενησίου. «Τα Πολύγωνα και οι Πλακοστρώσεις του M. C. Escher» Γενικό Λύκειο Καρπενησίου «Τα Πολύγωνα και οι Πλακοστρώσεις του M. C. Escher» Βασίλης Μαυρογόνατος Τμήμα : Β2 Καρπενήσι 2010-2011 Ο Maurits Cornelius Esche γεννηθηκε στις 17 Ιουνιου 1898, Γεννηθηκε στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ

ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ ΜΑΘΗΜΑ ΘΕΑΤΡΙΚΗΣ ΑΓΩΓΗΣ ΔΗΜΟΤΙΚΟΥ Ι. ΠΕΡΙΕΧΟΜΕΝΟ ΚΑΙ ΔΟΜΗ ΤΟΥ ΒΙΒΛΙΟΥ Το μάθημα της Θεατρικής Αγωγής θα διδάσκεται από φέτος στην Ε και Στ Δημοτικού. Πρόκειται για μάθημα βιωματικού χαρακτήρα, με κύριο

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Το έργο υλοποιείται με δωρεά από το ΕΠΜ_2014 Εκπαιδευτικό Έργο «Το Κινητό Μουσείο»

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Ο Μ Α Δ Α Ε Ι Κ Α Σ Τ Ι Κ Η Σ Α Γ Ω Γ Η Σ Μ Α Ρ Τ Ι Ο Σ 2014

Ο Μ Α Δ Α Ε Ι Κ Α Σ Τ Ι Κ Η Σ Α Γ Ω Γ Η Σ Μ Α Ρ Τ Ι Ο Σ 2014 Ο Μ Α Δ Α Ε Ι Κ Α Σ Τ Ι Κ Η Σ Α Γ Ω Γ Η Σ Μ Α Ρ Τ Ι Ο Σ 2014 Σ Υ Ν Ε Ρ Γ Α Τ Ι Κ Ε Σ Ε Ι Κ Α Σ Τ Ι Κ Ε Σ Δ Ρ Α Σ Ε Ι Σ Σύντομη Περιγραφή Ενότητας Η ενότητα φέρει τον τίτλο «Εγώ, εσύ, εμείς Συνεργατικές

Διαβάστε περισσότερα

Ρυθµός Κίνηση Χορός Ενοποίηση µουσικοκινητικής αγωγής - χορού. ρ. Απόστολος Ντάνης Σχολικός Σύµβουλος Φ.Α.

Ρυθµός Κίνηση Χορός Ενοποίηση µουσικοκινητικής αγωγής - χορού. ρ. Απόστολος Ντάνης Σχολικός Σύµβουλος Φ.Α. Ρυθµός Κίνηση Χορός Ενοποίηση µουσικοκινητικής αγωγής - χορού στα δηµοτικά σχολεία µε Ε.Α.Ε.Π. ρ. Απόστολος Ντάνης Σχολικός Σύµβουλος Φ.Α. Η θεµατική ενότητα «ρυθµός-κίνηση-χορός» στη σχολική Φυσική Αγωγή

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62

AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62 AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62 Ο ΑΚΤΟ με 40 και πλέον χρόνια δραστηριότητας στον χώρο των Εφαρμοσμένων και Καλών Τεχνών και η DESIGNEMBASSADOR.COM UG, που εξειδικεύεται στον σχεδιασμό φεστιβάλ,

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8

ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5. 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ: Γνωριμία με την ΑΚΟΥΣΤΙΚΗ 1 ΜΕΡΟΣ ΠΡΩΤΟ: ΘΕΩΡΙΑ 5 1 ος ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ: ΤΑΛΑΝΤΩΣΕΙΣ 7 Προσδοκώμενα αποτελέσματα 8 1.1. Περιοδική κίνηση Περιοδικά φαινόμενα 9 1.2. Ταλάντωση - Ταλαντούμενα

Διαβάστε περισσότερα

Η ιστορία του φωτός σαν παραμύθι

Η ιστορία του φωτός σαν παραμύθι Η ιστορία του φωτός σαν παραμύθι περιγραφή της δράσης Χρήστος Γκοτζαρίδης Φυσικός ΕΙΣΑΓΩΓΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΠΡΟΚΑΤΑΡΤΙΚΗ ΦΑΣΗ Μικρή Περιγραφή: Οι μαθητές θα παρακολουθήσουν μία ιστορία, για την εξέλιξη των

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ, Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Μυκηναϊκός Πολιτισμός ΕΙΣΗΓΗΤΗΣ: ΚΑΛΛΙΑΔΟΥ ΜΑΡΙΑ ΘΕΜΑ: «Η καθημερινή ζωή στον Μυκηναϊκό Κόσμο» Οι μαθητές

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΜΟΥΣΕΙΟΠΑΙΔΑΓΩΓΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ

ΜΟΥΣΕΙΟΠΑΙΔΑΓΩΓΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΔΙΕΥΘΥΝΣΗ ΠΟΛΙΤΙΣΜΟΥ ΜΟΥΣΕΙΟΠΑΙΔΑΓΩΓΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ Για την σχολική χρονιά 2014-2015 πραγματοποιούνται τα κάτωθι προγράμματα : Α) ΠΙΝΑΚΟΘΗΚΗ ΤΟΥ ΔΗΜΟΥ ΑΘΗΝΑΙΩΝ Γερμανικού και Μυλλέρου Μεταξουργείο Δήλωση

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του. Δέσποινα Πόταρη, ΕΚΠΑ

Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του. Δέσποινα Πόταρη, ΕΚΠΑ Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του Δέσποινα Πόταρη, ΕΚΠΑ Τι είναι το ΠΣ; Ο δυναμικός χαρακτήρας του ΠΣ Το ΠΣ

Διαβάστε περισσότερα

Αρχαία Ελληνική Επιστήμη και Τεχνολογία

Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Περιοδική Έκθεση Αρχαία Ελληνική Επιστήμη και Τεχνολογία Μια έκθεση που παρουσιάζει την εξέλιξη της σκέψης των Αρχαίων Ελλήνων,

Διαβάστε περισσότερα

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1). . Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική

Διαβάστε περισσότερα

Το µοντέλο επιµόρφωσης των εκπαιδευτικών πρωτοβάθµιας εκπαίδευσης στο Πρόγραµµα «ΜΕΛΙΝΑ Εκπαίδευση και Πολιτισµός»

Το µοντέλο επιµόρφωσης των εκπαιδευτικών πρωτοβάθµιας εκπαίδευσης στο Πρόγραµµα «ΜΕΛΙΝΑ Εκπαίδευση και Πολιτισµός» Το µοντέλο επιµόρφωσης των εκπαιδευτικών πρωτοβάθµιας εκπαίδευσης στο Πρόγραµµα «ΜΕΛΙΝΑ Εκπαίδευση και Πολιτισµός» εισήγηση του Μένη Θεοδωρίδη που πραγµατοποιήθηκε στο πλαίσιο του Πανελληνίου Συνεδρίου

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

Προγραµµατισµός από Ιανουάριο 2007 έως Ιούνιο 2007

Προγραµµατισµός από Ιανουάριο 2007 έως Ιούνιο 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ Β ΤΕΤΡΑΜΗΝΟΥ2006-07 Σ Ε ΛΑΡΙΣΑΣ Προγραµµατισµός από Ιανουάριο 2007 έως Ιούνιο 2007 β επίπεδο Επιστηµονικός Γραµµατισµός Υπεύθυνος καθηγητής: Αβραάµ Κοέν Θέµα - άξονες ανάπτυξης Στοχοθεσία

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση

Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση Πρόγραμμα Eξ Aποστάσεως Eκπαίδευσης (E learning) Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση Οδηγός Σπουδών Το πρόγραμμα εξ αποστάσεως εκπαίδευσης ( e-learning ) του Πανεπιστημίου Πειραιά του Τμήματος

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΟΥ ΙΣΤΟΡΙΚΟΥ ΜΟΥΣΕΙΟΥ ΚΡΗΤΗΣ 2014-2015

ΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΟΥ ΙΣΤΟΡΙΚΟΥ ΜΟΥΣΕΙΟΥ ΚΡΗΤΗΣ 2014-2015 ΙΣΤΟΡΙΚΟ ΜΟΥΣΕΙΟ ΚΡΗΤΗΣ Οίκος Ανδρέου & Μαρίας Καλοκαιρινού Σοφοκλή Βενιζέλου 27 / Λυσιμάχου Καλοκαιρινού 7 71202 Ηράκλειο, Κρήτη Τηλ.: (2810) 283219-288708 Fax: 283754 e-mail: info@historical-museum.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής 6

ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής 6 πρώτο δεύτερο ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος ΓΑΛ 103 Γραπτός λόγος I ΓΑΛ 170 e-french ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής ΓΑΛ 104 Γραπτός λόγος II ΓΑΛ 111 Φωνητική ΓΑΛ 1 Από

Διαβάστε περισσότερα

Επιλέγω. Saint-Paul ΜΑΘΗΤΙΚΟΙ ΟΜΙΛΟΙ ΔΡΑΣΗΣ & ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑΣ. σχολικό έτος 2014-15

Επιλέγω. Saint-Paul ΜΑΘΗΤΙΚΟΙ ΟΜΙΛΟΙ ΔΡΑΣΗΣ & ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑΣ. σχολικό έτος 2014-15 Επιλέγω Saint-Paul ΜΑΘΗΤΙΚΟΙ ΟΜΙΛΟΙ ΔΡΑΣΗΣ & ΔΗΜΙΟΥΡΓΙΚΟΤΗΤΑΣ Τμήματα Εμπέδωσης σχολικό έτος 2014-15 Η πολύχρονη εκπαιδευτική εμπειρία των εκπαιδευτηρίων Saint-Paul έχει επενδύσει στη διάπλαση μαθητών

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα