5 ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΘΕΤΩΝ ΚΑΜΠΥΛΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΘΕΤΩΝ ΚΑΜΠΥΛΩΝ"

Transcript

1 5 ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΘΕΤΩΝ ΚΑΜΠΥΛΩΝ Στην προσαρµογή µια σύνθετης παραµετρικής καµπύλης r(t) σε σειρά σηµείων {, =,,} µπορούν να χρησιµοποιηθούν όλα τα µοντέλα παραµετρικών καµπυλών, όπως Ferguso, Bezer, B-Sple, ρητές B-Sple, κλπ Το πρόβληµα ανάγεται στην επίλυση συστήµατος εξισώσεων, που δηµιουργούνται από την επιβολή συνθηκών συνέχειας C σε κάθε ένα από τα σηµεία Η επιλογή του είδους της καµπύλης εξαρτάται και από την κατανοµή τωνσηµείων, και έχουµε : Για οµοιόµορφα κατανεµηµένα σηµεία : Προσαρµογή κυβικής καµπύλης (Ferguso) Προσαρµογή οµοιόµορφης B-Sple Για ανοµοιόµορφα κατανεµηµένα σηµεία : Προσαρµογή κυβικής καµπύλης σε σχέση µήκους τόξου Προσαρµογή ανοµοιόµορφης B-Sple

2 5 ΠΡΟΣΑΡΜΟΓΗ ΚΑΜΠΥΛΗΣ ΣΕ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΗΜΕΙΑ 5 ΠΡΟΣΑΡΜΟΓΗ ΣΥΝΘΕΤΗΣ ΚΥΒΙΚΗΣ ΚΑΜΠΥΛΗΣ FERGUSON Προσαρµογή κυβικών τµηµάτων Ferguso από σειρά + σηµείων στο χώρο { }, σχ5 Η σύνθετη καµπύλη πρέπει να έχει C -συνέχεια Επίσης, δίνονται τα ακραία εφαπτόµενα διανύσµατα t και t Έστω, t, το εφαπτόµενο διάνυσµα σεκάθε ένα από τα σηµεία Τότε µεταξύτωνδιαδοχικώντµηµάτων r - (u) και r (u) ισχύει η παρακάτω σχέση : t - +4t +t + =3( ) για =,,,- και για τα ακραία διανύσµατα t = t$, t = t$ Σχ5 Σειρά σηµείων που θα παρεµβάλουµε την καµπύλη Συνεπώς, έχουµε το παρακάτω σύστηµα εξισώσεων, σε µορφή πινάκων, AX=B, όπου A=(+)x(+) είναι ο πίνακας των συντελεστών και Χ ο πίνακας των αγνώστων εφαπτόµενων διανυσµάτων t t$ 4 t 3( ) 4 t 3( 3 ) = or X = A - B 4 t 3( ) ) t t Έχοντας προσδιορίσει όλα τα εφαπτόµενα διανύσµατα σε όλα τα σηµεία, µπορούµε να υπολογίσουµε κάθετµήµα r (u), µεταξύ των σηµείων [, + ], από τον τύπο r (u)=ucs για =,,,, - Προσαρµογή Σύνθετων Καµπυλών -5--

3 όπου S =[ + t t + ] T, U = [ u u u 3 ] και C = 3 3 Όταν τα ακραία διανύσµατα δεν δίνονται, τότε µπορούµε να τα υπολογίσουµε χρησιµοποιώντας µια από τις παρακάτω τρεις µεθόδους, Κυκλικές τελικές συνθήκες Πολυωνυµικές τελικές συνθήκες Ελεύθερες τελικές συνθήκες A ΚΥΚΛΙΚΕΣ ΤΕΛΙΚΕΣ ΣΥΝΘΗΚΕΣ Ηεφαπτοµένη στα άκρα υπολογίζεται προσαρµόζοντας ένα κύκλο στα τρία ακραία σηµεία, σχ5 Ορίζουµε τα παρακάτω µεγέθη : Q κέντρο του κύκλου ιάνυσµα r=q- ιανύσµατα a= - ; b = - ; c = axb Σχ5 Προσδιορισµός ακραίου εφαπτόµενου διανύσµατος για κυκλικές τελικές συνθήκες Το ζητούµενο διάνυσµα to είναι κάθετο στα διανύσµατα r και c και το µέγεθός του τίθεται ίσο προς το µήκος χορδής Ρ Ρ, και δίνεται από την εξίσωση : t = a ( rc x ) rc x Το άγνωστο διάνυσµα r=q-, δίνεται από τη σχέση r={ a (bxc)+ b (cxa)} / ( c ) Προσαρµογή Σύνθετων Καµπυλών -5-3-

4 B ΠΟΛΥΩΝΥΜΙΚΕΣ ΤΕΛΙΚΕΣ ΣΥΝΘΗΚΕΣ Στην περίπτωση αυτή προσαρµόζουµε µια πολυωνυµική καµπύλη r(t), στα ακραία σηµεία, και το ακραίο διάνυσµα ισούται µε τα ακραίο διάνυσµα της νέας καµπύλης, πχ t =r () Ηπολυωνυµική καµπύλη µπορεί να είναι : κυβική καµπύλη από τα σηµεία,,, 3 δευτέρου βαθµού από τα σηµεία,, C ΕΛΕΥΘΕΡΕΣ ΤΕΛΙΚΕΣ ΣΥΝΘΗΚΕΣ Στην περίπτωση αυτή υποθέτουµε ότιηκαµπυλότητα στα ακραία σηµεία Ρ και Ρ είναι µηδέν Η συνθήκη αυτή ισοδυναµεί µε την επιβολή µηδενικού εξωτερικού φορτίου στα άκρα της καµπύλης Συνεπώς, r&& ( ) r&& και () = που ισοδυναµεί µε τις σχέσεις t +t =3( - ) και t +t - =3( - - ) Συνεπώς, το τελικό σύστηµα εξισώσεων, για τον προσδιορισµό των εφαπτόµενων διανυσµάτωνσεόλατασηµεία από τα οποία διέρχεται η καµπύλη, είναι : t 3( ) 4 t 3( ) 4 t 3( 3 ) ` = 4 t 3( ) t 3( ) Προσαρµογή Σύνθετων Καµπυλών -5-4-

5 5 ΠΡΟΣΑΡΜΟΓΗ ΟΜΟΙΟΜΟΡΦΗΣ ΚΑΜΠΥΛΗΣ B-SLINE Προσαρµογή σύνθετης καµπύλης Β-Sple σε σειρά σηµείων, { :=,,, }, σχ5 Απαιτείται ο προσδιορισµός +3 σηµείων ελέγχου, { :=,,,+}Τα διαδοχικά τµήµατα της σύνθετης καµπύλης είναι τµήµατα B-Sple, που ενώνονται µεταξύ τους στα σηµεία Για κάθε ένα από τα σηµεία ισχύει η παρακάτω σχέση (συνέχεια θέσης) =6 ; =,,, Η παραπάνω σχέση µας δίνει (+) εξισώσεις, και για τον υπολογισµό των (+3) σηµείων ελέγχου απαιτούνται άλλες δύο εξισώσεις που προέρχονται από τα ακραία εφαπτόµενα διανύσµατα, &r () = ( - )/ = t &r - () = ( + - )/ = t Συνεπώς, το σύστηµα εξισώσεων γίνεται : t = t Εάν τα ακραία διανύσµατα δεν δίνονται τότε µπορούν να υπολογισθούν όπως και προηγούµενα, δηλ µε κυκλικές, πολυωνυµικές ή ελεύθερες ακραίες συνθήκες Στην περίπτωση των ελεύθερων ακραίων συνθηκών, έχουµε : r& ( ) r&& ( ) = καµπυλότητα µηδέν στην αρχή της καµπύλης r& () r&& () = καµπυλότητα µηδέν στo τέλος της καµπύλης Ηπρώτησχέσηµας δίνει : r& ( ) r&& ( ) = ( ) ( + ) = H παραπάνω σχέση ικανοποιείται από µια από τις παρακάτω συνθήκες : ( - )= ( - + )= ( - )=( - + ) Συνήθως χρησιµοποιείται η τρίτη σχέση, που µας δίνει : = Αντίστοιχα και για το τέλος της καµπύλης παίρνουµε : + = + Προσαρµογή Σύνθετων Καµπυλών -5-5-

6 Προσαρµογή Σύνθετων Καµπυλών Αντικαθιστώντας παίρνουµε το παρακάτω σύστηµα εξισώσεων : = + + Έχοντας προσδιορίσει τα σηµεία ελέγχου, { }, το κάθε τµήµα B-Sple της καµπύλης που περιέχεται µεταξύ των σηµείων [, + ] υπολογίζεται από τον τύπο : r u UNR ( ),, = = για όπου U = [ u u u 3 ] N = R =[ ] T Η τελική καµπύλη αποτελείται από τµήµατα που ορίζονται από τα +3 σηµεία ελέγχου

7 5 ΠΡΟΣΑΡΜΟΓΗ ΚΑΜΠΥΛΗΣ ΣΕ ΑΝΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΗΜΕΙΑ Θα εξετασθούν δύο µέθοδοι προσαρµογής καµπυλών σε ανοµοιόµορφα κατανεµηµένα σηµεία (απόσταση σηµείων ανοµοιόµορφη) Κυβική καµπύλη σε σχέση µήκους-χορδής, όπου για τον υπολογισµό των εφαπτόµενων διανυσµάτων στα σηµεία παρεµβολής λαµβάνεται υπ όψιν και το µήκος της χορδής που ενώνει τα διαδοχικά σηµεία, Προσαρµογή ανοµοιόµορφης καµπύλης Β-Sple, όπου για ο υπολογισµός του διανύσµατος κόµβων βασίζεται στο µήκος της χορδής που ενώνει τα διαδοχικά σηµεία Καιοιδύο µέθοδοι είναι κατάλληλοι για την προσαρµογή καµπυλών χωρίς τοπικά επίπεδα τµήµατα ή ανακυκλώσεις Στο, σχ54, φαίνονται οι δύο µέθοδοι προσαρµογής κυβικής καµπύλης στην ίδια σειρά σηµείων Σχ54 Οι δύο µέθοδοι προσαρµογής κυβικής καµπύλης σε σειρά σηµείων 5 ΠΡΟΣΑΡΜΟΓΗ ΚΑΜΠΥΛΗΣ ΜΕ ΣΧΕΣΗ ΜΗΚΟΥΣ ΧΟΡ ΗΣ Ηκαµπύλη αυτή χαρακτηρίζεται από G -Γεωµετρική συνέχεια (ίσα µοναδιαία εφαπτόµενα διανύσµατα και καµπυλότητα στα κοινά σηµεία) Επιλύεται πρώτα το πρόβληµα της προσαρµογής από τρία σηµεία,, µε δεδοµένα τα εφαπτόµενα διανύσµατα t, t σταάκρατηςκαµπύλης Ζητείται η προσαρµογή σύνθετης καµπύλης Ferguso µε G -συνέχεια Έστω, r a (u) και r b (u) τα δύο τµήµατα Ferguso, σχ55, και t το εφαπτόµενο διάνυσµα στο κοινό σηµείο Τότε έχουµε την παρακάτω σχέση : a b b a t = r& () r& ( ) = wt, οπου w = b a = r& ( ) r& () Προσαρµογή Σύνθετων Καµπυλών -5-7-

8 Σχ55 Κατασκευή καµπύλης σε σχέση µήκους χορδής Στην προσαρµογή αυτή το µήκος της χορδής που ενώνει διαδοχικά σηµεία, λαµβάνεται ως µήκος του εφαπτόµενου διανύσµατος : a = ; b = Η συνθήκη για G -συνέχεια, γίνεται b a r&& ( ) = w r&& (), οπου w = Οι εξισώσεις των δύο τµηµάτων Ferguso είναι : r () u = U C S, r () u = U C S a a b b 3 [ ] U = u u u C =, όπου 3 3 T [ ], [ ] a S = t t b S = wt t Συνεπώς, η συνθήκη G -συνέχειας µας δίνει : ( wt t ) = w ( t + 4t ) από την οποία προσδιορίζεται εύκολα το διάνυσµα t Στη συνέχεια επιλύεται το γενικευµένο πρόβληµα προσαρµογής καµπύλης από σειρά + σηµείων { : =,,}, µε δεδοµέναταακραίαεφαπτόµενα διανύσµατα t και t Προσδιορίζουµε ταµεγέθη w = + - / - -, για =,,, - (µε w =)και τα εφαπτόµενα διανύσµατα {t :=,,,-}στα κοινά σηµεία Οι εξισώσεις των τµηµάτων Ferguso, δίνονται από τις σχέσεις : Προσαρµογή Σύνθετων Καµπυλών T

9 r (u)=ucs όπου S =[ + w t t + ] T w = w = + - / - - για =,,, - Σε κάθε κοινά σηµείο έχουµε : r&& ( ) = ( w ) r&& () γραµµικές εξισώσεις (για =,,, -), της µορφής : { ( ) } 3 ( ) { } w w t + w + w t + t = + w w + + I Συνεπώς, το σύστηµα εξισώσεων σε µορφή πινάκων, είναι το : w w + w ww w+ w { + } όπου 3 ( ) b = + w + ) w t t$ t b t b = ww w + w t b t t$ που µας δίνει - Τα ακραία εφαπτόµενα διανύσµατα, t και t, όταν δεν δίνονται υπολογίζονται µε τις ίδιες µεθόδους, δηλ Κυκλικές τελικές συνθήκες Πολυωνυµικές τελικές συνθήκες Ελεύθερες τελικές συνθήκες Όταν το µήκος της χορδής είναι κοινό, τότε έχουµε την περίπτωση της προσαρµογής απλής κυβικής καµπύλης Προσαρµογή Σύνθετων Καµπυλών -5-9-

10 5 ΠΡΟΣΑΡΜΟΓΗ ΑΝΟΜΟΙΟΜΟΡΦΗΣ ΚΑΜΠΥΛΗΣ B-SLINE Μια σύνθετη καµπύλη που αποτελείται από κυβικά ανοµοιόµορφα τµήµατα B-Sple, σχ56, {r (u)=,,,-} ορίζεται από +3 Σηµεία Ελέγχου { :=,,+}και +4 ιανύσµατα Κόµβων { =(t + -t ):=-,,+} Σχ56 Προσαρµογή ανοµοιόµορφης καµπύλης B-Sple Συνεπώς, το πρόβληµα της προσαρµογής ανάγεται στo παρακάτω πρόβληµα : εδοµένα Σηµεία { :=,,,}και t,t : ακραία εφαπτόµενα διανύσµατα Προσδιορισµός { =(t + -t ):=-,,+}: ιανύσµατα κόµβων και { :=,,+}:Σηµεία ελέγχου Τοπρώτοστάδιοείναιοπροσδιορισµός του διανύσµατος κόµβων, { }, - που ονοµάζονται και κύρια διαστήµατα (supportg kot spas) Τα υπόλοιπα ονοµάζονται πρόσθετα διανύσµατα (exteded kot spas) Μια καλή επιλογή για τα κύρια διαστήµατα είναι να γίνουν ίσα µε τα αντίστοιχα µήκη τόξων των τµηµάτων που υποστηρίζουν, δηλ : = + - για =,,,- Τα πρόσθετα διαστήµατα δεν επηρεάζουν τη µορφή της καµπύλης και µπορούµε ναταθεωρήσουµε ίσαµε τοµηδέν, ήίσαµε το πρώτο και το τελευταίο διάνυσµα - = - = + = = (Πολλαπλοί κόµβοι) - = - = ; + = = - Προσαρµογή Σύνθετων Καµπυλών -5--

11 Έχοντας προσδιορίσει τα διανύσµατα κόµβων, µπορούµε ναδηµιουργήσουµε το γραµµικό σύστηµα εξισώσεων για τον υπολογισµό των κορυφών ελέγχου Η εξίσωση του κάθε τµήµατος της καµπύλης είναι : r ( u) = UN R ; u, =,,, c όπου U = [ u u u 3 ] R =[ ] N s ( ) ( ) 3 ( 3) ( 3 3) 3 = 3( ) 3 ( ) 3 ( ) 43 ( ) 3,j = στοιχείο γραµµής, και στήλης j, του πίνακα 4,3 =-{ 33 / ( ) /( 3 - )} k = k- Επειδή κάθε τµήµα καµπύλης, r (u) ορίζεται µεταξύ των σηµείων και + παίρνουµε τιςπαρακάτω εξισώσεις ( =,,-) r()= r()=+ αντικαθιστώντας την εξίσωση των τµηµάτων, παίρνουµε τις σχέσεις : f + h + g = ; =,,, όπου f = ( ) ( ), h = ( f g ), g = ( ) ( ) Οι δύο επιπλέον εξισώσεις που απαιτούνται υπολογίζονται από τα ακραία εφαπτόµενα διανύσµατα, ( ) $ t = r& ( ) = a + b a b 3 3 όπου a = 3( ) ( ), b = 3( ) ( ) Προσαρµογή Σύνθετων Καµπυλών -5-- και $ & () ( ) t = r = a + b a b όπου a = ( ) ( ) b = ( ) ( ), Εάν χρησιµοποιήσουµε πολλαπλούς πρόσθετους κόµβους, δηλ

12 Προσαρµογή Σύνθετων Καµπυλών = - = + = = τότε οι αντίστοιχοι συντελεστές γίνονται : f = ; g = ; f = ; g = ; a = ; b =3 ; a =3 ; b = καιτοτελικόσύστηµα εξισώσεων έχει τη µορφή : = f h g f h g t t $ $

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ 4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται

Διαβάστε περισσότερα

Παραµετρικές Καµπύλες & Επιφάνειες

Παραµετρικές Καµπύλες & Επιφάνειες Παραµετρικές Καµπύλες & Επιφάνειες Ανάγκη Μαθηµατικής Περιγραφής Πολύπλοκων Καµπυλών για επεξεργασία µε υπολογιστή: Αυτοκινητιστική & Αεροναυπηγική βιοµηχανία από µέσα δεκαετίας 96. ιάδοση κατασκευαστικών

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/44 1. Ορισµοί 2. Είδη διανυσµάτων 3. Πράξεις διανυσµάτων 4. Εσωτερικό, εξωτερικό και µικτό γινόµενο

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 2 η Σειρά Ασκήσεων 1. Αντί των κλασικών κυβικών πολυωνυμικών παραμετρικών καμπυλών

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β

v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο

Διαβάστε περισσότερα

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από

Διαβάστε περισσότερα

Καµπύλες Bézier και Geogebra

Καµπύλες Bézier και Geogebra Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887 Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α ίνονται τα διανύσµατα α και β, τα οποία δεν είναι παράλληλα προς τον άξονα y y και έχουν συντελεστές διεύθυνσης λ και λ αντίστοιχα

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ 1 ΣΥΣΤΗΜΑΤΑ ΣΧΕ ΙΟΜΕΛΕΤΗΣ ΜΕ ΧΡΗΣΗ Η/Υ - COMPUTER AIDED DESIGN (CAD) 1.1 ΟΡΙΣΜΟΣ ΣΧΕ ΙΟΜΕΛΕΤΗΣ ΜΕ ΧΡΗΣΗ Η/Υ - CAD 1.1 1.2 ΤΕΧΝΟΛΟΓΙΑ ΣΧΕ ΙΟΜΕΛΕΤΗΣ - ΠΑΡΑΓΩΓΗΣ ΜΕ Η/ΥΣΤΗΝ ΑΝΑΠΤΥΞΗ

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1o Α. Αν α, ν είναι δύο διανύσµατα του επιπέδου µε α 0 και η προβολή του ν στο α συµβολίζεται µε προβ α ν, τότε

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

4 ΜΟΝΤΕΛΑ ΑΚΜΩΝ - ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΑΜΠΥΛΩΝ... 4-1

4 ΜΟΝΤΕΛΑ ΑΚΜΩΝ - ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΑΜΠΥΛΩΝ... 4-1 4 ΜΟΝΤΕΛΑ ΑΚΜΩΝ - ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΑΜΠΥΛΩΝ... 4-4. ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ... 4-4. ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΩΝΙΚΩΝ ΤΟΜΩΝ... 4-4.. ΟΡΙΣΜΟΣ... 4-4.. ΓΡΑΜΜΗ... 4-4 4.. ΚΥΚΛΟΣ ΚAI ΤΟΞΑ... 4-5 4..4 ΕΛΛΕΙΨΗ...

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Έστω ο υποχώρος W του R 5 που παράγεται από τα διανύσματα v=(,,-,,), v=(,,-,6,8), v=(,,,,6), v=(,,5,,8), v5=(,7,,,9). a)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10 7 ο Γενικό Λύκειο Περιστερίου ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΗΜΕΡΟΜΗΝΙΑ:

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η ισότητα στο σύνολο C των µιγαδικών αριθµών ορίζεται από την ισοδυναµία: α +βi = γ + δi α = γ και β = δ. Σ Λ. * Αν z = α + βi, α, β

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;). ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 1 Τμήμα Α Ακ.Έτος: 6-7 Διδάσκων Σ.Ε.Π. : Τρύφων Δάρας ΣΗΜΕΙΩΣΕΙΣ 4 ΚΑΜΠΥΛΕΣ ΣΤΟ ΧΩΡΟ Μία συνάρτηση της μορφής r ():[ aβ, ] (αντίστοιχα r ():[, ] aβ ) λέμε ότι παριστάνει

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 4 ο : Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( µε τις λύσεις ) Όταν µας δίνονται σε έναν πίνακα στοιχεία του κόστους π.χ. το Q και το

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Τετάρτη 4 Μαΐου 06 ιάρκεια Εξέτασης: 3 ώρες Α. Σχολικό βιβλίο σελίδα 5. Α.

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 5 Α Θεωρία Σχολικό Βιβλίο (έκδοση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

1.1 Η Έννοια του Διανύσματος

1.1 Η Έννοια του Διανύσματος ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος ΜΘΗΣΙΚΟΙ ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να κατανοήσει τις έννοιες : διάνυσµα, µηδενικό διάνυσµα, φορέας-διεύθυνση, κατεύθυνση - φορά, µέτρο διανύσµατος, ϖαραλληλία

Διαβάστε περισσότερα

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του κύκλου c: x + y = ρ στο σημείο του

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις 1 ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής Α εξάμηνο Αριστείδης Δοκουμετζίδης Ύλη Διανύσματα Πίνακες Ορίζουσες - Συστήματα Διαφορικές εξισώσεις ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Μία φυσική ποσότητα μπορεί να αναπαρίσταται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 15 εκεµβρίου 2017

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα